首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Several selected seismic lines are used to show and compare the modes of Late-Cretaceous–Early Tertiary inversion within the North German and Polish basins. These seismic data illustrate an important difference in the allocation of major zones of basement (thick-skinned) deformation and maximum uplift within both basins. The most important inversion-related uplift of the Polish Basin was localised in its axial part, the Mid-Polish Trough, whereas the basement in the axial part of the North German Basin remained virtually flat. The latter was uplifted along the SW and to a smaller degree the NE margins of the North German Basin, presently defined by the Elbe Fault System and the Grimmen High, respectively. The different location of the basement inversion and uplift within the North German and Polish basins is interpreted to reflect the position of major zones of crustal weakness represented by the WNW-ESE trending Elbe Fault System and by the NW-SE striking Teisseyre-Tornquist Zone, the latter underlying the Mid-Polish Trough. Therefore, the inversion of the Polish and North German basins demonstrates the significance of an inherited basement structure regardless of its relationship to the position of the basin axis. The inversion of the Mid-Polish Trough was connected with the reactivation of normal basement fault zones responsible for its Permo-Mesozoic subsidence. These faults zones, inverted as reverse faults, facilitated the uplift of the Mid-Polish Trough in the order of 1–3 km. In contrast, inversion of the North German Basin rarely re-used structures active during its subsidence. Basement inversion and uplift, in the range of 3–4 km, was focused at the Elbe Fault System which has remained quiescent in the Triassic and Jurassic but reproduced the direction of an earlier Variscan structural grain. In contrast, N-S oriented Mesozoic grabens and troughs in the central part of the North German Basin avoided significant inversion as they were oriented parallel to the direction of the inferred Late Cretaceous–Early Tertiary compression. The comparison of the North German and Polish basins shows that inversion structures can follow an earlier subsidence pattern only under a favourable orientation of the stress field. A thick Zechstein salt layer in the central parts of the North German Basin and the Mid-Polish Trough caused mechanical decoupling between the sub-salt basement and the supra-salt sedimentary cover. Resultant thin-skinned inversion was manifested by the formation of various structures developed entirely in the supra-salt Mesozoic–Cenozoic succession. The Zechstein salt provided a mechanical buffer accommodating compressional stress and responding to the inversion through salt mobilisation and redistribution. Only in parts of the NGB and MPT characterised by either thin or missing Zechstein evaporites, thick-skinned inversion directly controlled inversion-related deformations of the sedimentary cover. Inversion of the Permo-Mesozoic fill within the Mid-Polish Trough was achieved by a regional elevation above uplifted basement blocks. Conversely, in the North German Basin, horizontal stress must have been transferred into the salt cover across the basin from its SW margin towards the basins centre. This must be the case since compressional deformations are concentrated mostly above the salt and no significant inversion-related basement faults are seismically detected apart from the basin margins. This strain decoupling in the interior of the North German Basin was enhanced by the presence of the Elbe Fault System which allowed strain localization in the basin floor due to its orientation perpendicular to the inferred Late Cretaceous–Early Tertiary far-field compression.  相似文献   

2.
The Permo-Carboniferous Saar-Nahe Basin in south-west Germany and north-east France formed at the boundary between the Rhenohercynian and Saxothuringian zones within the Variscan orogen, where non-marine sediments were deposited in a narrow, structurally controlled basin. The basin has an asymmetrical geometry perpendicular to the South Hunsruck Fault. However, there is a lack of growth of the sediment pile into the fault, and isopach maps show the depocentre always located adjacent to the South Hunsrück Fault, but migrating towards the north-east with time. This pattern is typical of a strike-slip basin, indicating that the South Hunsruck Fault was a dextral strike-slip fault during sedimentation. Tectonic subsidence curves indicate that, during the Middle Devonian to Early Carboniferous, the basin subsided due to thermal relaxation of the lithosphere. A change to very rapid subsidence at the start of the Westphalian continued until late in the Autunian. This was due to mechanical subsidence associated with strike-slip movement on the South Hunsruck Fault. Towards the end of subsidence in the Saar-Nahe Basin, the Grenzlager volcanics introduced a thermal pulse into the crust, leading to thermal cooling and relaxation of the lithosphere.  相似文献   

3.
The Elbe Fault System (EFS) is a WNW-striking zone extending from the southeastern North Sea to southwestern Poland along the present southern margin of the North German Basin and the northern margin of the Sudetes Mountains. Although details are still under debate, geological and geophysical data reveal that upper crustal deformation along the Elbe Fault System has taken place repeatedly since Late Carboniferous times with changing kinematic activity in response to variation in the stress regime. In Late Carboniferous to early Permian times, the Elbe Fault System was part of a post-Variscan wrench fault system and acted as the southern boundary fault during the formation of the Permian Basins along the Trans-European Suture Zone (sensu [Geol. Mag. 134 (5) (1997) 585]). The Teisseyre–Tornquist Zone (TTZ) most probably provided the northern counterpart in a pull-apart scenario at that time. Further strain localisation took place during late Mesozoic transtension, when local shear within the Elbe Fault System caused subsidence and basin formation along and parallel to the fault system. The most intense deformation took place along the system during late Cretaceous–early Cenozoic time, when the Elbe Fault System responded to regional compression with up to 4 km of uplift and formation of internal flexural highs. Compressional deformation continued during early Cenozoic time and actually may be ongoing. The upper crust of the Elbe Fault System, which itself reacted in a more or less ductile fashion, is underlain by a lower crust characterised by low P-wave velocities, low densities and a weak rheology. Structural, seismic and gravimetric data as well as rheology models support the assumption that a weak, stress-sensitive zone in the lower crust is the reason for the high mobility of the area and repeated strain localisation along the Elbe Fault System.  相似文献   

4.
The large-scale crustal deformations observed in the Central European Basin System (CEBS) are the result of the interplay between several controlling factors, among which lateral rheological heterogeneities play a key role. We present a finite-element integral thin sheet model of stress and strain distribution within the CEBS. Unlike many previous models, this study is based on thermo-mechanical data to quantify the impact of lateral contrasts on the tectonic deformation. Elasto-plastic material behaviour is used for both the mantle and the crust, and the effects of the sedimentary fill are also investigated. The consistency of model results is ensured through comparisons with observed data. The results resemble the present-day dynamics and kinematics when: (1) a weak granite-like lower crust below the Elbe Fault System is modelled in contrast to a stronger lower crust in the area extending north of the Elbe Line throughout the Baltic region; and (2) a transition domain in the upper mantle is considered between the shallow mantle of the Variscan domain and the deep mantle beneath the East European Craton (EEC), extending from the Elbe Line in the south till the Tornquist Zone. The strain localizations observed along these structural contrasts strongly enhance the dominant role played by large structural domains in stiffening the propagation of tectonic deformation and in controlling the basin formation and the evolution in the CEBS.  相似文献   

5.
The architecture of the European Variscides has been subdivided by Kossmat (1927) into paleogeographically coherent units which are presently interpreted as former plate fragments. The Mid-German Crystalline Rise (MGCR) separates two fragments (Rhenohercynian and Saxothuringian belts) at the site of an inferred plate boundary and reequilibrated orogenic root. The commonly favoured model interprets the MGCR as the magmatic arc on Saxothuringian crust above a south-dipping subduction zone in Upper Devonian and Carboniferous times. Data from the MGCR, the kinematic evolution of the Mid-European Variscides, and first order volume balancing suggest a reinterpretation of this unit which challenges classical views on the MGCR as well as on the subdivision of Variscan architecture. The MGCR is composed of two rock groups with different tectonic identity. A Lower Carboniferous low pressure-high temperature magmatic arc association on Lower Paleozoic basement rests tectonically on a stack of medium pressuremedium temperature rocks of inferred Rhenohercynian origin. The latter were tectonically accreted to the base of the overriding plate by tectonic underplating. The entire process was controlled by oblique convergence. This led to regional partitioning of the plate kinematic vector into contractional domains (lower Rhenohercynian plate and back-arc area of the upper Saxothuringian plate), bulk heterogeneous plate margin parallel extensional domains (MGCR), and plate margin parallel wrench domains (MGCR boundaries). During this process material was continually transferred from the lower plate to the upper plate, uplifted and exhumed by net crustal extension. The concomitant removal of parts of the former arc and the entire orogenic root necessitates a reappraisal of Variscan architecture and evolution.  相似文献   

6.
The SW England Rhenohercynian passive margin initiated with rift-related non-marine sedimentation and bimodal magmatism (Late Lockhovian). Continued lithospheric extension resulted in the exhumation of mantle peridotites and limited seafloor spreading (Emsian-Eifelian). Variscan convergence commenced during the Late Eifelian and was coeval with rifting further north. Collision was marked by the Early Carboniferous emergence of deep marine sedimentary/volcanic rocks from the distal continental margin, oceanic lithosphere, pre-rift basement and upper plate gneisses (correlated with the Mid-German Crystalline High of the Saxothuringian Zone). Progressive inversion of the passive margin was strongly influenced by rift basin geometry. Convergence ceased in the Late Carboniferous and was replaced by an extensional regime that reactivated basin controlling/thrust faults and reorientated earlier fabrics (Start-Perranporth Zone). The resultant exhumation of the lower plate was accompanied by emplacement of the Early Permian SW England granites and was contemporaneous with upper plate sedimentary basin formation above the reactivated Rhenohercynian suture. The Rhenohercynian passive margin probably developed in a marginal basin north of the Rheic Ocean or, possibly, a successor basin following its closure. The Lizard ophiolite is unlikely to represent Rheic Ocean floor or associated forearc (SSZ) crust. The Rheic and Rhenohercynian sutures may be coincident or the Rheic suture may be located further south in the Léon Domain.  相似文献   

7.
Sixty five per cent of the Paleozoic basement of western and central Europe is hidden by a sedimentary cover and/or sea. This work aims to remove that blanket to detect new structures which could used to build a more comprehensive model of the Variscan orogeny. It is based on the interpretation of various forms of data: (a) published gravity maps corrected for the effects of the crust-mantle boundary topography and light sedimentary basins; (b) aeromagnetic maps; (c) measurements of densities; and (d) induced and remanent magnetizations on rocks from Paleozoic outcrops of the upper Rhenish area. From the northern Bohemian Massif to the eastern Paris Basin, the Saxothuringian is characterized by a 500 km long belt of gravity highs, the most important being the Kraichgau high. Most of the corresponding heavy bodies are buried under a post-early Viséan cover. They are interpreted as relics of Late Proterozoic terranes overlain by an Early to Middle Paleozoic sequence, equivalent to the Bohemian terrane in the Bohemian Massif. The most probable continuation of these dense Bohemian terranes toward the west is the Southern Channel-Northern Brittany Cadomian terrane. The gravity lows are correlated with Variscan granites and pre- and early Variscan metagranites.Gravity and magnetic maps demonstrate large-scale displacement in Devonian-Early Carboniferous times along the parallel and equidistant, NW-SE striking, Vistula, Elbe, Bavarian, Bray and South Armorican dextral wrench faults. In the Vosges-Schwarzwald and Central Massif the faults continue with the east-west striking Lalaye-Lubine-Baden-Baden and Marche faults and with south vergent thrusts. The Bavarian faults shift the Kraichgau terrane by 150 km relative to the Bohemian terrane, whereas the offset of the Northern Brittany Cadomian relative to the Northern Vosges-Kraichgau terranes is estimated at 400 km along the Bray fault. Sinistral wrench faults are the NE-SW striking Sillon Houiller, Rheingraben, Rodl, Vitis and Diendorf faults. The southern Vosges-Schwarzwald Devonian-Dinantian basin is interpreted as a pull-apart basin at the south-easterly extremity of the Bray fault. The Bohemian and Kraichgau body form allochthonous terranes which were thrust over the Saxothuringian crust. Thrusting to the north-west was accompanied by back-thrusting and led to the formation of pop-up structures. Contemporaneous dextral and sinistral wrench faulting resulted in transpressive strain during collision. The zonal structure of the Variscides in the sense of Kossmat (1927) is relevant only to the Rhenohercynian Foreland Belt. Kossmat (1927) already spoke of a Moldanubian Region because it displays no real zonal structure. The Saxothuringian Zone was formed by terrane accretion. Their apparent zonal structure is not a pre-collisional feature, but only the result of accretion and collision.  相似文献   

8.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   

9.
兴地断裂发生在中元古代末期,使中元古巨厚的沉积岩发生了强烈褶皱和隆起,并伴有大量岩浆侵入和区域变质作用。在兴地断裂形成的同时,发生了第一期构造变形,其特点以韧性变形为主,由三个变形幕构成,形成了本区主要构造骨架;晚元古代本区进入晋宁期发展阶段,团结的塔里木地台基底局部裂开,形成一系列近东西向的断陷盆地,发生了第二期变形,形成以塑性变形为主的板劈理和千枚理为其特征。该期变形结束了塔里木基底发展,进入了稳定盖层沉积发展阶段;进入早古生代,兴地断裂控制了该时期的沉积作用,之后发生第三期变形,以脆性变形为主,形成一系列碎裂岩和脆性变形组构,使兴地断裂形成几十米乃至上百米宽的破碎带,从而改造了早期的糜棱岩;至中、新生代,兴地断裂再次活动,形成断裂两侧南升北降的扭动形迹。通过对兴地断裂的深入探讨,笔者认为:该断裂具有线性特征明显,活动时间漫长,构造变形复杂,是塔里木盆地北缘规模巨大的复活大断裂。  相似文献   

10.
A 3D backstripping approach considering salt flow as a consequence of spatially changing overburden load distribution, isostatic rebound and sedimentary compaction for each backstripping step is used to reconstruct the subsidence history in the Northeast German Basin. The method allows to determine basin subsidence and the salt-related deformation during Late Cretaceous–Early Cenozoic inversion and during Late Triassic–Jurassic extension. In the Northeast German Basin, the deformation is thin-skinned in the basinal part, but thick-skinned at the basin margins. The salt cover is deformed due to Late Triassic–Jurassic extension and Late Cretaceous–Early Cenozoic inversion whereas the salt basement remained largely stable in the basin area. In contrast, the basin margins suffered strong deformation especially during Late Cretaceous–Early Cenozoic inversion. As a main question, we address the role of salt during the thin-skinned extension and inversion of the basin. In our modelling approach, we assume that the salt behaves like a viscous fluid on the geological time-scale, that salt and overburden are in hydrostatical near-equilibrium at all times, and that the volume of salt is constant. Because the basement of the salt is not deformed due to decoupling in the basin area, we consider the base of the salt as a reference surface, where the load pressure must be equilibrated. Our results indicate that major salt movements took place during Late Triassic to Jurassic E–W directed extension and during Late Cretaceous–Early Cenozoic NNE–SSW directed compression. Moreover, the study outcome suggests that horizontal strain propagation in the salt cover could have triggered passive salt movements which balanced the cover deformation by viscous flow. In the Late Triassic, strain transfer from the large graben systems in West Central Europe to the east could have caused the subsidence of the Rheinsberg Trough above the salt layer. In this context, the effective regional stress did not exceed the yield strength of the basement below the Rheinsberg Trough, but was high enough to provoke deformation of the viscous salt layer and its cover. During the Late Cretaceous–Early Cenozoic phase of inversion, horizontal strain propagation from the southern basin margin into the basin can explain the intensive thin-skinned compressive deformation of the salt cover in the basin. The thick-skinned compressive deformation along the southern basin margin may have propagated into the salt cover of the basin where the resulting folding again was balanced by viscous salt flow into the anticlines of folds. The huge vertical offset of the pre-Zechstein basement along the southern basin margin and the amount of shortening in the folded salt cover of the basin indicate that the tectonic forces responsible for this inversion event have been of a considerable magnitude.  相似文献   

11.
The Saar-Nahe-Basin in SW-Germany is one of the largest Permo-Carboniferous basins in the internal zone of the Variscides. Its evolution is closely related to movements along the Hunsrück Boundary Fault, which separates the Rhenohercynian and the Saxothuringian zones. Recent deep seismic surveys indicate that the Saar-Nahe-Basin formed in the hanging wall of a major detachment which soles out at lower crustal levels at about 16 km depth. Oblique extension along an inverted Variscan thrust resulted in the formation of a half-graben, within more than 8 km of entirely continental strata accumulated. The structural style within the basin is characterized by normal faults parallel to the basin axis and orthogonal transfer fault zones. Balanced cross-section construction and subsidence analysis indicate extension of the orogenically thickened lithosphere by 35%. Subsidence modeling shows discontinuous depth-dependent extension with laterally varying extension factors for crust and mantle lithosphere. Thus, the offset between maximum rift and thermal subsidence can be explained by a zone of mantle extension shifted laterally with respect to the zone of maximum crustal extension.
  相似文献   

12.
Several small outcrops along the western Rhinegraben escarpment expose rocks which represent the western prolongation of the so-called Mid-German Crystalline Rise. This basement ridge separates the Rhenohercynian and Saxothuringian zones of the Variscan belt of Europe and thus marks the boundary between the external and the internal zones. The variable rock association includes an orthogneissamphibolite complex, weakly deformed low grade sediments (?Devonian and Visean), and a number of different syn- to post-orogenic granodioritic to granitic intrusives, all crosscut by Late Lower Carboniferous undeformed lamprophyric dikes and unconformable overlain by Permian sediments and volcanics. Largely isothermal decompression during coaxial fabric evolution in the orthogneiss complex marks an early stage of deformation possibly due to crustal attenuation. Peak metamorphism (amphibolite/greenschist facies) in the other sequences with only minor orogenic shortening is succeeded by retrogressive strike-slip deformation associated to peak intrusive activity. The encountered typically low-P high-T metamorphism, the predominant strike-slip type kinematic pattern, and the preservation of parts of the Devono-Carboniferous sedimentary cover of the Rise preclude major crustal thickening and subsequent exhumation. An exception is the probably thrust-bounded juxtaposition of the Albersweiler orthogneisses and Burrweiler schists which is supported by their respective PT-paths. The orogenic imprint in the sedimentary cover of the crystalline rise appears to be thermal rather than strain-induced, suggesting a dominant role of the abundant pre- to late-orogenic intrusives. The essential aspects of this sequence of related structural and thermal events as well as the rock type association suggest a largely submarine incipient magmatic arc type of orogenic environment for this part of the Variscan belt. Its evolution probably started during the Upper Devonian on a disintegrating continental platform and proceeded through the Lower Carboniferous continental collision with the Rhenohercynian zone entailing a concomittant switch in deformation mode of the upper plate.  相似文献   

13.
During the Pennsylvanian, formation of coal was a phenomenon that was spread over many continents. It is the aim of this paper to illustrate factors that led to the formation of coal seams in paralic clastic sedimentary environments in the Ruhr Basin (German Variscan foreland) during the Pennsylvanian in terms of sequence stratigraphy and the structural evolution of the basin. Lithostratigraphic sections from exploration wells in the currently explored zone of the coal basin allowed the generation of volumetric lithofacies models, using geostastical methods. These models support the analysis of sedimentary facies and a sequence stratigraphic interpretation of the successions that are widely correlated throughout the basin. We then evaluate the relation of the sequence stratigraphic elements derived from the facies models with the abundance of coal seams.  相似文献   

14.
The Halle Volcanic Complex (HVC) is part of the transtensional intracontinental Saale Basin, which formed on the Mid-German Crystalline Rise located at the southern margin of the late Carboniferous/early Permian volcanic province of central Europe. Magmatic activity ranged from early trachybasalts, trachyandesites, and trachydacites followed by calc-alkaline, mildly peraluminous low-Si rhyolites, the latter of which had intruded at a very shallow crustal level. Two groups of geochemically heterogeneous and isotopically distinct mafic-intermediate rocks have to be distinguished, which originated from enriched mantle (lower crustal) sources and experienced crustal contamination to various extents. These rocks preceded the emplacement of rhyolites that are remarkably uniform in major and trace element chemistry as well as Nd isotope composition. Distinctly negative )Nd(T=300 Ma) (-6.7 to -7.0) of the rhyolites implies significant involvement of crustal material. The Pb isotopic composition of K-feldspar and trace element content of the rhyolites are compatible with remelting of Saxothuringian rather than Rhenohercynian crustal domains of the Variscan orogen. Slightly differing REE abundances in the rhyolites are attributed to an inhomogeneous distribution of accessory minerals. In conflict with their generation in an extensional environment, the trace element signature of the HVC rocks indicates a magmatic arc or collisional setting rather than an intracontinental within-plate setting. The composition of rhyolites from extensional settings at Halle and the adjacent Northeast German Basin demonstrates that trace element composition and geodynamic environment may not be correlated. Furthermore, the geochemistry of these rocks implies that the same type of magmatism may take entirely different chemical expressions in dependence of the structural and chemical composition of the underlying lithospheric block, which might be used to map hidden destroyed terrain boundaries in ancient orogens.  相似文献   

15.
Volker Otto   《Tectonophysics》2003,373(1-4):107
A seismostratigraphic approach constrained by well data is used for the interpretation of the deformation style along the central Elbe Fault System (EFS) within the sedimentary succession. Structural analysis allows to qualify, to quantify, and to date tectonic events. The stratigraphic interpretation is complicated by the mobilized Upper Permian Zechstein salt and by erosional events. A first-order quantification of the inversion-related uplift is estimated from vertical fault offsets that reach up to 4 km. The main uplift occurred during the Maastrichtian/Paleocene. Amounts of erosion inferred from comparing the strata thickness on top of the Flechtingen High with the surrounding basinal areas range from 3 to 4 km. The data indicate a changing deformation style: Thick-skinned deformation with southwest-dipping thrusts that vertically offset the pre-Permian basement is observed along the Flechtingen High in the central part of the EFS. Thin-skinned deformation occurs in the North German Basin where salt detaches the post-Permian cover from the barely faulted basement. It is concluded that during the Late Cretaceous/Early Tertiary inversion, the EFS responded to regional compression with uplift and formation of an internal high, the Flechtingen High. A stress-sensitive crustal weak zone beneath the EFS could be the reason for the repeated strain localization in the area.  相似文献   

16.
The Teplá–Barrandian unit (TBU) has long been considered as a simply bivergent supracrustal ‘median massif’ above the Saxothuringian subduction zone in the Variscan orogenic belt. This contribution reveals a much more complex style of the Variscan tectonometamorphic overprint and resulting architecture of the Neoproterozoic basement of the TBU. For the first time, we describe the crustal-scale NE–SW-trending dextral transpressional Krakovec shear zone (KSZ) that intersects the TBU and thrusts its higher grade northwestern portion severely reworked by Variscan deformation over a southeastern very low grade portion with well-preserved Cadomian structures and only brittle Variscan deformation. The age of movements along the KSZ is inferred as Late Devonian (~380–370?Ma). On the basis of structural, microstructural, and anisotropy of magnetic susceptibility data from the KSZ, we propose a new synthetic model for the deformation partitioning in the Teplá–Barrandian upper crust in response to the Late Devonian to early Carboniferous subduction and underthrusting of the Saxothuringan lithosphere. We conclude that the Saxothuringian/Teplá–Barrandian convergence was nearly frontal during ~380–346?Ma and was partitioned into pure shear dominated domains that accommodated orogen-perpendicular shortening alternating with orogen-parallel high-strain domains that accommodated dextral transpression or bilateral extrusion. The synconvergent shortening of the TBU was terminated by a rapid gravity-driven collapse of the thickened lithosphere at ~346–337?Ma followed by, or partly simultaneous with, dextral strike-slip along the Baltica margin-parallel zones, driven by the westward movement of Gondwana from approximately 345?Ma onwards.  相似文献   

17.
合肥盆地基底构造属性   总被引:33,自引:4,他引:29       下载免费PDF全文
根据合肥盆地及周边地表地质、地震剖面、同位素测年及MT等新资料的综合研究,提出中-新生代合肥盆地的基底是一个不同构造类型基底的叠合与复合.上古生界以前的基底以六安断裂为界,其北为华北板块陆壳型-过渡壳型结晶基底及其上的华北克拉通-被动大陆边缘盆地沉积的上元古-下古生界基底;其南为大别型结晶基底及其上的北淮阳弧后盆地沉积的上元古-下古生界变质基底,而上古生界基底属于弧后前陆盆地型沉积.六安断裂是合肥盆地部位北大别弧、北淮阳晚元古-早古生代弧后盆地在早古生代晚期-晚古生代早期与华北板块的弧-陆碰撞缝合线.  相似文献   

18.
The European Geotraverse (EGT) crosses along a 4000 km profile from the North Cape to Tunisia the following main suture zones:
  • the Tornquist-Teisseyre zone between the Baltic Shield and the Variscan realm,
  • the transition zones between Rhenohercynian and Saxothuringian as well as between Saxothuringian and Moldanubian zones in the Variscan part of central Europe, and
  • the collision zone between the European continent and the Adriatic microplate.
  • Some structural aspects of these suture zones are described.  相似文献   

    19.
    胶莱盆地构造演化规律   总被引:11,自引:0,他引:11  
    胶莱盆地是中生代走滑拉分盆地,其形成与发育受到沂沭断裂和五莲—即墨—牟平断裂的控制。从晚侏罗世—晚白垩世经历了莱阳期、青山期和王氏期的盆地发展阶段。构造活动使不同时期的盆地格局发生改变,不同阶段盆地的次级构造单元也随之变化。不同阶段次级构造单元的形成与演变反映了构造活动对盆地发育的控制作用,表现在各单元之间沉积相发生突变。扬子板块与华北板块的碰撞,控制郯庐断裂带(沂沭断裂带)和五莲—即墨—牟平断裂的运动方向和强度,进而控制胶莱盆地的形成与发育。同时盆地发育也受到太平洋板块的影响与控制。  相似文献   

    20.
    松辽盆地基底“多层结构”的探讨及其意义   总被引:1,自引:0,他引:1  
    梁爽  彭玉鲸  姜正龙 《世界地质》2009,28(4):430-475
    松辽盆地钻井基底岩系中残留的岩浆锆石和中生代火山岩中捕获的岩浆锆石的测年资料统计显示, 盆地基地的形成时间具有240 Ma ±、350 Ma ±、420 Ma ±、530 Ma ±、1 000~1 100 Ma ±、1 800 ~1 850 Ma ±和2 500 Ma ±七个峰值。结合钻井资料、古生物资料和岩性特征的研究, 松辽盆地基底可划分出6个构造层: 华力西构造层、加里东构造层、贝加尔(兴凯) 构造层、四堡构造层、吕梁构造层、阜平构造层和迁西构造层, 揭示其基底具有“多层结构”的特征, 表明该区前中生代构造演化与兴蒙22吉黑造山带、西伯利亚及华北板块陆缘构造演化协调一致。拟建的古生界地下岩石地层单位与周边地区已有的岩石地层单位可进行对比, 有利于扩大盆地外围和深部油气藏勘查。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号