首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Seismic source characteristics in the Kachchh rift basin and Saurashtra horst tectonic blocks in the stable continental region (SCR) of western peninsular India are studied using the earthquake catalog data for the period 2006–2011 recorded by a 52-station broadband seismic network known as Gujarat State Network (GSNet) running by Institute of Seismological Research (ISR), Gujarat. These data are mainly the aftershock sequences of three mainshocks, the 2001 Bhuj earthquake (M w 7.7) in the Kachchh rift basin, and the 2007 and 2011 Talala earthquakes (M w ≥ 5.0) in the Saurashtra horst. Two important seismological parameters, the frequency–magnitude relation (b-value) and the fractal correlation dimension (D c) of the hypocenters, are estimated. The b-value and the D c maps indicate a difference in seismic characteristics of these two tectonic regions. The average b-value in Kachchh region is 1.2 ± 0.05 and that in the Saurashtra region 0.7 ± 0.04. The average D c in Kachchh is 2.64 ± 0.01 and in Saurashtra 2.46 ± 0.01. The hypocenters in Kachchh rift basin cluster at a depth range 20–35 km and that in Saurashtra at 5–10 km. The b-value and D c cross sections image the seismogenic structures that shed new light on seismotectonics of these two tectonic regions. The mainshock sources at depth are identified as lower b-value or stressed zones at the fault end. Crustal heterogeneities are well reflected in the maps as well as in the cross sections. We also find a positive correlation between b- and D c-values in both the tectonic regions.  相似文献   

2.
We estimate the energetic and spatial characteristics of seismicity in the Algeria–Morocco region using a variety of seismic and statistical parameters, as a first step in a detailed investigation of regional seismic hazard. We divide the region into five seismotectonic regions, comprising the most important tectonic domains in the studied area: the Moroccan Meseta, the Rif, the Tell, the High Plateau, and the Atlas. Characteristic seismic hazard parameters, including the Gutenberg–Richter b-value, mean seismic activity rate, and maximum possible earthquake magnitude, were computed using an extension of the Aki–Utsu procedure for incomplete earthquake catalogs for each domain, based on recent earthquake catalogs compiled for northern Morocco and northern Algeria. Gutenberg–Richter b-values for each zone were initially estimated using the approach of Weichert (Bull Seismol Soc Am 70:1337–1346, 1980): the estimated b-values are 1.04 ± 0.04, 0.93 ± 0.10, 0.72 ± 0.03, 0.87 ± 0.02, and 0.77 ± 0.02 for the Atlas, Meseta, High Plateau, Rif, and Tell seismogenic zones, respectively. The fractal dimension D 2 was also estimated for each zone. From the ratio D 2/b, it appears that the Tell and Rif zones, with ratios of 2.09 and 2.12, respectively, have the highest potential earthquake hazard in the region. The Gutenberg–Richter relationship analysis allows us to derive that in the Tell and Rif, the number of earthquake with magnitude above Mw 4.0, since 1925 normalized to decade and to square cell with 100-km sides is equal to 2.6 and 1.91, respectively. This study provides the first detailed information about the potential seismicity of these large domains, including maximum regional magnitudes, characteristics of spatial clustering, and distribution of seismic energy release.  相似文献   

3.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

4.
In this study, the seismicity rate changes that can represent an earthquake precursor were investigated along the Sagaing Fault Zone (SFZ), Central Myanmar, using the Z value technique. After statistical improvement of the existing seismicity data (the instrumental earthquake records) by removal of the foreshocks and aftershocks and man-made seismicity changes and standardization of the reported magnitude scales, 3574 earthquake events with a M w ≥ 4.2 reported during 1977–2015 were found to directly represent the seismotectonic activities of the SFZ. To find the characteristic parameters specifically suitable for the SFZ, seven known events of M w ≥ 6.0 earthquakes were recognized and used for retrospective tests. As a result, utilizing the conditions of 25 fixed earthquake events considered (N) and a 2-year time window (T w), a significantly high Z value was found to precede most of the M w ≥ 6.0 earthquakes. Therefore, to evaluate the prospective areas of upcoming earthquakes, these conditions (N = 25 and T w = 2) were applied with the most up-to-date seismicity data of 2010–2015. The results illustrate that the vicinity of Myitkyina and Naypyidaw (Z = 4.2–5.1) cities might be subject to strong or major earthquakes in the future.  相似文献   

5.
The November 27, 2005 Qeshm Island earthquake (Mw 6.0) occurred along the Zagros Thrust and Fold Belt which accommodates about half of the deformation caused by the Arabian and Eurasian Plates convergence. As typical for the belt, the earthquake was associated with buried reverse faulting and produced no surface rupture. Here, teleseismic broadband P velocity waveforms of the earthquake are inverted to obtain coseismic finite-fault slip distribution of the earthquake. It is obtained that rupture was controlled by failure of a single asperity with largest displacement of approximately 0.6 m, which occurred at a depth of 9 km. The slip model indicated radial rupture propagation from the hypocentre and confirmed blind reverse faulting within deeper part (below the depth of 6 km) of the sedimentary cover above the Hormuz Salt, lying between the cover and the basement, releasing a seismic moment of about 1.3?×?1018 Nm (MW?=?6.0). The results also confirm that the Hormuz Salt behaves as a barrier for rupture propagation to the basement below and occurrence of the aftershock activity downdip from the rupture within the Hormuz Salt. Calculated Coulomb stress variations caused by the coseismic rupture indicates stress coupling between the 2005 Qeshm Island earthquake and both the largest aftershock several hours later and the 2008 Qeshm Island earthquake (MW?=?5.9). The stress calculations further indicated stress load at the depth range (15–20 km) of the well-located aftershocks, corresponding to depths of the Hormuz Salt and top of the basement and providing plausible explanation for occurrence of the aftershocks within those layers.  相似文献   

6.
Radon and mercury concentrations were measured in 10 fault gas profiles in Generalized Haiyuan Fault. This paper aims to predetermine the potential seismic risk in different segments of the fault zone from the perspective of geochemistry. The background value and anomaly threshold were adopted and synthesized using the maximum value method and average method to calculate concentration intensity values of radon and mercury. Fault soil gas mercury and radon concentrations show a decreasing gradient from NW to SE indicating evident segmentation. Higher values are mostly distributed in the Maomao Mountain–Tiger Mountain fault and Jingtai area. Combined with the seismotectonic background of historical and recent earthquakes and the spatial distribution characteristics of b-values, the fault soil gas concentration intensity shows a close correlation with earthquake activity within the fault zone. Concentrations of fault gas are higher and the b-value lower in areas of strong seismic activity, and regions with weak seismic activity correspond to lower fault gas concentrations and higher b-values. It is thus considered that the Jingtai area may be more dangerous than the other areas. This paper could provide vital background information for earthquake prediction in the Generalized Haiyuan Fault Zone.  相似文献   

7.
Before starting seismic cycle of Ahar–Varzaghan 2012 event, a partial gap in the form of a pre-seismic calm sequence (seismicity rate, r = 0.46 event/year, b = 1.4) with duration of 303 days spatially has dominated over the entire seismogenic area. From April 17, 2012, to May 31, 2012, r significantly increased to 2.16, indicating strong foreshock sequence, and b value changed to 1.9, remarkably. In the last two months before the mainshock, foreshocks have partially migrated toward the earthquake fault (with a decrease in size, b = 2.0). Significantly, high rate of seismicity and low V P /V S (1.64) in the foreshocks sequence and also very high seismicity rate (17.3) and high V P /V S (1.76) in the aftershocks sequence make substantial differences between the seismic cycle and the background seismicity. Moreover, a significant E–W migration of the microseismicity was confirmed in the study area.  相似文献   

8.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

9.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

10.
Geometric parameters are useful for characterizing earthquake-triggered landslides. This paper presents a detailed statistical analysis on this issue using the landslide inventory of the 2013, Minxian, China Mw 5.9 earthquake. Based on GIS software and a 5-m resolution DEM, geometric parameters of 635 coseismic landslides (with areas larger than 500 m2) were obtained, including height, length, width, reach angle (arc tangent of the height-length ratio), and aspect ratio (length-width ratio). The fitting relationship of height and length from these data is H = 0.6164L + 0.4589, with an average reach angle of 31.65°. The landslide aspect ratios concentrate in the range of 1.4~2.6, with an average of 2.11. According to the plane geometric shapes and aspect ratios, the landslides are classified into four categories: transverse landslide (LA1, L/W ≤ 0.8), isometric landslide (LA2, 0.8 < L/W ≤ 1.2), longitudinal landslide (LA3, 1.2 < L/W ≤ 3), and elongated landslide (LA4, L/W > 3). Statistics of these four types of landslides versus ten classified control factors (elevation, slope angle, slope aspect, curvature, slope position, distance to drainages, lithology, seismic intensity, peak ground acceleration, and distance to seismogenic fault) are used to examine their possible correlations and the landslide-prone areas, which would be helpful to the landslide disaster mitigation in the affected area.  相似文献   

11.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   

12.
The instrumental seismicity that occurred in the Jordan Dead Sea transform region during the period 1900–2014 is compiled from all available sources. Some 492 phosphate mining explosions (M ≤ 3.9) are recognized and filtered from the data. Excluding these, it is found that 4448 earthquakes have occurred with magnitudes M ≥ 3.0. Only 572, 18 and 2 of these had magnitudes M ≥ 4, 5, and 6 in respective order. Average recurrence periods for the 5 and 6 magnitudes are 6.3 and 57 years. Much of these have occurred in sequences and swarms. The epicentral distribution of the compiled instrumental seismicity data shows very good correlation with the general tectonics of the study region. All tectonic elements are active in the present with a noticeable hazard. The regional strike-slip faults of the transform proper remain the major sources of this hazard. They account for not less than 99% of the seismic energy released from all instrumental data. The calculated a-parameter of the whole transform is 6.6. It varies for all its strike-slip faults mostly in the range 6.0–6.6. The b-value of the whole transform and some of its major segments is 1.0. Others show b-variations in the range of 1.1–1.3. Such a- and b-values imply recurrence periods of 38 years and 395 years for the 6 and 7 magnitude earthquakes. Such values, their variations and the seismic moment calculations clearly indicate an appreciable level of seismic hazard associated with all segments. This hazard appears to be highest for Al Ghab segment, followed by Beqa’a and Wadi Araba segments, respectively. The other three segments appear to be of lower hazard. The seismicity of this region is very shallow. More than 99% of the seismic energy has been released from the brittle granitic upper crust whose thickness is about 21 km and its Poisson’s ratio is 0.25. More than 93.6% of the energy was released from its upper 10 km. Very little energy is released from the underlying ductile basaltic crust whose Poisson’s ratio is 0.29. The calculated seismic slip rate along the Whole Jordan Dead Sea transform is 0.54 cm/year if the fault depth is assumed 10 km. It increases to 0.77 and 1.07 cm/year if the fault depth is reduced to 7 and 5 km, respectively. These slip rates are comparable with the long-term geologically deduced rate of 1 cm/year.  相似文献   

13.
Seismic hazard analysis of the northwest Himalayan belt was carried out by using extreme value theory (EVT). The rate of seismicity (a value) and recurrence intervals with the given earthquake magnitude (b value) was calculated from the observed data using Gutenberg–Richter Law. The statistical evaluation of 12,125 events from 1902 to 2017 shows the increasing trend in their inter-arrival times. The frequency–magnitude relation exhibits a linear downslope trend with negative slope of 0.8277 and positive intercept of 4.6977. The empirical results showed that the annual risk probability of high magnitude earthquake M?≥?7.7 in 50 years is 88% with recurrence period of 47 years, probability of M?≤?7.5 in 50 years is 97% with recurrence period of 27 years, and probability of M?≤?6.5 in 50 years is 100% with recurrence period of 4 years. Kashmir valley, located in the NW Himalaya, encompasses a peculiar tectonic and structural setup. The patterns of the present and historical seismicity records of the valley suggest a long-term strain accumulation along NNW and SSE extensions with the decline in the seismic gap, posing a potential threat of earthquakes in the future. The Kashmir valley is characterized by the typical lithological, tectono-geomorphic, geotechnical, hydrogeological and socioeconomic settings that augment the earthquake vulnerability associated with the seismicity of the region. The cumulative impact of the various influencing parameters therefore exacerbates the seismic hazard risk of the valley to future earthquake events.  相似文献   

14.
Coda wave attenuation is estimated for Qeshm Island which is located in the southeastern part of Zagros. For this purpose, the aftershocks of Qeshm earthquake in November 27, 2005, recorded within an epicentral distance less than 100 km, have been used. More than 829 earthquakes were recorded by a local temporary network consisting of 16 short period stations installed after a week after the main shock for ~10 weeks. The coda quality factor, Q c, was estimated using the single-backscattering model in frequency bands of 0.5–24 Hz. In this research, lateral and vertical variations of coda Q in Qeshm Island are explored. In Qeshm Island, absence of significant lateral variation of coda Q is observed. To investigate the attenuation variation with depth, the coda Q value was calculated for coda time windows with different lengths (5, 10, 15, 20, 25, and 30 s). It is observed that coda Q increases with depth. However, in our study area, the rate of increase of coda Q with depth is not uniform. Beneath Qeshm Island, the rate of increase of coda Q is greater at depths less than ~40 km compared with those of larger depths. This is indicating the existence of a low attenuation anomalous structure under the ~40-km depth which may be correlated with the Moho depth in this region. The average frequency relation for this region is Q c = 36 ± 1.2f 0.94 ± 0.039 at a 5 s-lapse time window length and Q c = 110 ± 1.8f 0.88 ± 0.09 at a 30-s lapse time window length.  相似文献   

15.
A natural sample of clinochlore from the Longitudinal Valley area of northeastern Taiwan has been characterized by using the powder X-ray diffraction (XRD), differential thermal analysis and electron paramagnetic resonance (EPR) spectroscopic techniques. The lattice parameters of the monoclinic (IIb) clinochlore with the composition (Mg2.988 Al1.196 Fe1.6845 Mn0.026)5.8945 (Si2.559 Al1.441)4 O10 (OH)8 have been calculated from the powder XRD data and are found to be a = 5.347 Å, b = 9.223 Å, c = 14.250 Å, β = 97.2° and Z = 2. The thermal behaviour of the sample showed the typical behaviour of clinochlore with a hydroxyl content of 12.5 wt%. The EPR spectrum at room temperature exhibits two resonance signals centred at g ≈ 2.0 and g ≈ 8.0. The signal at g ≈ 2.0 shows a six-line hyperfine structure which is a characteristic of Mn2+ ions in octahedral symmetry. The resonance signal at g ≈ 8.0 is a characteristic of Fe3+ ions. The EPR spectra have also been recorded at different temperatures (123–295 K). The population of spin levels (N) has been calculated for g ≈ 2.0 and g ≈ 8.0 resonance signals. It is observed that N increases with decreasing temperature. From EPR spectra, the spin-Hamiltonian parameters have been evaluated. The zero-field splitting parameter (D) is found to be temperature dependent. The peak-to-peak width of the g ≈ 8.0 resonance signal is found to increase with decrease in temperature.  相似文献   

16.
This paper presents an experimental investigation revisiting the anisotropic stress–strain–strength behaviour of geomaterials in drained monotonic shear using hollow cylinder apparatus. The test programme has been designed to cover the effect of material anisotropy, preshearing, material density and intermediate principal stress on the behaviour of Leighton Buzzard sand. Experiments have also been performed on glass beads to understand the effect of particle shape. This paper explains phenomenological observations based on recently acquired understanding in micromechanics, with attention focused on strength anisotropy and deformation non-coaxiality, i.e. non-coincidence between the principal stress direction and the principal strain rate direction. The test results demonstrate that the effects of initial anisotropy produced during sample preparation are significant. The stress–strain–strength behaviour of the specimen shows strong dependence on the principal stress direction. Preloading history, material density and particle shape are also found to be influential. In particular, it was found that non-coaxiality is more significant in presheared specimens. The observations on the strength anisotropy and deformation non-coaxiality were explained based on the stress–force–fabric relationship. It was observed that intermediate principal stress parameter b(b = (σ 2 ? σ 3)/(σ 1 ? σ 3)) has a significant effect on the non-coaxiality of sand. The lower the b-value, the higher the degree of non-coaxiality is induced. Visual inspection of shear band formed at the end of HCA testing has also been presented. The inclinations of the shear bands at different loading directions can be predicted well by taking account of the relative direction of the mobilized planes to the bedding plane.  相似文献   

17.
There is a need for research that advances understanding of flow alterations in contemporary watersheds where natural and anthropogenic interactions can confound mitigation efforts. Event-based flow frequency, timing, magnitude, and rate of change were quantified at five-site nested gauging sites in a representative mixed-land-use watershed of the central USA. Statistically independent storms were paired by site (n = 111 × 5 sites) to test for significant differences in event-based rainfall and flow response variables (n = 17) between gauging sites. Increased frequency of small peak flow events (i.e., 64 more events less than 4.0 m3 s?1) was observed at the rural–urban interface of the watershed. Differences in flow response were apparent during drier periods when small rainfall events resulted in increased flow response at urban sites in the lower reaches. Relationships between rainfall and peak flow were stronger with decreased pasture/crop land use and increased urban land use by approximately 20%. Event-based total rainfall explained 40–68% of the variance in peak flow (p < 0.001). Coefficients of determination (r2) were negatively correlated with pasture/crop land use (r2 = 0.92; p = 0.007; n = 5) and positively correlated with urban land use (r2 = 0.90; p = 0.008; n = 5). Significant differences in flow metrics were observed between rural and urban sites (p < 0.05; n = 111) that were not explained by differences in rainfall variables and drainage area. An urban influence on flow timing was observed using median time lag to peak centroid and time of maximum precipitation to peak flow. Results highlight the need to establish manageable flow targets in rapidly urbanizing mixed-land-use watersheds.  相似文献   

18.
The improvement in the capabilities of Landsat-8 imagery to retrieve bathymetric information in shallow coastal waters was examined. Landsat-8 images have an additional band named coastal/aerosol, Band 1: 435–451 nm in comparison with former generation of Landsat imagery. The selected Landsat-8 operational land image (OLI) was of Chabahar Bay, located in the southern part of Iran (acquired on February 22, 2014 in calm weather and relatively low turbidity). Accurate and high resolution bathymetric data from the study area, produced by field surveys using a single beam echo-sounder, were selected for calibrating the models and validating the results. Three methods, including traditional linear and ratio transform techniques, as well as a novel proposed integrated method, were used to determine depth values. All possible combinations of the three bands [coastal/aerosol (CB), blue (B), and green (G)] have been considered (11 options) using the traditional linear and ratio transform techniques, together with five model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The standard error of the estimates, correlation coefficients (R 2 ) for both calibration and validation points, and root mean square errors (RMSE) were calculated for all cases. When compared with the ratio transform method, the method employing linear transformation with a combination of CB, B, and G bands yielded more accurate results (standard error = 1.712 m, R 2 calibration = 0.594, R 2 validation = 0.551, and RMSE =1.80 m). Adding the CB band to the ratio transform methodology also dramatically increased the accuracy of the estimated depths, whereas this increment was not statistically significant when using the linear transform methodology. The integrated transform method in form of Depth = b 0  + b 1 X CB  + b 2 X B  + b 5 ln(R CB )/ln(R G ) + b 6 ln(R B )/ln(R G ) yielded the highest accuracy (standard error = 1.634 m, R 2 calibration = 0.634, R 2 validation = 0.595, and RMSE = 1.71 m), where R i (i = CB, B, or G) refers to atmospherically corrected reflectance values in the i th band [X i  = ln(R i -R deep water)].  相似文献   

19.
This paper presents a seismic hazard evaluation and develops an earthquake catalogue for the Constantine region over the period from 1357 to 2014. The study contributes to the improvement of seismic risk management by evaluating the seismic hazards in Northeast Algeria. A regional seismicity analysis was conducted based on reliable earthquake data obtained from various agencies (CRAAG, IGN, USGS and ISC). All magnitudes (M l, m b) and intensities (I 0, I MM, I MSK and I EMS) were converted to M s magnitudes using the appropriate relationships. Earthquake hazard maps were created for the Constantine region. These maps were estimated in terms of spectral acceleration (SA) at periods of 0.1, 0.2, 0.5, 0.7, 0.9, 1.0, 1.5 and 2.0 s. Five seismogenic zones are proposed. This new method differs from the conventional method because it incorporates earthquake magnitude uncertainty and mixed datasets containing large historical events and recent data. The method can be used to estimate the b value of the Gutenberg-Richter relationship, annual activity rate λ(M) of an event and maximum possible magnitude M max using incomplete and heterogeneous data files. In addition, an earthquake is considered a Poisson with an annual activity rate λ and with a doubly truncated exponential earthquake magnitude distribution. Map of seismic hazard and an earthquake catalogue, graphs and maps were created using geographic information systems (GIS), the Z-map code version 6 and Crisis software 2012.  相似文献   

20.
Pathogen removal is essential for wastewater treatment and its potential reuse in agriculture. Three field-scale wastewater treatment systems consisting of free surface flow were operated around 1.5 years receiving water from urban domestic, rural domestic and industrial sources. The study was conducted to evaluate seasonal performance of constructed wetland systems in removing Escherichia coli, Enterococci and total coliforms under continuous hydraulic flow. Results displayed that all three wetlands gain recognition in removing pathogen load with high removal efficacy till water reaches output ports. Removal efficiencies were even higher, 66–93, 78–92 and 80–94% for E. coli, Enterococci and total coliforms, respectively, within constructed wetlands. Remarkably at shorter temporal scales in CW-A, greater homogeneity of pathogen concentrations was assessed at wetland outlet sites. In outlet ports, results displayed a highly effective removal of E. coli concentration 80–90% (June 2015), 86–92% (October 2015) and 79–92% (February 2016), Enterococci 80–94% (June 2015), 83–94% (October 2015) and 80–94% (February 2016) and total coliforms 85–93% (June 2015), 87–95% (October 2015) and 88–96% (February 2016). Positive correlation was observed between bacterial indicators (E. coliEnterococci, r = 0.038; p < 0.01 and E. coli–total coliforms, r = 0.142; p < 0.01). Removal of bacterial indicators in constructed wetland was also displayed by PCA in which three-component analysis of variance was 98.39% and showed a clear decrease in measured parameter gradients toward samples from outlet ports. Constructed wetlands provide cost-effective treatment systems for reducing the pathogen load in wastewater in variable agro-climatic conditions and thus improve water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号