首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
以港珠澳大桥珠海连接段拱北隧道为工程实例,研究管幕冻结法的温度场发展规律,基于二维多孔介质传热理论,采用有限元软件COMSOL对积极冻结期的实际工况进行数值计算,模拟结果通过现场实测验证,研究了温度场在异形冻结管开启前后的发展与分布规律。结果表明:冻结30 d时,实顶管完全被冻土包裹,并且顶管之间开始形成连续的冻土帷幕;冻结50 d时,空顶管被冻土完全包裹;冻结90 d时,实顶管和空顶管处冻土帷幕厚度达到2.0 m,满足设计要求。在异形冻结管开启前、开启后10 d内和开启后10~20 d内,两顶管间中点处温度测点的平均温度变化速率分别为-0.86℃/d,-0.88℃/d和-0.25℃/d,之后各测点温度趋于稳定,进而形成温度较为均匀的冻土帷幕。研究成果可为类似冻结工程提供技术参考。   相似文献   

2.
多圈管冻结法施工已在深厚地层矿井中广泛应用,为了研究多圈管冻结壁温度场发展规律,以淮南某矿为研究对象,利用现场实测数据和FLAC3D软件2种方式对比分析研究多圈管冻结壁温度场发展规律。研究结果表明:冻结壁中圈孔最先开始交圈,其次是外圈孔,最后是内圈孔,测温孔温度和冻结壁平均温度随冻结时间的延长均呈对数关系下降,最终趋于稳定,冻结壁有效厚度在交圈后增长明显,随冻结时间的延长呈对数关系增大,主面和界面温度场曲线在冻结管处近似呈V形发展,主面和界面温度随冻结时间的延长逐渐降低,对比分析验证了冻结壁温度场模型数值模拟的可行性,数值模拟对工程施工具有参考指导价值。   相似文献   

3.
为研究双圈管冻结壁温度场变化规律,以淮南某矿副井为研究对象,根据其相关地质参数,利用FLAC3D软件数值模拟双圈管冻结壁温度场形成过程以及不同因素对冻结壁平均温度的影响。研究结果表明:双圈管内土体温度最低,两侧温度逐渐升高;冻结孔间距越小,交圈时间越早,内外圈管交圈之后形成封闭的未冻承压水仓,对冻结壁不利,冻结锋面向内侧扩展速度大于向外侧扩展速度;双圈管冻结壁平均温度与冻结时间呈对数关系下降,有效厚度在内外圈管交圈后增长十分明显,且与冻结时间呈对数关系上升;双圈管主、界面温度场曲线随冻结时间近似由马鞍形分布逐渐转变为梯形分布,界面温度场扩展速度大于主面温度场;土体初始温度、盐水温度及导热系数对冻结壁平均温度影响均较大,土体初始温度和盐水温度越低、导热系数越大,冻结壁平均温度越低。研究成果为相关冻结工程的设计和施工提供参考。   相似文献   

4.
《岩土力学》2017,(2):368-376
针对软土地层中盾构地中对接冻结加固施工边界条件复杂、形成冻结壁体积小且形状不规则的特点,以上海地区某盾构对接冻结加固工程为原型,按照相似理论设计进行了冻结加固模型试验,分析了冻结过程中地层温度场的分布规律,获得以下结论:在盾构壳体内表面保温的条件下,冻结管内部冻土的平均发展速度是冻结管外部的1.5倍左右;冻结28 h后,冻结管内部冻结壁的温度分布基本稳定,盾构壳体与土体交接面的温度均处于-20℃左右,内部冻结壁的平均温度约为外部的1.9倍。在同圈冻结管的叠加作用下,冻结过程中冻结壁主面和界面的温度变化规律基本一致,仅在冻结初期有少许差别。在外圈冻结管的低温屏蔽作用下,内圈冻结管对外部土体基本不发挥冻结作用,在不同冻结管排间距及多根冻结管交叉冻结的情况下,冻结管外部的冻土扩展规律基本相同,仅两排冻结管之间的土体温度分布存在差别。研究结果表明,盾构地中对接冻结加固形成的冻结壁形状与外圈冻结管的布置形式相似,形成的冻结壁厚度及平均温度在冻结28 h后基本稳定。  相似文献   

5.
多圈管冻结壁设计方案是解决深冻结问题的有效方法,为研究深厚砂黏层分界处不同工况下多圈管冻结温度场特性,采取分界处原黏性土XRD试验结果,利用ANSYS数值模拟冻结三圈管,对比分析了细砂土与膨胀性黏土在冻结管偏斜与不偏斜工况下温度场冻结壁形成与发展特性。研究表明:多圈管不偏斜冻结,细砂层与膨胀性黏土层冻结壁温度场均呈规则、对称、有序发展,主冻结中圈管间、内圈管间、中-内圈管间、中-外圈管间、外圈管依次形成交圈过程,随着冻结时间增加,中-内圈、中-外圈管间冻结温度由抛物线型发展为梯形降温形状,且温差减少,内、外圈管外侧呈倒八字型发展形态,内圈管内侧降温效果明显好于外圈管外侧。偏斜时,冻结壁温度场交圈降温不规则,冻结冷锋交圈叠加具有随机性和离散性。膨胀性黏土冻结壁形成时间严重滞后,偏斜、土性差异对冻结壁温度影响均较大,偏斜对膨胀性黏土影响尤其明显,与某矿冻结法凿井在地层-400 m以上砂黏分界处发生的多根冻结管断管事件较为吻合,研究成果可以为类似深层矿井冻结施工提供参考。   相似文献   

6.
多圈管冻结温度场特征分析及工程应用   总被引:4,自引:0,他引:4  
陈军浩  李栋伟 《冰川冻土》2016,38(6):1568-1574
多圈管冻结工法已在深厚地层井筒掘砌中广泛应用,但对多圈管冻结温度场需进一步深入研究。以某冻结井筒为原型,对关键层位开展冻结管无偏斜条件下的冻结温度场模型试验、进行冻结管偏斜条件下的温度场数值计算,同时利用温度场信息可视化软件对现场实测结果进行分析。将三种测试手段获得的结果进行比较,得出冻结管偏斜对冻结壁有效厚度影响较小,但对冻结壁平均温度、冻结壁交圈时间影响都很大,且容易在冻结壁内部产生密闭未冻承压水仓,造成冻胀力聚集,对冻结壁整体稳定性及井筒开挖不利。其结果可为多圈管冻结法凿井设计与施工提供参考。  相似文献   

7.
新型管幕冻结法中冻结管周围温度场的发展状况是这一工法施工的技术重点,为研究这一工法中温度场的发展变化规律,在模型中选取2条路径,并在路径上布设分析点,通过分析土体导热系数、容积热容量、相变潜热、原始地温这4个因素对温度场发展规律的影响,形成如下结论:与港珠澳拱北隧道管幕冻结法相比,新型管幕冻结法支护形式更加灵活多样,受地形制约更小;土体导热系数对温度场有显著的影响,导热系数越大,温度下降越快,且幅度越大;容积热容量对温度场的影响效果较大,容积热容量越小,温度下降越快,且幅度越大;土体相变潜热对温度场变化几乎没有影响;原始地温越低,达到相同温度所需要的冻结时间越短。所得结果可供今后类似工程参考。   相似文献   

8.
拱北隧道暗挖段作为港珠澳大桥珠海连接线的重点工程,首次运用管幕冻结法进行施工。该法综合管幕法和人工地层冻结法的优势,可在隧道断面形成“顶管?冻土帷幕”复合支护体系,有效实现“承载”与“顶管间止水”的双重目标,确保隧道开挖时的稳定与安全。为获得“顶管?冻土”复合结构的温度、变形与力学特性,基于相似理论自主研发构建一套相似模型试验系统并开展试验研究,同时利用有限元软件COMSOL Multiphysics建立数值计算模型进行模拟验证。结果表明:复合结构的冻结温度场因空、实顶管及其内部冻结器的布置形式呈现不均匀分布特征,冻土形成速率在冻结后期明显变缓;土体竖向冻胀变形在60~160 min内急剧增大,且冻胀量随深度增加而增大,整体规律与温度场分布密切相关;土体冻结产生的冻胀力对顶管水平受力影响较大,空顶管相对刚度较小而产生较大水平变形;在加载阶段,顶管受力与变形均以竖向为主。因空、实顶管刚度差异和冻土厚度不均匀的共同影响,空顶管竖向变形包含了“弯曲”与“压扁”并具有非线性特征,其跨中截面底部竖向位移峰值约为实顶管的1.6倍;加载至0.28 MPa时,管间冻土首先发生破坏,进而导致顶管间封水功能失效,实际施工中应重点监测空顶管的变形规律、管间冻土帷幕的温度变化及其完整性。研究成果可为管幕冻结法的施工与监测提供参考,也可为热力耦合数值计算模型提供验证依据。   相似文献   

9.
周盛全  陈海明 《冰川冻土》2013,35(5):1232-1236
西部地区主要为白垩系软岩地层, 煤炭资源储量大, 成为我国重要产煤区. 白垩系软岩地层冻结壁温度场分布规律尚不清楚, 给白垩系地层冻结法凿井设计与施工带了一定的困难. 通过现场实测、室内试验和数值模拟等手段, 获得了白垩系地层冻结软岩热物理参数分布规律、力学特性及深井冻结壁冻融规律. 测点冻结温度场反演白垩系冻结软岩导热系数值一般介于3.328~3.465 W·m-1·K-1之间, 现场实测表明: 白垩系地层融冻时间比一般为1.0~1.2之间. 研究白垩系地层冻融规律, 对指导我国西部地区白垩系地层冻结法凿井设计与施工具有重要的理论参考价值.  相似文献   

10.
《岩土力学》2017,(9):2639-2646
盾构地中对接冻结加固过程中形成不规则形状的冻结体,产生的冻胀效应会引起上部地层产生不均匀冻胀变形。为了获得冻结过程中冻胀效应对上部地层变形的影响规律,以上海地区软土地层中盾构地中对接冻结工程为原型,按照相似理论,设计进行了盾构对接位置地层冻结加固的模型试验,获得了如下结论:冻结过程中,冻胀引起上部地层的变形量随着冻结壁厚度的增长而线性增大,当冻结壁发展超过测点位置后,相应位置的地层变形不再变化。冻结产生的冻胀力对上部地层有压缩作用,随着地层内测点埋深的增加,地层变形量和地层平均应变都逐渐增大。当冻胀力超过土层的黏聚力后,上部土层的滑动使地层平均应变不再增加,地层不再被压缩,下部地层的变形会直接传递到上部地层。研究结果表明,影响冻结加固体上部地层变形量的主要因素是冻结壁的厚度,次要因素是地层的埋深。  相似文献   

11.
深部膨胀性黏土层冻结温度场的分布与冻胀力形成规律   总被引:1,自引:1,他引:0  
杨青  荣传新 《冰川冻土》2020,42(3):878-888
防止冻结管断裂是深部膨胀性黏土层在冻结壁形成过程中的一项亟待解决的课题。针对淮南矿区某矿副井深部膨胀性黏土层, 通过热力耦合计算分析, 研究了其冻结温度场分布与冻胀力形成规律。结果表明: 冻结152天、 236天时, 黏土层冻结壁平均温度分别为-14.42 ℃、 -16.58 ℃, 细砂层冻结壁平均温度分别为-15.86 ℃、 -17.32 ℃, 黏土层冻结壁平均温度比同时期细砂层高1.44 ℃、 0.74 ℃。黏土层冻结壁平均厚度分别为8.92 m、 10.25 m, 细砂层冻结壁平均厚度分别为9.54 m、 10.77 m, 黏土层冻结壁平均厚度比同时期细砂层小0.62 m、 0.56 m。细砂较膨胀性黏土易于冻结。冻结90天时, 黏土层外、 中、 内圈三圈冻结管平均冻胀力约为同时期细砂层的1.1倍。冻结151天时, 黏土层三圈冻结管围成的冻结壁内平均冻胀力均达到初始地应力的81.1%, 是同时期细砂层的1.16倍。冻结236天时, 细砂层内圈管的冻胀力为3.91 MPa, 比中圈管3.72 MPa大了5.11%, 而黏土层内圈管的冻胀力为4.81 MPa, 比中圈管4.74 MPa大了1.48%。黏土层三圈冻结管围成的冻结壁内平均冻胀力均达到初始地应力的88.6%, 是同时期细砂层的1.28倍。深部膨胀性黏土层及与细砂层界面处冻胀力均存在显著的不均匀性, 最大冻胀力的主要位置与实际工程中掘进时的断管处基本对应, 不均匀冻胀力是造成冻结管断裂的重要原因。  相似文献   

12.
为研究软土地区埋地管道在土体冻结过程中的管道受力机理, 开展了饱和软黏土中地埋管道冻结模型试验。通过人工冻结技术, 近似还原了管土受冻过程, 研究了人工冻结过程中土体温度场、 水分场、 位移场分布情况, 以及管道的力学特性。结果表明: 在冻结过程中, 土体温度场的变化直接影响着土中水分场的分布; 在冻结锋面前缘存在着剧烈的水分迁移现象, 大量的水分向冻结锋面迁移, 使得土体产生线性冻胀; 冻胀发展速率受外部荷载的直接影响; 当冻结发展到管道处时, 位于冻胀和非冻胀过渡段位置处的管身出现应力最大值。研究结果对于正冻土中管道的安全评估具有重要的意义。  相似文献   

13.
李岩  刘波  张建新 《岩土力学》2014,35(11):3199-3206
竖向直排冻结方式常用于软弱地层中斜井掘进和深基坑止水帷幕的冻结法施工中,目前国内外对该冻结方式下水平冻胀力的分布研究鲜见报导。以某斜井冻结工程为背景,推导出温度场、应力场和水分场等相似模拟准则,设计了竖向直排冻结模型试验并细化具体试验方案,利用大型三维模拟冻结试验系统,对竖向直排冻结条件下不同深度土体的水平冻胀力分布特性进行了试验研究。结果表明,竖向直排冻结过程中埋深对水平冻胀力的影响明显,在其他条件相近的情况下同一水平面中水平冻胀力的大小与温度密切相关;冻胀力的变化率主要受冻结锋面位置的影响,距离冻结锋面较近时冻胀力的变化率逐步达到峰值;已冻土体的冻胀力随冻结锋面向外发展而趋于平稳。  相似文献   

14.
隧道水平冻结施工引起地表冻胀的历时预测模型   总被引:1,自引:0,他引:1  
蔡海兵  彭立敏  郑腾龙 《岩土力学》2012,33(6):1761-1768
隧道水平冻结施工过程中,土体冻结引起体积膨胀,进而会在地表产生冻胀现象。实际工程一般采用多根冻结管形成冻结壁。冻结壁交圈前,地表冻胀由多个冻土柱的叠加膨胀变形引起;冻结壁交圈后,地表冻胀则由整个冻结壁的膨胀变形引起。鉴于此,考虑冻结壁的形成过程,基于随机介质理论,建立了隧道水平冻结施工引起地表冻胀位移的历时预测模型。同时对冻结外锋面半径和冻胀区域外半径这2个关键参数的取值方法进行了相关探讨。最后针对两个工程案例,采用该计算模型对地表冻胀位移进行分析,得到地表冻胀位移随时间的变化规律,并与现场实测结果相比较,验证了模型的可靠性。该模型应用于隧道水平冻结施工前、冻结期内任意时刻的地表冻胀位移预测,可为工程冻结实施方案的合理确定提供有效依据。  相似文献   

15.
郑立夫  高永涛  周喻  田书广 《岩土力学》2020,41(6):2110-2121
浅埋隧道对地表冻胀、融沉变形有严格要求。针对珠机城际轨道交通项目联络通道冻结壁设计改进问题,基于热?力耦合理论,利用有限差分数值计算方法对冻结法施工全过程进行模拟,通过比较研究不同厚度冻结壁模型引起的地表冻胀、融沉变形及隧道管片变形规律,实现冻结壁厚度的优化设计。研究表明:(1)该数值模型可有效模拟地表冻胀、融沉变形,利用已查明数值误差对计算结果进行折减可得到较为准确的实际变形预测值;(2)不同模型地表冻胀、融沉规律大致相同,但变形量及影响范围随冻结壁厚度减小呈递减趋势,当冻结壁厚度为2.5 m及以下时变形基本满足规程要求;(3)土体冻胀、融沉变形并非简单的互逆过程,融沉变形通常大于冻胀变形,平均超出量达40%,应特别注意;(4)冻结壁厚度越大相应产生的冻胀力越大,通过优化冻结壁厚度可有效控制隧道管片附加应力及变形的产生,保护已建隧道结构安全;(5)综合选定2.5 m为冻结壁改进厚度,成果直接应用于4#联络通道冻结法施工,经现场监测表明该优化方案有效、可行,对类似工程冻结壁厚度设计具有较好的推广应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号