首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
OBSERVATIONS ON THE QUATERNARY GEOLOGY OF THE LADAKH RANGE, NORTHWEST INDIAN HIMALAYA  相似文献   

2.
We present 10Be exposure ages from moraines in the Delta River Valley, a reference locality for Pleistocene glaciation in the northern Alaska Range. The ages are from material deposited during the Delta and Donnelly glaciations, which have been correlated with MIS 6 and 2, respectively. 10Be chronology indicates that at least part of the Delta moraine stabilized during MIS 4/3, and that the Donnelly moraine stabilized ∼ 17 ka. These ages correlate with other dates from the Alaska Range and other regions in Alaska, suggesting synchronicity across Beringia during pulses of late Pleistocene glaciation. Several sample types were collected: boulders, single clasts, and gravel samples (amalgamated small clasts) from around boulders as well as from surfaces devoid of boulders. Comparing 10Be ages of these sample types reveals the influence of pre/post-depositional processes, including boulder erosion, boulder exhumation, and moraine surface lowering. These processes occur continuously but seem to accelerate during and immediately after successive glacial episodes. The result is a multi-peak age distribution indicating that once a moraine persists through subsequent glaciations the chronological significance of cosmogenic ages derived from samples collected on that moraine diminishes significantly. The absence of Holocene ages implies relatively minor exhumation and/or weathering since 12 ka.  相似文献   

3.
The late Quaternary glacial history of the Nun‐Kun massif, located on the boundary between the Greater Himalaya and the Zanskar range in northwestern India, was reconstructed. On the basis of morphostratigraphy and 10Be dating of glacial landforms (moraines and glacial trimlines), five glacial stages were recognized and defined, namely: (i) the Achambur glacial stage dated to Marine Oxygen Isotope Stage 3 to 4 (38.7–62.7 ka); (ii) the Tongul glacial stage dated to the early part of the Lateglacial (16.7–17.4 ka); (iii) the Amantick glacial stage dated to the later part of the Lateglacial (14.3 ka, 11.7–12.4 ka); (iv) the Lomp glacial stage dated to the Little Ice Age; and (v) the Tanak glacial stage, which has the youngest moraines, probably dating to the last few decades or so. Present and former equilibrium‐line altitudes (ELAs) were calculated using the standard area accumulation ratio method. The average present‐day ELA of ~4790 m above sea level in the Greater Himalaya is lower than those in the Ladakh and Zanskar ranges, namely 5380 and ~5900 m a.s.l., respectively. The ELA in the Zanskar range is higher than in the Ladakh range, possibly due to the higher peaks in the Ladakh range that are able to more effectively capture and store snow and ice. ELA depressions decrease towards the Ladakh range (i.e. inner Plateau). Peat beds interbedded with aeolian deposits that cap the terminal moraine of Tarangoz Glacier suggest millennial‐time‐scale climate change throughout the Holocene, with soil formation times at c. 1.5, c. 3.4 and c. 5.2 ka, probably coinciding with Holocene abrupt climate change events. Given the style and timing of glaciation in the study area, it is likely that climate in the Nun‐Kun region is linked to Northern Hemisphere climate oscillations with teleconnections via the mid‐latitude westerlies.  相似文献   

4.
The Sierra los Cuchumatanes (3837 m), Guatemala, supported a plateau ice cap and valley glaciers around Montaña San Juan (3784 m) that totaled ∼ 43 km2 in area during the last local glacial maximum. Former ice limits are defined by sharp-crested lateral and terminal moraines that extend to elevations of ∼ 3450 m along the ice cap margin, and to ca. 3000-3300 m for the valley glaciers. Equilibrium-line altitudes (ELAs) estimated using the area-altitude balance ratio method for the maximum late Quaternary glaciation reached as low as 3470 m for the valley glaciers and 3670 m for the Mayan Ice Cap. Relative to the modern altitude of the 0°C isotherm of ∼ 4840 m, we determined ELA depressions of 1110-1436 m. If interpreted in terms of a depression of the freezing level during maximal glaciation along the modern lapse rate of − 5.3°C km− 1, this ΔELA indicates tropical highland cooling of ∼ 5.9 to 7.6 ± 1.2°C. Our data support greater glacial highland cooling than at sea level, implying a high tropical sensitivity to global climate changes. The large magnitude of ELA depression in Guatemala may have been partially forced by enhanced wetness associated with southward excursions of the boreal winter polar air mass.  相似文献   

5.
Late Pleistocene glaciers around Darhad Basin advanced to near their maximum positions at least three times, twice during the Zyrianka glaciation (at ∼ 17-19 ka and ∼ 35-53 ka), and at least once earlier. The Zyrianka glaciers were smaller than their predecessors, but the equilibrium-line altitude (ELA) difference was < 75 m. End moraines of the Zyrianka glaciers were ∼ 1600 m asl; ELAs were 2100-2400 m asl. 14C and luminescence dating of lake sediments confirm the existence of paleolake highstands in Darhad Basin before ∼ 35 ka. Geologic evidence and 10Be cosmic-ray exposure dating of drift suggests that at ∼ 17-19 ka the basin was filled at least briefly by a glacier-dammed lake ∼ 140 m deep. However, lake sediments from that time have not yet been recognized in the region. A shallower paleolake briefly occupied the basin at ∼ 11 ka, but between ∼ 11 and 17 ka and after ∼ 10 ka the basin was probably largely dry. The timing of maximum glacier advances in Darhad appears to be approximately synchronous across northern Mongolia, but different from Siberia and western Central Asia, supporting the inference that paleoclimate in Central Asia differed among regions.  相似文献   

6.
Abstract

The Shyok suture zone separates the Ladakh terrane to the SW from the Karakoram terrane to the NE. Six tectonic units have been distinguished. From south to north these are; 1. Saltoro formation; 2. Shyok volcanites; 3. Saltoro molasse; 4. Ophiolitic melange; 5. Tirit granitoids; 6. Karakoram terrane including the Karakoram batholith. Albian—Aptian Orbitolina-bearing lime-stones and turbidites of the Saltoro formation tectonically overlie high-Mg-tholeiites similar to the tectonically overlying Shyok volcanites. The high-Mg tholeiitic basalts and calcalkaline andesites of the Shyok volcanites show an active margin signature. The Saltoro molasse is an apron-like, moderately folded association of redgreen shales and sandstones that are interbedded with ~ 50 m porphyritic andesite. Desiccation cracks and rain-drop imprints indicate deposition in a subaerial fluvial environment. Rudist fragments from a polygenic conglomerate of the Saltoro molasse document a post-Middle Cretaceous age. The calcalkaline andesites of the Shyok volcanites are intruded by the Tirit granitoids, which are located immediately south of the Ophiolitic melange and belong to a weakly deformed trondhjemite-tonalite-granodiorite-granite suite. These granitoids are subalkaline, I-type and were emplaced in a volcanic arc setting. The subalkaline to calcalkaline granitoids of the Karakoram batholith are I-and S-type granitoid. The I-type granitoids represent a typical calcalkaline magmatism of a subduction zone environment whereas the S-type granitoids are crustderived, anatectic peraluminous granites. New data suggest that the volcano-plutonic and sedimentary successions of the Shyok suture zone exposed in northern Ladakh are equivalent to the successions exposed along the Northern suture in Kohistan. It is likely that the o istan and Ladakh blocks evolved as one single tectonic domain uring the Cretaceous-Palaeogene. Subsequently, collision, suturing and accretion of the Indian plate along the Indus suture (50–60 Ma) together with tectonic activity along the Nanga Parbataramosh divided Kohistan and Ladakh into two arealy distinct magmatic arc terranes. The activity and a dextral offset along the Karakoram fault (Holocene-Recent) disrupted the original tectonic relationships. © 1999 Éditions scientifiques et médicales Elsevier SAS  相似文献   

7.
40Ar–39Ar geochronological studies carried out on the Khardung volcanics of Ladakh, India and our earlier Ar–Ar results from the volcanics of the Shyok suture along with the available geological and geochemical data provide good constraints for post-collision evolution of the Shyok suture zone. Whole-rock samples from the Shyok volcanics yielded disturbed age-spectra and we have demonstrated earlier that the youngest tectonic event in the Shyok suture zone responsible for the thermal disturbance of these samples is Karakoram fault activation at ~14 Ma. Contrastingly whole-rock samples from the Khardung volcanics, which are in tectonic contact with these Shyok volcanics, and are exposed in the form of thick rhyolitic and ignimbritic flows, yielded undisturbed age-spectra and good plateau-ages. The whole-rock plateau-ages of two rhyolite samples are 52.8 ± 0.9 and 56.4 ± 0.4 Ma. We interpret these ages to be the time and duration of emplacement of these volcanics over thickened margin of the continental crust, which appears to be coeval with the initiation of the collision between the Indian and Asian plate. The lesser extent of post-emplacement isotopic re-equilibration in these samples unlike the Shyok volcanics indicate that these samples were present in different tectonic settings, away from the Karakoram fault, at the time of deformation in the Shyok suture zone. We propose that the two volcanic belts of contrasting nature were brought together in juxtaposition by the Karakoram strike slip faulting at ~14 Ma.  相似文献   

8.
Quaternary glacial history of the Central Karakoram   总被引:3,自引:0,他引:3  
The Quaternary glacial history of the world's highest mountains, the Central Karakoram, is examined for the first time using geomorphic mapping of landforms and sediments, and 10Be terrestrial cosmogenic nuclide surface exposure dating of boulders on the moraines and glacially eroded surfaces. Four glacial stages are defined: the Bunthang glacial stage (>0.7 Ma); the Skardu glacial stage (marine Oxygen Isotope Stage [MIS] 6 or older); the Mungo glacial stage (MIS 2); and the Askole glacial stage (Holocene). Glaciers advanced several times during each glacial stage. These advances are not well defined for the oldest glacial stages, but during the Mungo and Askole glacial stages glacial advances likely occurred at 16, 11–13, 5 and 0.8 ka. The extent of glaciation in this region became increasingly more restricted over time. In the Braldu and Shigar valleys, glaciers advanced >150 km during the Bunthang and Skardu glacial stages, while glaciers advanced >80 km beyond their present positions during the Mungo glacial stage. In contrast, glaciers advanced a few kilometers from present ice margins during the Askole glacial stage. Glacier in this region likely respond in a complex fashion to the same forcing that causes changes in Northern Hemisphere oceans and ice sheets, teleconnected via the mid-latitude westerlies, and also to changes in monsoonal intensity.  相似文献   

9.
Although glacial landscapes have previously been used for the reconstruction of late Quaternary glaciations in the Central Andes, only few data exist for the Eastern Cordillera in Bolivia. Here, we present results from detailed morphostratigraphic mapping and new data of surface exposure dating (SED), optically stimulated luminescence (OSL), and radiocarbon dating (14C) from the Huara Loma Valley, Cordillera de Cochabamba (Bolivia). Discrepancies between individual dating methods could be addressed within the context of a solid geomorphic framework. We identified two major glaciations. The older is not well constrained by the available data, whereas the younger glaciation is subdivided into at least four major glacial stages. Regarding the latter, a first advance dated to ~ 29-25 ka occurred roughly contemporaneous with the onset of the global last glacial maximum (LGM) and was followed by a less extensive (re-)advance around 20-18 ka. The local last glacial maximum (LLGM) in the Huara Loma Valley took place during the humid lateglacial ~ 17-16 ka, followed by several smaller readvances until ~ 10-11 ka, and complete deglaciation at the end of the Early Holocene.  相似文献   

10.
The pattern and magnitude of glacier equilibrium-line altitude (ELA) lowerings in the tropics during the last glacial maximum (LGM) are topics of current debate. In the northern tropics, paleo-ELA data are particularly limited, inhibiting the ability to make regional and large-scale paleoclimatic inferences. To improve these records, nine paleo-glaciers in the Venezuelan Andes were reconstructed based on field observations, aerial photographs, satellite imagery and high-resolution digital topographic data. Paleo-glacier equilibrium-line altitudes (ELAs) were estimated using the accumulation-area ratio (AAR) and the area-altitude balance ratio (AABR) methods. During the local LGM in Venezuela (∼ 22,750 to 19,960 cal yr BP), ELAs were ∼ 850 to 1420 m lower than present. Local LGM temperatures were are at least 8.8 ± 2°C cooler than today based on a combined energy and mass-balance equation to account for an ELA lowering. This is greater than estimates using an atmospheric lapse rate calculation, which yields a value of 6.4 ± 1°C cooler. The paleo-glacial data from the Venezuelan Andes support other published records that indicate the northern tropics experienced a greater ELA lowering and possibly a greater cooling than the Southern Hemisphere tropics during the LGM.  相似文献   

11.
We report the first direct ages for late Quaternary glaciation on the North Island of New Zealand. Mt Ruapehu, the volcanic massif in the North Island's centre, is currently glaciated and probably sustained glaciers throughout the late Quaternary, yet no numeric ages have been reported for glacial advances anywhere on the North Island. Here, we describe cosmogenic 10Be ages of the surface layers of a glacially transported boulder and glacially polished bedrock from the Tararua Range, part of the axial ranges of the North Island. Results indicate that a limited valley glaciation occurred, culminating in recession at the end of the last glacial coldest period (LGCP, ca. 18 ka). This provides an initial age for deglaciation on the North Island during the last glacial–interglacial transition (LGIT). It appears that glaciation occurred in response to an equilibrium‐line altitude (ELA) lowering of ~1400 m below the present‐day mean summer freezing level. Ages for glaciation in the Tararua Range correspond closely to exposure ages for the last glacial maximum (LGM) from the lateral moraines of Cascade Valley in the South Island, and in Cobb Valley, in northern South Island. The corollary is that glaciation in the Tararua Range coincided with the phase of maximum cooling during MIS 2, prior to the Antarctic Cold Reversal (ACR), during the LGCP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The Shyok tectonic zone lies to the north of Ladakh magmatic arc or the Ladakh batholith in the Trans-Himalaya of Ladakh district, J & K. Investigations were carried out on the granitoids exposed along Leh-Siachan highway between Khardung and Panamik villages. The granitoid bodies under study are: Khardung granite (KG), Tirit granite (TG) and Panamik granite (PG) belonging to Ladakh batholith, Shyok ophiolitic mélange and Karakoram batholith respectively. Though the granitoids belong to different litho-tectonic units, yet they have subduction related geochemical characters typical of Andean-type granitoids. Re-melting of crustal rocks of volcanic arc affinity has played an important role for the origin of KG rocks which are more evolved, while the TG and PG rocks represent transitional tectonic environment from primitive to mature arc.  相似文献   

13.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

14.
At least three sets of moraines mark distinct glacial stands since the last glacial maximum (LGM) in the Three Sisters region of the Oregon Cascade Range. The oldest stand predates 8.1 ka (defined here as post-LGM), followed by a second between ∼ 2 and 8 ka (Neoglacial) and a third from the Little Ice Age (LIA) advance of the last 300 years. The post-LGM equilibrium line altitudes were 260 ± 100 m lower than that of modern glaciers, requiring 23 ± 9% increased winter snowfall and 1.4 ± 0.5°C cooler summer temperatures than at present. The LIA advance had equilibrium line altitudes 110 ± 40 m lower than at present, implying 10 ± 4% greater winter snowfall and 0.6 ± 0.2°C cooler summer temperatures.  相似文献   

15.
The Karakoram fault zone is a prominent right lateral fault that connects the frontal thrust of the North Pamir with the Indus suture zone near Mount Kailas. Its nature and age of initiation is controversial. In the Nubra valley, Ladakh, India, a Karakoram range granite is thrust over Cretaceous magmatic arc rocks and this thrust is cut by a western strand of the Karakoram fault zone. Three different lithologies from this granite gave weighted mean zircon U/Pb ages of 12.92±0.77 Ma, 12.41±0.43 Ma, and 11.72±0.31 Ma. The ages indicate a relatively short intrusive history of about 1 Ma for the phases: the geochemistry is practically identical to the Pangong leucogranites in the same tectonic block. The Karakoram fault zone in this area is thus less than ~12 Ma old which supports a post middle Miocene (Serravallian) age of Karakoram fault initiation in this area.  相似文献   

16.
Detailed mapping of the interfluve between the lower Tees and Swale valleys has allowed improved understanding of the sequence of Late Quaternary evolution of this watershed area, which encompasses the Devensian glaciation, glacial retreat and reoccupation of the landscape by post-glacial drainage systems. This evidence is described in the context of earlier research, including ideas of inter-relations between the Tees and Swale river systems. Although there is good evidence of meltwater transfer across the interfluve at more than one location there is no clear indication of a fluvial connection. Deglaciation left behind a disrupted and somewhat chaotic surface, with scattered depositional landforms and basins, in some of which have accumulated post-glacial sedimentary sequences from which palaeoecological records can be reconstructed. Since deglaciation the rivers have incised their valleys, typically by ∼30 m, into the glaciated landscape. Progressive stages in this incision are marked by terraces between the former 30 m landscape level and the modern floodplains.  相似文献   

17.
New geological observations, recent published data and U–Pb SHRIMP zircon dating from the Karakoram Mountains along the Nubra and Shyok Rivers reveal that the initial subduction of the Tethyan oceanic lithosphere took place ~ 110 Ma beneath the Paleozoic–Mesozoic platform of the southern edge of the Asian Plate. This has produced the I-type plutons within the Karakoram Batholith Complex, well before the juxtaposition of the Asian Plate along the Karakoram Shear Zone. Within this shear zone, U–Pb zircon crystallisation ages of ~ 75 Ma from mylonitised granitoids and 68 Ma from undeformed Tirit granodiorite constrain the timing of suturing of the Karakoram terrain with the Trans-Himalaya between 75 and 68 Ma. Post-shearing leucogranite was episodically generated within frontal migmatised Karakoram Metamorphic Belt and emplaced between 20 and 13 Ma within the shear zone. Presence of a low resistivity zone as a possible indication of mid-crustal partial molten crust underneath the Higher Himalaya–Ladakh–Karakoram terrains manifests the impingement of the Indian Plate along the Main Himalayan Thrust at depth.

Physical continuity of the Baltoro granite belt into the Karakoram Batholith is established as well as the continuity of the Shyok suture as the Shiquanhe Suture Zone in western Tibet through the Chushul–Dungti sector. The Karakoram Shear Zone, therefore, displays a complex geological history of movements since ~ 75 Ma and plays a very significant role in the overall India–Asia convergence, rather than merely being a strike-slip fault for eastward extrusion of a segment of Asia in Tibet.  相似文献   


18.
Lasafam Iturrizaga 《GeoJournal》1999,47(1-2):277-339
An abridged version of a geomorphological inventory and typology of Postglacial debris accumulations in High Asia is presented, with selected examples from the Hindu Kush, the Karakoram and the Himalayas. The debris accumulations were surveyed in the course of four research expeditions lasting a total of ten months in selected valley systems of High Asia (the eastern Hindu Kush, the northwestern Karakoram, the Nanga Parbat massif (Pakistan), the Ladakh and Zanskar ranges, the Nun Kun massif, the Kumaon and Garhwal Himalayas with the Kamet, Trisul and Nanda Devi massifs (India) and in the central Himalayas with the Kanjiroba, Annapurna, Manaslu and Makalu massifs (Nepal)). The study areas being widely scattered, a supraregional comparison of the debris accumulations proved possible. The debris accumulations are considered in centre-to-periphery sequences from the mountain interior to the mountain fringes, and in vertical sequences, i.e. altitudinal zones, taking into account their topographical relationship to adjoining elements of the landscape. Supraregional and climate-specific types of debris accumulation are distinguished and it is recognized that the debris accumulations of the Karakoram and the Himalayas resemble each other more closely with increasing elevation. The core of the study is the dominant role played by past glaciation in the formation of Postglacial debris accumulations in the high mountains of Asia. This glacial-history-oriented concept of debris accumulation stands in sharp contrast to previous opinions about the genesis of the debris accumulation landscape in the extreme high mountains of Asia. The study shows that at many places morainic deposits mask extensive portions of the valley sides up to several hundred metres above the valley floor. These moraines are the main debris sources and exert a strong influence on, or even suppress, the purely slope-related formation of debris accumulations. Resedimentation of morainic material in combination with additional talus delivery leads to numerous characteristic composite types of debris accumulations, which are here termed transitional glacial debris accumulations. Various stages in the transition from moraine to slope-related debris accumulations were observed, making it necessary to consider the evolutional element in the development of debris accumulations by taking into account both genetic series of debris accumulations and formations of debris accumulations. A significant proportion of debris accumulations are also due to collapse processes which result from pressure release at the valley sides after deglaciation and occur in the course of glacial trough valleys being transformed into more stable fluvial V-shaped valleys. The residual morainic landscape has left debris accumulations that are basically similar in study areas of different climate – i.e. in the Hindu Kush and the Karakoram on the one hand, and the Himalayas on the other. The age classification of the debris accumulations was based on the location of the slope-derived debris accumulations in relation to the corresponding stages of glaciation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
黑沟源于东天山最大现代冰川作用中心博格达峰的南坡. 在第四纪冰期与间冰期旋回中,该流域的冰川均发生过多次规模较大的进退,在谷中留下了较为完整的冰川沉积序列. 这些冰川地形包含有重要的古气候变化信息,对其研究可重建黑沟流域的冰川演化史. 应用OSL对该流域的冰川沉积物进行定年,测定结果表明冰水沉积物(沙质透镜体)比冰碛物更适宜应用单片再生剂量(SAR)测年技术进行测定. 基于测得的年龄并结合地貌地层学原理可初步得出:晚第四纪期间,黑沟流域共发生了5次规模较大的冰川作用,分别为全新世期间的小冰期(16世纪以来冷期的冰进)与新冰期(距今3~4 ka的冰进),末次冰期晚冰阶(MIS 2)与早冰阶(MIS 4)以及倒数第二次冰期(MIS 6).  相似文献   

20.
The timing of glaciation in the Lahul Himalaya of northern India was ascertained using the concentrations of cosmogenic 10Be and 26Al from boulders on moraines and drumlins, and from glacially polished bedrock surfaces. Five glacial stages were identified: Sonapani I and II, Kulti, Batal and Chandra. Of these, cosmogenic exposure ages were obtained on samples representative of the Batal and Kulti glacial cycles. Stratigraphical relationships indicate that the Sonapani I and II are younger. No age was obtained for the Chandra glacial advance. Batal Glacial Stage deposits are found throughout the valley, indicating the presence of an extensive valley glacial system. During the Kulti Stage, glaciers advanced ca. 10 km beyond their current positions. Moraines produced during the Batal Stage, ca. 12–15.5 ka, are coeval with the Northern Hemisphere Late‐glacial Interstadial (Bølling/Allerød). Deglaciation of the Batal Glacial Stage was completed by ca. 12 ka and was followed by the Kulti Glacial Stage during the early Holocene, at ca. 10–11.4 ka. On millennial time‐scales, glacier oscillations in the Lahul Himalaya apparently reflect periods of positive mass‐balance coincident with times of increased insolation. During these periods the South Asian summer monsoon strengthened and/or extended its influence further north and west, thereby enhancing high‐altitude summer snowfall. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号