首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 137 毫秒
1.
不同岩石破裂全过程的声发射序列分形特征试验研究   总被引:3,自引:0,他引:3  
吴贤振  刘祥鑫  梁正召  游勋  余敏 《岩土力学》2012,33(12):3561-3569
通过对不同岩性的岩石进行单轴压缩声发射试验,获取岩石破裂全过程中的载荷-轴向变形曲线及声发射参数,观察试件破裂失稳时的破坏情况,分析破坏过程的载荷变化关系。着重对比了不同岩石的不同力学性质、岩石声发射序列的时域特征和声发射序列的分形特征。研究结果表明,采用声发射率、能率可以很好地描述岩石破裂损伤的整个阶段;计算岩石声发射率、声发射能率的关联维数,可得出岩石破裂过程的声发射序列具有分形特征;岩石破裂过程的声发射分维值D反映了岩石内部微裂隙的统计演化规律;不同岩性的岩石破裂过程的声发射参数序列的分形特征具有一定的共性;归纳总结出岩体声发射序列分维曲线的演化模式,即波动→持续下降演化模式,提出可以将分维值的持续下降作为岩体破裂失稳的前兆。  相似文献   

2.
周期性循环载荷作用下岩石声发射规律试验研究   总被引:7,自引:2,他引:5  
声发射是岩石等脆性材料内部损伤的伴生现象。在周期性循环载荷作用下通过改变不同应力幅度和不同加载速率对细粒砂岩进行声发射试验研究,探讨了声发射在周期性载荷作用下的声发射规律。研究结果表明,改变上限应力对声发射现象的影响显著,而改变下限应力的影响主要在循环末期,提早了每个循环声发射产生时间;加载速率的增加提高了声发射率,特别是循环过程中主裂纹的形成和扩展阶段,加快了岩石破坏进程;不同应力幅度和加载速率下声发射表现出不同的发展模式,不同模式预示着不同的岩石变形破坏速率。  相似文献   

3.
为探究不同岩性岩石在发生破裂时的演化模式,采用声发射监测系统对大理岩、花岗岩、灰岩、砂岩的巴西劈裂试验和单轴压缩试验监测。试验结果表明,巴西劈裂试验应力变化为非线性变化和线性变化,且不同岩石在巴西劈裂破坏时会产生二次破坏;单轴压缩条件下不同岩样在发生破坏时具有典型的全应力–应变曲线特征,声发射参数变化随应力变化较为一致,但不同岩性对于声发射参数的响应存在差异;在劈裂和压缩过程中,振铃计数和撞击计数对于岩石破坏的发生更为敏感,且岩石越坚硬,发生破坏时释放的能量越多。  相似文献   

4.
运用岩石破裂过程分析软件RFPA2D,通过设置不同尺寸、剪切速率,探究裂隙形成、声发射能量以及位移之间的关系。数值模拟结果表明非均质岩石剪切破坏过程裂纹的扩展贯穿模式及声发射能量的对应关系。结果表明:(1)岩石剪切破坏的尺寸效应显著,剪切速率影响较小。(2)大裂隙的生成伴随较强的声发射能量,引起Y方向位移波动明显。(3)岩石剪切破坏剪裂纹是由大量细小张裂隙发育演变而来,对破坏模式起主导作用。  相似文献   

5.
王立  倪彬  谢伟  王书昭  寇坤  赵奎 《岩土力学》2022,43(Z2):373-381
为了探讨粒径对黄砂岩微观-宏观裂纹演化机制的影响,系统地开展了不同粒径黄砂岩单轴压缩声发射试验。基于声发射监测技术以及震源机制反演方法,对岩石变形破坏过程中微裂纹演化机制进行了研究,同时利用电镜扫描技术与几何分形理论,对破坏后的砂岩表面裂隙宏观形态及试件断口的微观形貌特征进行了分析。试验结果表明:粒径的大小、胶结物类型的不同均可影响岩石强度,通过室内试验得出随着黄砂岩粒径的逐渐增大,其峰值应力呈逐渐下降的变化趋势;对比不同粒径黄砂岩试件变形破坏过程中的声发射改进 b 值( bI 值)与平均声发射能率,所有试件峰值破坏前平均声发射能率均存在“激增”与“激降”现象,且声发射 bI 值在砂岩试件达到峰值破坏时下降到最小值,该现象可以作为岩石的失稳破坏前兆特征;随着构岩矿物颗粒粒径的增大,岩石内部微裂纹的破坏模式由张拉型为主导向剪切型为主导进行转变;破坏后岩样表面宏观裂隙的分形维数随着岩石粒径的增加呈现下降的变化趋势,即粒径大小对岩石表面宏观裂隙演化过程具有一定控制作用。  相似文献   

6.
岩石破裂过程中的声发射b值及分形特征研究   总被引:9,自引:1,他引:8  
应用声发射及其定位技术,通过单轴受压岩石破坏声发射试验,对岩石破裂过程中的声发射b值和空间分布分形维值随不同应力水平的变化趋势进行了研究。研究结果表明:声发射分形维值D和b值反映了岩石破坏过程中微裂纹的初始和扩展;在小尺度微裂纹所占比例较高的加载初期,分形维值和b值在较高的水平波动变化,部分岩石试件分形维值和b值呈现升高现象;随着载荷的增加,岩石内部微裂纹的空间分布由无序向有序转变,大尺度裂纹所占比例增加,声发射定位事件出现群集现象,分形维值和b值开始较快速下降并在岩石失稳破坏时达到最低值。在岩石破坏过程中,声发射分形维值和b值的变化趋势相近。由于实际应用时,分形维值和b值的最小值(临界点)难以确定,故可将2个参数相结合,以分形维值D和b值较快速下降作为前兆特征,以提高现场岩体稳定性监测的准确性。  相似文献   

7.
吴刚  王德咏  翟松韬 《岩土力学》2012,33(11):3237-3242
通过在单轴压缩下实施的声发射测试,研究焦作砂岩受20~1 200 ℃温度作用后的声发射演变过程;结合不同温度下砂岩的力学性质,通过声发射参数分析研究砂岩在不同受力阶段的声发射特点。研究表明:400 ℃以内温度对砂岩的声发射影响不太明显,在100 ℃后和600 ℃后声发射振铃累计数均发生急剧变化,100 ℃是砂岩裂纹扩展发育的门槛值,600 ℃后砂岩内部结构成分发生了变化,声发射现象较为明显。600~1 200 ℃时,砂岩呈现出明显的脆塑性转变现象,高温导致声发射信号的时间有所推迟,声发射信号增长率不断上升。1 200 ℃后,砂岩释放密集的声发射信号,呈现出塑性破坏特征。  相似文献   

8.
蠕变是岩石一种重要的力学特性,与工程的长期安全稳定和安全密切相关。声发射技术作为一种无损检测手段,被广泛应用于岩石变形破坏研究领域。本文阐述了近年来基于声发射技术开展岩石蠕变特性方面的研究进展,主要包括不同岩性、加载方式、应力水平下岩石蠕变声发射特性,岩石蠕变破坏声发射前兆特征。在此基础上,提出了几点今后需要进一步深入研究的问题。  相似文献   

9.
对取自柿竹园矿的花岗岩、矽卡岩,进行声发射特性试验研究以及岩石的声波波速测试,得到岩石的纵波速度及在受单轴压力下岩石破坏过程中的应力-应变以及声发射参数与应力、时间之间的关系,为矿山的安全生产、避免地压灾害提供了决策依据。  相似文献   

10.
本文通过MTS815岩石力学试验机,开展循环荷载作用下花岗岩破坏过程声发射参数变化的研究,研究了花岗岩在不同围压、循环次数、含水率的条件下声发射参数的变化情况。基于记录到的声发射数据,将岩石破坏过程划分为3个阶段,即初始阶段、匀速增长阶段、加速跃迁阶段,研究各阶段的RA值、损伤参数D、Kaiser效应的变化特征。试验结果表明:(1)饱水岩石的RA值小于天然状态下岩石的RA值,并且岩石破坏前(加速跃迁阶段)有较为明显的高RA区出现。(2)围压能有效延长加速跃迁阶段的时间,同时提高岩石的抗压强度。(3)损伤参数D在最后一级循环时抬升平均值达到0.6。(4)验证了岩石Kaiser效应的局限性,岩石在出现了Felicity效应后才会因累计损伤发生破坏。  相似文献   

11.
石灰岩声发射特性的试验研究   总被引:1,自引:0,他引:1  
采用SYB-4声发射仪和岩石声发射参数动态测试系统,对广西高峰石灰岩进行了单轴压缩条件下的声发射试验,研究了石灰岩在单轴加载过程中声发射活动随时间和岩样应力、变形等变化的内在规律,在此基础上分析了石灰岩的破坏机理。试验研究表明:除加载初期外,石灰岩声发射活动与试样体积变形间有较好的关联性,岩样中微裂纹形成和原有裂纹扩展是造成岩石声发射活动与体积变化的主要原因。因此,采用声发射技术可对矿山采场矿岩体变形稳定性进行监测和评价。   相似文献   

12.
岩石声发射混沌特征分析   总被引:1,自引:1,他引:0  
周小平  刘庆义 《岩土力学》2010,31(3):815-820
岩石等脆性材料在加载过程中,随着荷载的增加,材料内部的微裂纹产生、扩展并伴随着声发射现象的发生。声发射是研究脆性材料破坏的良好工具。对砂岩、细砂岩和高丽山砂岩3类岩石进行了声发射试验,记录了加载及破坏过程中产生的声发射信号,并且采用混沌动力学理论研究了3类岩石的声发射活动规律,计算了岩石的关联维数和最大Lyapunov指数。研究结果表明,岩石加载及破坏过程具有混沌特征,用相空间重构法可以较好地揭示岩石破坏过程的动力学特征,这为混沌理论在岩石、岩体声发射其他领域的研究及应用奠定了基础。  相似文献   

13.
易武  孟召平 《岩土力学》2007,28(12):2529-2533
在分析岩质边坡失稳过程中岩体力学性质和声发射产生的微观机理基础上,通过岩石声发射试验和岩质边坡声发射监测实例,研究了岩质边坡声发射特征,提出了岩质边坡失稳破坏的基本力学分类及其声发射的监测预报方法和判据,实现对岩质边坡失稳的预测预报。研究结果表明,边坡破坏前存在一次或多次声发射高峰。应用AE技术可以确定边坡在变形过程中应力集中活跃区;以抗滑力减小为主的岩质边坡,其失稳预报判据为大事件率在15次/ min以上,预报时间为几分钟至数小时。以下滑力增大为主的岩质边坡失稳的预报判据为大事件率在26次/ min以上,破坏时间为第一次声发射峰值期后的30~45 d。  相似文献   

14.
孙强  薛雷  朱术云 《岩土力学》2012,33(9):2575-2580
根据岩石脆性破坏的本构方程和三维重整化理论,推导出了岩石破裂前声发射信号激增的临界点所对应的应力和岩石峰值应力比值的数学表达式。通过测试深部紫红色砂岩单轴加载变形破裂全过程中力学与声发射特征,得到了全过程力学特征曲线、声发射能量累计数等相关数,发现岩石破裂前声发射突增点所对应的应力与岩石临界点相对应。单轴刚性加载条件下岩石脆性破裂前声发射突增点所对应的应力与峰值应力比值大部分近似在74%左右,误差在±9%以内。  相似文献   

15.
不同应力路径下绢云母片岩粗粒料声发射特征   总被引:1,自引:0,他引:1  
粗粒料在变形和颗粒破碎过程中伴随着明显的声发射(AE),通过监测粗粒料在外力作用下的声发射信号特征可用来研究其力学机制。为探讨不同应力路径下绢云母片岩粗粒料声发射规律,采用改装设计的大型三轴试验机,对绢云母片岩粗粒料分别开展了常规三轴固结排水、等p(体应力)和等q(偏应力)应力路径试验,同时监测其声发射信号。研究表明,对于粗粒料的声发射必须考虑颗粒间的滑动摩擦、翻滚摩擦、颗粒破碎这3种细观机制。不同围压、不同应力水平对颗粒间的滑移、翻滚以及颗粒破碎活动影响较大,因此,在不同阶段,摩擦型AE与破碎型AE所占比例各不相同。在等p路径下,当累计声发射信号出现拐点时,可判断其为应变软化点。等q试验产生的累计AE计数与累计AE能量计数要比等p试验的累计AE计数和累计AE能量计数少一个量级,说明等p试验状态下的声发射要比等q试验活跃。等p试验中,随着体应力逐渐增大,累计AE参量增长率逐渐增大,而等q试验中,随着偏应力逐渐增大,累计AE参量增长率逐渐降低。  相似文献   

16.
陈清运  孙吉主  汪稔 《岩土力学》2009,30(7):2027-2030
钙质砂在低应力水平下就会产生颗粒破碎,并伴随有明显的声发射。在不同围压下,对不同初始孔隙比和级配的南沙群岛永暑礁钙质砂进行室内三轴排水剪切试验,同时监测其声发射信号。试验发现:当围压增加或初始孔隙比减小时,钙质砂偏应力峰值逐渐增加,但在某一界限围压时,声发射活动出现最强,在某一界限孔隙比附近时,声发射活动出现最弱;对于级配较差的钙质砂,试验前期声发射活动较弱,其偏应力峰值较小。  相似文献   

17.
岩体的声发射特征试验研究   总被引:23,自引:2,他引:21  
李俊平  周创兵 《岩土力学》2004,25(3):374-378
在单轴压缩条件下,讨论了4种岩石的声发射特征;在静态胀裂剂作用下,讨论了岩体的声发射特征。研究表明,在低应力阶段,岩石几乎没有声发射活动,一般当强度达到80 %以上,即临近破坏时,声发射活动才显著增加;岩体破坏的声发射过程分为4个阶段,即初始区(Ⅰ)、剧烈区(Ⅱ)、下降区(Ⅲ)和沉寂区(Ⅳ);有的岩石的凯瑟效应不明显;岩石的声发射主频与岩石的强度有关,强度越高,主频也越高;随着应力的增加,岩石的声发射主频不会平移;应用1 kHz的探头,能满足工程岩体的稳定性分析和冒落预报的要求。  相似文献   

18.
岩石声速与其损伤及声发射关系研究   总被引:3,自引:0,他引:3  
赵奎  金解放  王晓军  赵康 《岩土力学》2007,28(10):2105-2109
首先,建立了单轴压缩过程岩石损伤参量、应变与声速之间的定量关系式,分析了不同均质度对单轴压缩过程岩石声速的影响,结果表明,随着均匀度的增加,单轴压缩过程中声速由平缓变化到急剧变化,这与已有的岩石声发射数值模拟分析结果是一致的;其次,根据建立的声速与应变的关系公式,通过单轴压缩过程岩石声速与应变实测结果的回归分析,得到了具有较高精度的回归方程,从而通过试验验证了所建立的关系式的正确性;最后,从损伤的角度讨论了单轴压缩过程岩石声速与声发射的关系,得出了Kaiser点应位于声速初始下降点附近的结论,为岩石声发射测量地应力试验中Kaiser点的确定提供了新的方法。  相似文献   

19.
通过对含水砂岩进行单轴加载声发射试验,获取声发射信号。对整个加载过程声发射信号进行FFT变换,发现随着加载地进行,声发射信号的峰值频率由60 kHz下降到40 kHz,平均主频比自然状态下的砂岩平均主频降低了1 kHz;通过分析能量和岩石声发射事件数之间的关系,发现能量与对应声发射事件数之间的比值越大,说明能量是由较大的破裂导致的,而能量值与对应声发射事件数之间的比值越小(数量级在104以下),说明能量是由多个小破裂同时产生积聚而成的;用Welch法做功率谱估计,发现得到的声发射信号其功率谱大致分为A、B两种,B类功率谱对应信号的相位突变性强。选取一些较大能量信号,计算这些信号出现之前的B类型功率谱出现的几率,发现越接近破裂出现B类型功率谱的几率越大。研究结果为分析岩石破裂全过程的声发射特性提供了一条新的思路,也为声发射应用于岩石破裂失稳预报奠定了一定的工作基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号