首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A crescent-shape granitic stock and associated dykes is located to the East Gabal Nuqra at the extreme western part of Wadi Natash,South Eastern Desert,Egypt.The examined granites are classified as alkali-feldspar granites and mainly consist of quartz,potash feldspars,plagioclases,and aegirine-augite.Xenotime,zircon,apatite and allanite are accessories representing the source of Y,U,Th and REEs in these rocks.These granites are characterized by high K2O,Na2O and Zn contents and Rb/Sr ratio.Also,they are highly enriched in high field strength elements(HFSE),especially Zr(1529×10-6),Nb(100×10-6),Hf(91×10-6) and Y(624×10-6) and light rare-earth elements(LREE,141×10-6) concentrations and strongly depleted in Ca,Mg,Sr and Eu contents.These features suggest that they are similar to A-type granites(type-2).The rhyolite dykes and granites have similar geochemical characteristics whereas the chondrite-normalized REE patterns show a LREE enriched feature with strong negative Eu-anomaly,whereas the REE pattern of trachydacites show slightly fractionated pattern with no Eu-anomaly.It is suggested that the trachydacites were generated by small degree of partial-melting deep-seated basic source.Such liquid,when subjected to fractional crystallization involving separation of plagioclases as residue,generated the alkali-feldspar granites.And further fractional crystallization gave rise to the alkali rhyolites.The igneous rock suite originated from metaluminous to alkaline trachytic magma,and was developed in a within-plate tectonic environment.The extension caused by NW-SE right-lateral shear in area led to the emplacement of the alkali-feldspar granites.The later extrusion of the alkali rhyolite and trachydacite dykes was due to cauldron subsidence.  相似文献   

2.
Rock samples representing various igneous and metamorphic rocks of southern Obudu Plateau were analyzed for rare-earth element ( REE ) behavior by ICP-MS. Results of the analyses indicate a range of REE abundances and distinctive patterns from highly fraetionated patterns with negative Eu anomalies in granitic rocks to relatively low abundances and less REE fractionated flat patterns with little Eu anomaly in some paragneisses, schists, enderbites and dolerites to unfractionated patterns with positive Eu anomalies in some paragneisses and charnockites. Over all, there are low to high ∑ REE contents with negative to positive Eu anomalies. The ratios of different parameters, especially La/Yb and Ce/Yb, show behaviors consistent with crustal to mantle derivation. The heterogeneity of REE abundances and REE patterns reflects mantle to crustal petrogenetic variations of different rock suites on the Plateau. The LREE content is higher than the HREE content in the highly differentiated rocks, as evidenced by their La/Yb,Ce/Yb and La/Sm ratios, which are normally higher in residual products than in primary melts. The dominantly intermediate nature of the source rock of the orthogneisses is suggested by the generally low ∑ REE. The granites enriched in LREE and depleted in HREE and some of the charnockites with negative Eu anomalies were probably formed by partial melting and crystallization.  相似文献   

3.
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and ge  相似文献   

4.
Up to now,there were no systematic studies of geochemistry and isotopic age for the Yixian(义县) fluorite deposit,western Liaoning(辽宁) Province,China.Based on the analysis of metallogenic geological setting,we studied the REE,Rb-Sr and Sm-Nd isotopes.The chondrite-normalized REE patterns of fluorite are characterized by moderate LREE depletion(LREE/HREE=0.95-3.57,(La/Yb)N=0.08-2.84) and enrichment of Sr(146×10-6-596×10-6) and moderately positive Eu anomalies(δEu=1.10-1.34),which are similar to those of the ho...  相似文献   

5.
The major element composition of sound-producing sand is reported together with rare-earth elements (REE) and other selected elements for the first time. Rare-earth element concentrations in beach sands from Miyagi and Tottori in Japan were determined by induction-coupled, argon-plasma spectrometry (ICP-MS) to characterize the REE of sound-producing and silent sands relative to the parental rocks. Sound-producing sand beaches are very common and all over in Japan: five beaches in Miyagi and 2 in Tottori are selected with other silent sand beaches in the areas. Both sound-producing sand and silent sand samples from Miyagi and Tottori contain more than 60wt% of SiO2 and are composed mainly of quartz and feldspar. Miyagi sand samples are characterized by light REE enrichment and flat chondrite-normalized patterns that are similar to those of local source sandstone. However, all sand samples from Miyatojima in Miyagi show positive Eu anomalies, a characteristic feature not shown in other sand samples from Miyagi. Tottori sand samples also are characterized by high REE contents and remarkable positive Eu anomalies. The sands containing lower REE contents are due to high quartz and feldspar contents. Miyatojima sand samples and Tottori sand samples have high REE contents and show remarkable positive Eu anomalies due to the presence of feldspar. The best results are obtained using all of the geological methods and the Principal Component Analysis (PCA) as a measure of the similarity between sound-producing sand and silent sand. The difference between sound-producing sand and silent sand is obtained from the PCA results.  相似文献   

6.
In this paper the authors present the REE concentrations and Sr and Nd isotopic compositions of fluorites from the Bailashui tin deposit of the Furong ore field, southern Hunan Province. The results showed that the total amount of REE in fluorites is usually low, ranging from 0.705 to 8.785 μg/g with the chondrite-normalized REE distribution patterns similar to those of the Qitianling granites in the study area, characterized by LREE-enrichment patterns with pronounced negative Eu anomalies. The fluorites vary in Sr isotopic composition within the range of 0.7083-0.7091, the values are lower than those of the granites and higher than those of the host carbonate rocks in this area. The εNd(t) values of fluorites vary between -9.4 and +10.3, revealing that both the crust- and mantle-source materials were involved in the ore-forming hydrothermal fluids. Combined with previous studies on this ore deposit, the Bailashui tin deposit is temporally and spatially closely related with granitic magmatism in this area. The hydrothermal fluorites are the product of fluid/rock interactions between granitic magmatic hydrothermal fluid and marine carbonate rocks. The REE and F in the ore-forming fluid were derived from the granites, whereas Sr in the ore-forming fluid came mainly from the granitic magmatic hydrothermal fluid and marine carbonate rocks, although variations in Sr isotopic composition cannot be explained by a simple mixture of these two end-members. Evidence demonstrated that the ore-forming fluids are of crustal-mantle mixing origin, but that the fluids were probably incompletely homogenized and this may be caused by inhomogeneous mixing of the fluids of different sources.  相似文献   

7.
The Boziguoer A-type granitoids in Baicheng County,Xinjiang,belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks.The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite,an aegirine or arfvedsonite alkali feldspar granite,and a biotite alkali feldspar syenite.The major rock-forming minerals are albite,K-feldspar,quartz,arfvedsonite,aegirine,and siderophyllite.The accessory minerals are mainly zircon,pyrochlore,thorite,fluorite,monazite,bastnaesite,xenotime,and astrophyllite.The chemical composition of the alkaline granitoids show that SiO2 varies from 64.55% to 72.29% with a mean value of 67.32%,Na2O+K2O is high (9.85%-11.87%) with a mean of 11.14%,K2O is 2.39%-5.47% (mean =4.73%),the K2O/Na2O ratios are 0.31-0.96,Al2O3 ranges from 12.58% to 15.44%,and total FeOT is between 2.35% and 5.65%.CaO,MgO,MnO,and TiO2 are low.The REE content is high and the total SREE is (263-1219) ppm (mean =776 ppm),showing LREE enrichment and HREE depletion with strong negative Eu anomalies.In addition,the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type.The Zr content is (113-1246) ppm (mean =594 ppm),Zr+Nb+Ce+Y is between (478-2203) ppm with a mean of 1362 ppm.Furthermore,the alkaline granitoids have high HFSE (Ga,Nb,Ta,Zr,and Hf) content and low LILE (Ba,K,and Sr) content.The Nb/Ta ratio varies from 7.23 to 32.59 (mean =16.59) and the Zr/Hf ratio is 16.69-58.04 (mean =36.80).The zircons are depleted in LREE and enriched in HREE.The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly.The Boziguoer A-type granitoids share similar features with A1-type granites.The average temperature of the granitic magma was estimated at 832-839℃.The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature,anhydrous,and low oxygen fugacity conditions.  相似文献   

8.
以六盘山盆地白垩系马东山组泥页岩为研究对象,通过稀土地球化学元素测试分析,结果表明六盘山盆地马东山组泥页岩REE为125.2×10^-6~175.1×10^-6,均值为153.4×10^-6,略低于北美页岩;∑LREE为114.4×10^-6~160.6×10^-6,均值140.2×10^-6,∑HREE值为10.78×10^-6~14.69×10^-6,均值13.26×10^-6;LaN/SmN、GdN/YbN、∑LREE/∑HREE及经标准化REE分布模式均反映出LREE相对富集且分异明显、HREE相对亏损且分异不明显。Eu明显负异常,Ce弱负异常,成岩作用对REE影响有限。REE配分模式显示马东山组泥页岩沉积物源较为一致,∑REE—La/Yb图解表明其母岩为沉积岩,负Eu异常说明该沉积岩母岩具有花岗岩物源特性。w(∑REE)与w(Al2O3)、w(SiO2)、w(TiO2)及w(CaO)相关性说明马东山组泥页岩REE受近源陆源碎屑供应、水体自身元素分异及生物作用共同控制。REE总量、Eu负异常、Ceanom、δCe、LaN/YbN等指标显示马东山组泥页岩沉积时期气候温暖湿润,泥页岩主要沉积于具有一定深度水体的氧化还原界面以下,沉积速率稳定且缓慢,为有机质的保存提供良好条件。  相似文献   

9.
The accessory minerals apatite and sphene are the main carriers of REE in alkaline rocks.Their chondrite-normalized REE patterns decline sharply to the right as those of the host rocks,In the patterns an obvious negative Eu anomaly and a positive Ce anomaly can be seen in apatite and sphene,respectively.Zircon from alkaline rocks is different in REE pattern,I,e,. a nearly symmetric“V“-shaped pattern with a maximum negative Eu anomaly.Compared with the equivalents from granites,apatite,sphene and zircon from alkaline rocks are all characterized by higher (La/Yb)N ratio and less Eu depletion,As to the relative contents of REE in minerals,apatite,sphene and zircon are enriched in LREE,MREE and HREE respectively,depending on their crystallochemical properties.  相似文献   

10.
An integrated petrographic and geochemical study of the sandstones of the Maastrichtian-aged in the Orhaniye (Kazan-Ankara-Turkey) was carried out to obtain more information on their provenance, sedimentological history and tectonic setting. Depending on their matrix and mineralogical content, the Maastrichtian sandstones are identified as lithic arenite/wacke. The Dikmendede sandstones derived from types of provenances, the recycled orogen and recycled transitional. The chemical characteristics of the Dikmendede sandstones, i.e., fairly uniform compositions, high Th/U ratios (>3.0), negative Eu anomalies (Eu/Eu* 0.72–0.99) and Th/Sc ratios (mostly less than 1.0), favor the OUC (old upper continental crust) provenance for the Dikmendede sandstones. The SiO2/Al2O3, Th/Sc (mostly <1.0) and La/Sc (<4.0) ratios are; however, slightly lower than typical OUC, and these ratios may suggest a minor contribution of young arc-derived material. The rare earth element (REE) pattern, and La/Sc versus Th/Co plot suggests that these sediments were mainly derived from felsic source rocks. The Dikmendede sandstones have high Cr (123–294 ppm) and Ni (52–212 ppm) concentrations, Cr/Ni ratio of 1.93, and a medium correlation coefficient between Cr and Ni and corresponding medium to high correlation of both (Cr and Ni, respectively) elements with Co. These relationships indicate a significant contribution of detritus from ophiolitic rocks. As rare earth element data are available for the Dikmendede sandstones, the Eu/Eu* is compared with LaN/YbN. Samples plot in the area of overlapping between continental collision, strike-slip and continental arc basins. The predominantly felsic composition of the Dikmendede sandstones is supported by the REE plots, which show enriched light REE, negative Eu anomaly and flat or uniform heavy REE. The Dikmendede sandstones have compositions similar to those of the average upper continental crust and post-Archean Australian shales. This feature indicates that the sediments were derived mainly from the upper continental crust. The Dikmendede sandstones have chemical index of alteration (CIA) values of 28–49, with an average of 40 indicating a low degree of chemical weathering in the source area. The compositional immaturity of the analyzed sandstone samples is typical of subduction-related environments, and their SiO2/Al2O3 and K2O/Na2O ratios and Co, Sc, Th and Zr contents reflect their oceanic and continental-arc settings. The Dikmendede sandstones were developed as flysch deposits derived from mixed provenance in a collision belt.  相似文献   

11.
Nature of the crust in Maine,USA: evidence from the Sebago batholith   总被引:7,自引:0,他引:7  
 Neodymium and lead isotope and elemental data are presented for the Sebago batholith (293±2 Ma), the largest exposed granite in New England. The batholith is lithologically homogeneous, yet internally heterogeneous with respect to rare earth elements (REE) and Nd isotopic composition. Two-mica granites in the southern/central portion of the batholith (group 1) are characterized by REE patterns with uniform shapes [CeN/YbN (chondrite normalized) = 9.4–19 and Eu/Eu* (Eu anomaly) = 0.27–0.42] and ɛ Nd(t) = −3.1 to −2.1. Peripheral two-mica granites (group 2), spatially associated with stromatic and schlieric migmatites, have a wider range of total REE contents and patterns with variable shapes (CeN/YbN = 6.1–67, Eu/Eu* = 0.20–0.46) and ɛ Nd(t) = −5.6 to −2.8. The heterogeneous REE character of the group 2 granites records the effects of magmatic differentiation that involved monazite. Coarse-grained leucogranites and aplites have kinked REE patterns and low total REE, but have Nd isotope systematics similar to group 2 granites with ɛ Nd(t) = −5.5 to −4.7. Rare biotite granites have steep REE patterns (CeN/YbN = 51–61, Eu/Eu* = 0.32–0.84) and ɛ Nd(t) = −4.6 to −3.8. The two-mica granites have a restricted range in initial Pb isotopic composition (206Pb/204Pb = 18.41–18.75; 207Pb/204Pb = 15.60–15.68; 208Pb/204Pb = 38.21–38.55), requiring and old, high U/Pb (but not Th/U) source component. The Nd isotope data are consistent with magma derivation from two sources: Avalon-like crust (ɛ Nd>−3), and Central Maine Belt metasedimentary rocks (ɛ Nd<−4), without material input from the mantle. The variations in isotope systematics and REE patterns are inconsistent with models of disequilibrium melting which involved monazite. Received: 8 December 1995 / Accepted: 29 April 1996  相似文献   

12.
A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and geodynamic history. Geochemical studies indicate that the gabbro samples are characterized by variable concentrations and low averages of such index elements as Cr (40×10-6–200×10-6; av. 80×10-6), Ni (40×10-6–170×10-6; 53.33×10-6) and Zr (110×10-6–240×10-6; 116.67×10-6); variable and high average...  相似文献   

13.
The Duolanasayi gold deposit, 60 km NW of Habahe County, Xinjiang Uygur Autonomous Region, is a mid-large-scale gold deposit controlled by brittle-ductile shearing, and superimposed by albitite veins and late-stage magma hydrothermal solutions. There are four types of pyrite, which are contained in the light metamorphosed rocks (limestone, siltstone), altered-mineralized rocks (chlorite-schist, altered albite-granite, mineralized phyllite), quartz veins and carbonatite veinlets. The pyrite is the most common ore mineral. The Au-barren pyrite is present mainly in a simple form and gold-bearing pyrite is present mainly in a composite form. From the top downwards, the pyrite varies in crystal form from {100} and {210} {100} to {210} {100} {111} to {100} {111}. Geochemical studies indicate that the molecular contents of pyrite range from Fe1.057S2 to Fe0.941S2. Gold positively correlates with Mn, Sr, Zn, Te, Pb, Ba and Ag. There are four groups of trace elements: Fe-Cu-Sr-Ag, Au-Te-Co, As-Pb-Zn and Mn-V-Ti-Ba-Ni-Cr in pyrite. The REE characteristics show that the total amount of REE (ΣREE) ranges from 32.35×10 -6 to 132.18×10 -6; LREE/HREE, 4.466-9.142; (La/Yb)N, 3.719-11.133; (Eu/Sm)N, 0.553-1.656; (Sm/Nd)N, 0.602-0.717; La/Yb, 6.26-18.75; δEu, 0.628-2.309; δCe, 0.308-0.816. Sulfur isotopic compositions (δ 34S=-2.46‰--7.02‰) suggest that the sulfur associated with gold mineralization was derived from the upper mantle or lower crust.  相似文献   

14.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

15.
Late Archaean to Palaeoproterozoic felsic magmatic lithounits exposed in the central part of the Bundelkhand massif have been mapped and their redox series (magnetite vs ilmenite series) evaluated based on magnetic susceptibility (MS) data. The central part of Bundelkhand massif comprises of multiple felsic magmatic pulses (∼2600–2200 Ma), commonly represented by coarse grained granite (CGG-grey granite, CPG-pink granite), medium grained pink granite (MPG), fine grained pink granite (FPG), grey and pink rhyolites and granite porphyry (GP). However, the pink colour of these felsic rocks is the result of hydrothermal fluid-flushing leading to potassic alteration of grey granites. MS values of CGG vary from 0.058 to 14.75×10−3 SI with an average of 6.35×10−3 SI, which mostly represent oxidized type, magnetite series (73%) granites involving infracrustal (igneous) source materials. CPG (av. MS=3.95×10−3 SI) is indeed a pink variety of CGG, the original oxidizing nature of which must have been similar to the bulk of CGG, but has been moderately to strongly reduced because of distinctly more porphyritic nature together with partial assimilation of metapelitic (supracrustal) materials, surmicaceous enclaves, carbonaceous material included in the source materials, and to some extent, induced by hydrothermal and later deformational processes. MPG (av. MS= 1.15×10−3 SI) as lensoidal stock-like bodies intrudes the CPG and represent both magnetite series (18%) and ilmenite series (82%) granites, which are probably formed by heterogeneous (mixed) source rocks. GP (av. MS=6.26×10−3 SI) occur as dykes (mostly trending NE-SW) intrudes the MPG, CPG and migmatites and bears the nature similar to oxidized type, magnetite series granite. FPG (av. MS= 0.666×10−3 SI) trending NE-SW occur as lensoid bodies including a large outcrop, is intrusive into both CPG and MPG, and is moderately to very strongly reduced type, ilmenite series granites, which may be derived by the melting of metapelitic crustal sources. FPG hosting microgranular (mafic magmatic) enclaves commonly exhibit high MS values (7.31–10.22×10−3 SI), which appear induced by the mixing and mingling of interacting felsic and mafic magmas prevailed in an open system. Grey (av. MS=10.30×10−3 SI) and pink (av. MS=6.72×10−3 SI) rhyolites represent oxidized type, magnetite series granites, which may have been derived from infracrustal (magmatic) protoliths. Granite series evaluation of felsic magmatic rocks of central part of Bundelkhand massif strongly suggests their varied redox conditions (differential oxygen fugacity) mostly intrinsic to magma source regions and partially modified by hydrothermal and tectonic processes acting upon them.  相似文献   

16.
The 1.86 Ga Liangtun-Kuangdonggou complex (LKC) is one of the oldest alkaline syenite bodies so far discovered in China. This syenite suite has elevated contents of total alkali (K2O Na2O), with an average of 10.50%, and a mean Rittmann Index (σ) of 6.48. The intrusions have slightly higher concentrations of K2O than those of Na2O on a weight percent basis, indicating the rocks belong to potassium-rich alkaline syenite series. Total rare-earth element concentrations (∑REE ) of the rocks are relatively high, ranging from 324×10 -6 to 1314×10 -6, with a mean value of 666×10 -6. The REE patterns are subparallel and rightward steep with (La/Yb)N >33, showing mild negative to positive Eu anomalies (δEu: 0.63-1.15). All samples exhibit strong LILE and LREE enrichments and TNT (Nb, Ta, Ti) and P depletions in multi-element spidergrams. On the εSr(t)-εNd(t) correlation diagram, most analytical data points plot within the enriched mantle field with low ( 87Sr/86Sr)i ratios (0.7045-0.7051) and negative εNd(t) values (-3.72--3.97), falling among those kimberlites from Fuxian County, Liaoning Provinve, from Mengyin County, Shandong Province and the Ⅱ-type kimberlites from South Africa. These characteristics imply that the LKC-rocks may have the same source as the above-mentioned kimberlites, i.e., they have close connections to the materials derived from enriched mantle reservoirs, further revealing that the upper mantle beneath the northeastern part of the North China Plate had been highly enriched before 1.86 Ga. Geodynamically, the LKC-rocks were formed in a within-plate environment with close genetic connections to rift-related alkaline magma activities possibly controlled by ancient mantle plumes.  相似文献   

17.
The Liuyuan area,which is located on the southern margin of the Beishan orogenic belt,develops abundant Early Paleozic granitoids.SHRIMP zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 421±8 Ma for the Liuyuan granodiorite(Zhao Zehui et al.,2007),implying its Late Silurian intrusion.Geochemical compositions showed that the Liuyuan granodiorite is characterized by high SiO2(65.01%-67.31%),A12O3(17.17%-18.05%) and Na2O(Na2O/K2O=1.67-1.87) but low Mg# contents calculated as 100×Mg2+/(Mg2++∑Fe2+) from 28.77 to 31.15,as well as being enriched in Sr(472×10-6-517×10-6) but depleted in Yb(1.2×10-6-1.42×10-6) and Y(12.8×10-6-14×10-6).The REEs are characterized by right-inclined patterns with LREE enrichment,HREE depletion and slightly negative Eu anomalies(Eu/Eu*=0.91-0.97).Major and trace elements indicate that the granodiorite is an adakite.The Nb/Ta values of the granodiorite vary from 10.80 to 18.01 and Nb/U from 6.32 to 10.09,both lying between the values of the crust and the mantle.The rock has low εNd(t) values(-2.5--0.8) and high ISr(0.706321-0.706495).Geochemical and Sr-Nd isotopic compositions indicate that the Liuyuan granodiorite is possibly derived from partial melting of thickening lower crust,related to mantle underplating.The Yb-Ta and Y+Nb-Rb discriminant diagrams imply the Liuyuan granodiorite intruded in a local extensional tectonic setting during late collision.Combined with previous studies on geochronology,geochemistry and tectonic setting of granitoids,we interprete that the constraint of this adakite in the Liuyuan area indicates that the tectonic setting may have transformed from collision to extension during the Early Devonian.  相似文献   

18.
Diffusion of four rare-earth elements and gallium has been measured in yttrium aluminum garnet (YAG). Sources of diffusant were mixtures of alumina and rare-earth element oxides for REE diffusion, and mixtures of gallium and yttrium oxides for Ga diffusion. Diffusion profiles were measured with Rutherford backscattering spectrometry (RBS). For the rare-earth elements investigated, the following Arrhenius relations were obtained: DLa=6.87×10–1 exp (–582±21 kJ mol–1 /RT) m2s–1 DNd=1.63×10–1 exp (–567±15 kJ mol–1 /RT) m2s–1 DDy=2.70×100 exp (–603±35 kJ mol–1 /RT) m2s–1 DYb=1.50×10–2 exp (–540±26 kJ mol–1 /RT) m2s–1 Diffusion rates for the rare earths are quite similar, in contrast with trends noted for zircon. It is likely that these differences are a consequence of the relative ionic radii of the REE and the cations for which they substitute in the mineral lattice. For gallium, the following Arrhenius relation was determined: DGa=9.96×10–6 exp (–404±19 kJ mol–1 /RT) m2s–1 Gallium diffuses faster than the REE in YAG and has a smaller activation energy for diffusion. These data mirror relative trends in diffusion rates for YIG, in which trivalent cations occupying tetrahedral and octahedral sites (i.e., Al, Ga, Fe) diffuse faster than trivalent cations occupying dodecahedral sites (i.e., Y and the REE), and suggest that the rate-limiting process in the diffusion-controlled regime of solid-state creep of YAG is the diffusion of yttrium. Received: 10 November 1997 / Revised; accepted: 13 March 1998  相似文献   

19.
The Longwangzhuang granite pluton occurs on the southern margin of the North China Craton and consists mainly of biotite syenogranite with aegirine granite being locally distributed.The granites are characterized by high silicon and alkaline contents(SiO2=72.17%-76.82%,K2O+Na2O=8.28%-10.22%,K2O/Na2O>>1),AI(agpaitic index) =0.84-0.95,DI=95-97,ASI(aluminum saturation index)=0.96-1.13,and very high Fe* number(FeO*/(FeO*+Mg)=0.90-0.99),thus the granites are assigned to the metaluminous to weakly peraluminous,alkalic to calc-alkalic ferroan A-type granites.The granites are rich in large ion lithophile elements(LILE),especially high in REE concentrations(REE+Y=854×10-6-1572×10-6);whereas the enrichment of high strength field elements(Nb,Ta,Zr,Hf) is obviously less than that of LILEs,exhibiting mild depletions on trace element spider plots;and the rocks are significantly depleted in Ba,Sr,Ti,and Pb.The low εNd(t) values(-4.5--7.2) and high model ages(2.3-2.5 Ga) of the granites as well as the low εHf(t) values(-1.11--5.26) and high Hf model ages(THf1= 2.1-2.3 Ga,THf2=2.4-2.6 Ga) of zircons from the biotite syenogranite suggest that the granites were probably derived from an enriched mantle source.The zircons from the biotite syenogranite are mainly colorless transparent crystals exhibiting well-developed oscillatory zoning on the cathodoluminescence images with a LA-ICPMS zircon U-Pb age of 1602.1±6.6 Ma(MSWD=0.48).Petrochemical,trace elements,as well as Nd and Hf isotopic compositions of the rocks demonstrate that the granites were formed in a within-plate extensional tectonic regime possibly related to the breakup of the Columbia supercontinent.The granites were most likely formed through extreme fractional crystallization of alkali basaltic magma resulted from partial melting of the mantle,which was fertilized by recycling crustal rocks triggered by the delamination of lithospheric mantle and lower crust following the ~1.8 Ga collision and amalgamation of the North China Craton which is part of the Columbia supercontinent.However,contamination of neo-Archean to Paleoproterozoic crustal rocks during the ascent and emplacement of the magma could not be excluded.Being the youngest known anorogenic magmatism on the southern margin of the North China Craton related to Columbia breakup,it might represent the break off of the North China Craton from Columbia supercontinent at the end of Paleoproterozoic.  相似文献   

20.
Kinwat crystalline inlier exposes Palaeoproterozoic granitoids belonging to the northern extensions of younger phase of Peninsular gneissic complex (PGC) within Deccan Trap country in Eastern Dharwar Craton (EDC) and bounded in south by a major NW-SE trending lineament (Kaddam fault). Geochemically, the Kinwat granitoids are similar to high-K, calc-alkaline to shoshonite magnesian granitoids and subdivided into two major groups, i.e. felsic group (pink and grey granites) and intermediate to felsic group (hybrid granitoids). The felsic group (∼67–74% SiO2) shares many features with Neoarchaean to Palaeoproterozoic high potassic granites of PGC such as higher LILE and LREE content and marked depletion in Eu, P and HFSE, especially Nb, Ti, relative to LILE and LREE. The hybrid granitoids (∼58–67% SiO2) have comparatively higher Ca, Mg and Na contents and slightly lower REE content than the granitoids of felsic group. Both, felsic and hybrid granitoids are metaluminous to weakly peraluminous and belong to highly fractionated I-type suite as evidenced by negative correlation of SiO2 with MgO, FeOt, CaO, Na2O, Al2O3, whereas K2O, Rb and Ba show sympathetic relationship with SiO2. Moderate to strong fractionated REE patterns (Ce/YbN: ∼54–387) and strong negative Eu anomalies (Eu/Eu*: 0.13–0.41) are quite apparent in these granitoids. The geochemical characteristics together with mineralogical features such as presence of biotite±hornblende as the dominant ferromagnesian mineral phases point towards intracrustal magma source, i.e. derivation of magma by partial melting of probably tonalitic igneous protolith at moderate crustal levels for felsic granites, whereas hybrid granitoids appear to be products of juvenile mantle-crust interaction, in an active continental margin setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号