首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
新疆及周边古地磁研究与构造演化   总被引:20,自引:3,他引:17  
新疆古地磁研究始于1979年,20年来通过对塔里木、准噶尔、昆仑山等地区的古地磁研究,获得了古生代—新生代塔里木板块、准噶尔板块和青藏板块古地磁极移曲线和古纬度资料。震旦纪以前塔里木板块尚未形成,晚震旦世在赤道附近各地块才联合成塔里木板块的主体部分。后经历了两次快速北移,一次快速南移。准噶尔板块早古生代为一个独立的微板块,在晚古生代与哈萨克斯坦板块联合成一体,组成了哈萨克斯坦-准噶尔板块;塔里木板块震旦纪时还属冈瓦纳大陆的一个组成部分,早古生代逐渐脱离了冈瓦纳大陆,快速向北漂移,晚古生代早期与准噶尔板块首次在东部碰撞,成为劳亚大陆南缘的一个增生体。将介于劳亚大陆和冈瓦纳大陆之间的古陆体,称之谓华夏古陆群。晚古生代末—中生代早期,华夏古陆群先后增生到劳亚大陆南缘;早古生代早期古特提斯洋尚未形成,诸地块处于冈瓦纳大陆范围内,位于南半球的赤道附近。在中-晚志留世,这些地(板)块才快速向北漂移,由于洋扩张,形成了古特提斯洋,构成了三大陆块群夹两个大洋的古地理格局;二叠纪是特提斯构造演化关键时期,晚侏罗-早白垩世昆仑地块与柴达木地块和塔里木地块发生碰撞,联合成一体。早侏罗世早期柴达木地块等与塔里木地块发生碰撞联合,造成了古特提斯洋消亡。早侏罗世中期,开  相似文献   

2.
颜佳新 《地球科学》1999,24(1):13-20
对东特提斯地区二叠-三叠纪古气候特征及其演化的系统分析表明,二叠纪-晚三叠世期间东特提斯地区分带型气候特征仍然较为清楚.二叠纪早期非暖水沉积在印度板块上的时空分布表明,现今印度板块东南边缘当时应贴近南极洲而非澳大利亚西北部.早二叠世早期非暖水沉积的北界在滇西位于昌宁-孟连带之西;在青藏高原,可能位于班公湖-丁青带.之后随着联合古大陆的整体北移,亲冈瓦纳地块群经历了由南温带到热带的古气候演化,欧亚大陆南部经历了由热带到北温带的古气候演化.各地块二叠-三叠纪期间古气候特征的演化为其古地理位置的确定提供了重要依据.二叠纪栖霞期古地理再造表明特提斯洋具多岛洋特点,二叠纪早期昌宁-孟连洋向北延入班公湖-怒江带,向南延入清迈带,大体占据南部亚热带,宽约10°古纬距.  相似文献   

3.
依据古地磁方法,对志留纪全球古板块进行再造,并在此基础上叠加了更新的志留纪全球大地构造背景、洋流系统、气候带分布以及岩相古地理、烃源岩分布等要素,编制了志留纪全球古板块再造图、全球古地理图、全球岩相古地理及烃源岩分布图。志留纪全球板块构造格局最重要的特点是劳俄大陆的形成以及冈瓦纳大陆北缘的持续裂解事件。早—中志留世全球性的海侵事件导致各大板块周缘普遍发育陆表海,碳酸盐岩台地广泛分布于冈瓦纳大陆的周缘以及西伯利亚板块和劳俄大陆的大部分。志留纪较高的温度以及广阔的陆表海促进了海洋生物的进一步繁盛,为烃源岩的发育提供了丰富的母质;同时,上升流作用以及冈瓦纳大陆内部大型河流的搬运作用,导致在冈瓦纳大陆的西缘(北非和阿拉伯地区)发育有厚层的黑色页岩,其为志留系重要的烃源岩。  相似文献   

4.
李江海  宋珏琛  毛翔 《地质论评》2019,65(3):551-557
二叠纪时期,泛大洋包围泛大陆并向其俯冲,在此背景下泛大陆内部洋盆呈现剪刀差式旋转关闭,并具有此消彼长的特征。前人通过自俯冲平面模型来解释泛大陆裂解过程中裂谷盆地的成因和泛大陆内部简单的应力状态,但是该模型与实际的地质背景相差较大。本文通过球壳三维模型,并考虑非洲核幔边界低速带以及阿拉伯地幔柱对泛大陆的影响,建立了二叠纪时期泛大陆所处的力学模型,模拟了泛大陆形成后古特提斯洋盆俯冲、关闭对大陆内部产生的应力应变影响。模拟结果显示三维球壳模型能够较好地解释该时期中亚区域发育的大型断裂、残余洋盆,也支持古特提斯洋盆剪刀差式关闭、新特提斯洋盆从古特提斯洋盆被动陆缘后侧张开的地质现象;非洲—阿拉伯板块的地幔垂向作用为新特提斯洋盆的张开提供了力学支持。由于在泛大陆分裂过程中,新老洋盆此消彼长、早期洋盆剪刀差式关闭的模式并不仅局限于古特提斯—新特提斯洋,本模拟结果可适当推广到其他洋盆。  相似文献   

5.
形成于晚石炭—二叠纪的华夏植物群主要发育在东亚,范围是中国华北、华南和塔里木以及印度支那等陆块。根据这些陆块的缝合时代以及陆块内石炭—二叠纪地层、古生物发育特征的研究,笔者认为这些陆块在石炭纪之前已聚合成一个大型陆块,本文将这个以华夏植物群为特征的大型陆块称为华夏大陆。该大陆位于安加拉大陆与冈瓦纳大陆之间的古特提斯洋中,并将其分为南、北两支。二叠纪晚期,华夏大陆向北漂移,至二叠纪末期,华夏大陆与安加拉大陆碰撞,形成天山—北山—内蒙古特提斯洋北支缝合带。早三叠世末期,由冈瓦纳大陆北缘裂解出来的西藏和缅泰陆片向北漂移,与华夏大陆西南边缘碰撞,形成昆仑—三江古特提斯洋南支缝合带。至此,华夏大陆成为劳亚大陆东南边缘一部分。  相似文献   

6.
孟中玙  王建刚  李伟桐 《地质学报》2023,97(9):3024-3042
新特提斯洋是中生代位于北方欧亚大陆和南方冈瓦纳大陆之间的古大洋,它在青藏高原南部地区于新生代早期因印度-欧亚大陆碰撞而消亡,其遗迹为现今的印度河-雅鲁藏布缝合带。新特提斯洋打开以拉萨地块从冈瓦纳大陆的裂离为标志。准确约束新特提斯洋的开启时间是重建冈瓦纳大陆裂解过程和特提斯洋演化历史的关键,但目前学术界对于新特提斯洋的开启时间还存在很大争议,不同学科方法的认识从早二叠世到晚三叠世不等。本文对新特提斯洋南侧印度被动大陆边缘二叠纪—三叠纪沉积地层进行了系统的梳理,研究发现在早二叠世冰期结束之后,印度大陆北缘长期表现为稳定的沉积环境,显著的沉积环境变化仅发生在晚三叠世。晚三叠世的沉积环境变化伴随着沉积和沉降速率增加、沉积物源变化、双峰式火山活动以及古地理格局的重大改变。研究认为,晚三叠世印度大陆北缘沉积作用变化所记录的区域伸展作用很可能代表了新特提斯洋的开启。  相似文献   

7.
巴颜喀拉构造带二叠—三叠纪岩相特征及构造演化   总被引:1,自引:0,他引:1  
特提斯洋的形成与演化问题是青藏高原重大基础地质问题之一, 通过多年的野外观察、分析测试和综合研究, 结合覆盖全区及相邻地区的1∶25万区域地质调查资料及其他前人研究成果, 尤其是对巴颜喀拉构造带二叠—三叠纪地层、岩相特征及构造古地理环境进行了系统研究, 并探讨了其构造演化, 以期对提高青藏高原特提斯洋演化历史和潘吉亚大陆形成特征等方面的研究工作有所禆益.巴颜喀拉构造带未出露前二叠纪地层, 二叠—新近纪地层均有出露, 尤以三叠纪地层广泛出露为其主要特征.其中, 二叠—三叠系主要为海相沉积, 比较连续, 尤以海相三叠系最具特色, 著名的巴颜喀拉山群横贯全区, 分布广泛, 厚度巨大, 侏罗—第四系主要为陆相河湖沉积.二叠系黄羊岭群岩性为碎屑岩、碳酸盐岩夹火山岩, 自下而上表现为浅海相-深海、半深海相-浅海相沉积演化特征; 三叠系主要为巴颜喀拉山群, 岩性单调, 主要为砂泥质类复理石沉积, 局部地区夹钙质及火山物质, 沉积环境总体表现为浅海相—深海、半深海相—滨浅海相—陆相沉积演化序列.二叠—三叠纪构造古地理环境表现为拉张裂陷形成洋(海)盆-汇聚、部分碰撞形成残留洋(海)盆、前陆盆地—拉张裂陷形成洋(海)盆—汇聚、部分碰撞形成残留洋(海)盆、前陆盆地—完全碰撞造山, 海水退出, 进入陆相沉积演化的历史.巴颜喀拉地区是塔里木—中朝陆块与南方大陆(冈瓦纳陆块)之间古特提斯洋域的主洋盆所在地区之一, 与其南部龙木错—双湖洋盆共同构成古特提斯洋域的双洋域.   相似文献   

8.
中国的全球构造位置和地球动力系统   总被引:8,自引:0,他引:8  
任纪舜  赵磊  徐芹芹  朱俊宾 《地质学报》2016,90(9):2100-2108
现今之中国位于亚洲大陆东南部,西太平洋活动带中段;在全球板块构造图上,中国位于欧亚板块的东南部,南为印度板块,东为太平洋板块和菲律宾海板块。地质历史上,以中朝、扬子、塔里木等小克拉通为标志的中国主体属于冈瓦纳和西伯利亚两个大陆之间的转换(互换)构造域:古生代时期,位于古亚洲洋之南,属冈瓦纳结构复杂的大陆边缘;中生代阶段,位于特提斯之北,属劳亚大陆的一部分。显生宙中国大地构造演化依次受古亚洲洋、特提斯-古太平洋、太平洋-印度洋三大动力体系之控制,形成古亚洲洋、特提斯和太平洋三大构造域。不论古亚洲洋,还是特提斯,都不是结构简单的大洋盆地,而是由一系列海底裂谷带(小洋盆带)和众多微陆块组合而成的结构复杂的洋盆体系。加之中、新生代的太平洋构造域和特提斯构造域叠加在古生代的古亚洲洋构造域之上,使中国地质构造图像在二维平面上呈现镶嵌构造,在三维空间上呈现立交桥式结构,使中国不仅是亚洲,也是全球构造最复杂的一个区域。不同阶段的地球动力体系在中国的叠加、复合,使多旋回构造-岩浆和成矿作用成为中国地质最突出的特征。因而中国的造山带大多是多旋回复合造山带,成矿(区)带大多是多旋回复合成矿(区)带,大型含油气盆地大多是多旋回叠合盆地。  相似文献   

9.
特提斯地球动力学   总被引:19,自引:9,他引:10  
吴福元  万博  赵亮  肖文交  朱日祥 《岩石学报》2020,36(6):1627-1674
特提斯是地球显生宙期间位于北方劳亚大陆和南方冈瓦纳大陆之间的巨型海洋,它在新生代期间的闭合形成现今东西向展布的欧洲阿尔卑斯山、土耳其-伊朗高原、喜马拉雅山和青藏高原。根据演化历史,特提斯可划分为原特提斯、古特提斯和新特提斯三个阶段,分别代表早古生代、晚古生代和中生代期间的大洋。大约在500Ma左右,冈瓦纳大陆北缘发生张裂,裂解的块体向北漂移,并使其与塔里木-华北之间的原特提斯洋在420~440Ma左右关闭,产生原特提斯造山作用,与北美-西欧地区Avalonia地体与劳伦大陆之间的阿巴拉契亚-加里东造山作用基本相当。原特提斯造山带之南、早古生代即已存在的龙木错-双湖-昌宁-孟连古特提斯洋在380Ma向北俯冲,使早期闭合的康西瓦-阿尼玛卿洋重新张开,并由于弧后扩张形成金沙江-哀牢山洋。330~360Ma左右,特提斯西部大洋由于南侧非洲板块和北侧欧洲板块的碰撞而关闭,形成欧洲华力西造山带。而特提斯东段的上述三条古特提斯洋在250Ma左右基本同时关闭,华北、华南、印支等块体聚合形成华夏大陆。该大陆与冈瓦纳大陆、劳亚大陆和华力西造山带一起围限形成封闭的古特提斯残留洋,并一直到晚三叠世-早侏罗世海水才全部退出。此后,南侧冈瓦纳大陆在三叠纪晚期重新裂解形成新特提斯洋,该洋盆在新生代初期由于印度和亚洲的碰撞而关闭。原、古、新特提斯三次造山作用基本代表了中国大陆显生宙期间的地质演化历史,并在此过程中形成了特色的特提斯域金属成矿作用。广布的被动陆缘和赤道附近的古地理位置,以及后期的造山作用同时也成就了特提斯域内巨量油气资源的形成;塑就的地貌与海陆分布格局,也对当时的古气候与古环境产生了重要影响。特别是,与原、古、新特提斯洋消亡相关的三次弧岩浆活动与显生宙地球历史上三次温室地球向冰室地球的转变,在时间上高度吻合。上述演化历史同时还表明,特提斯地质演化以南侧冈瓦纳大陆不断裂解、块体向北漂移并与劳亚大陆持续聚合为特征,其动力机制主要来自俯冲板片的拖拽力,而地幔柱是否对大陆的裂解与漂移有所贡献,则有待进一步评价。  相似文献   

10.
吴彦旺  李才  解超明  王明  胡培远 《地质通报》2010,29(12):1773-1780
果干加年山二叠纪蛇绿岩是龙木错-双湖板块缝合带近期的新发现。通过详细的野外地质调查,查明了果干加年山地区二叠纪蛇绿岩出露规模较大,主要由堆晶辉长岩、基性岩墙群、玄武岩等组成。蛇绿岩辉长岩墙获得SIMS锆石年龄272.9Ma±1.8Ma,时代为早二叠世。果干加年山二叠纪蛇绿岩记录了二叠纪早期冈瓦纳大陆北缘发生了一次规模较大的构造事件,为探讨和建立古特提斯洋构造演化的时空模型提供了重要信息。  相似文献   

11.
The Gondwanaland assembly rifted dominantly during Late Carboniferous–Early Permian forming several intracratonic rift basins. These rifts were subsequently filled with a thick sequence of continental clastic sediments with minor marine intercalations in early phase. In western part of India, these sediments are recorded in enclaves of Bikaner–Nagaur and Jaisalmer basins in Rajasthan. Facies correlatives of these sediments are observed in a number of basins that were earlier thought to be associated with the western part of India. The present work is a GIS based approach to reconnect those basins to their position during rifting and reconstruct the tectono-sedimentary environment at that time range. The study indicates a rift system spanning from Arabian plate in the north and extending to southern part of Africa that passes through Indus basin, western part of India and Madagascar, and existed from Late Carboniferous to Early Jurassic. Extensions related to the opening of Neo-Tethys led to the formation of a number of cross trends in the rift systems that acted as barriers to marine transgressions from the north as well as disrupted the earlier continuous longitudinal drainage systems. The axis of this rift system is envisaged to pass through present day offshore Kutch and Saurashtra and implies a thick deposit of Late Carboniferous to Early Jurassic sediments in these areas. Based on analogy with other basins associated with this rift system, these sediments may be targeted for hydrocarbon exploration.  相似文献   

12.
Analysis of zircons from Australian affinity Permian–Triassic units of the Timor region yield age distributions with large age peaks at 230–400 Ma and 1750–1900 Ma, which are similar to zircon age spectra found in rocks from NE Australia and crustal fragments now found in Tibet and SE Asia. It is likely that these terranes, which are now widely separated, were once part of the northern edge of Gondwana near what is now the northern margin of Australia. The Cimmerian Block rifted from Gondwana in the Early Permian during the initial formation of the Neo-Tethys Ocean. The zircon age spectra of the Gondwana Sequence of NE Australia and in the Timor region are most similar to the terranes of northern Tibet and Malaysia, further substantiating a similar tectonic affinity. A large 1750–1900 Ma zircon peak is also very common in other terranes in SE Asia.Hf analysis of zircon from the Aileu Complex in Timor and Kisar Islands shows a bimodal distribution (both radiogenically enriched and depleted) in the Gondwana Sequence at ~ 300 Ma. The magmatic event from which these zircons were derived was likely bimodal (i.e. mafic and felsic). This is substantiated by the presence of Permian mafic and felsic rocks interlayered with the sandstone used in this study. Similar rock types and isotopic signatures are also found in Permian–Triassic igneous units throughout the Cimmerian continental block.The Permian–Triassic rocks of the Timor region fill syn-rift intra-cratonic basins that successfully rifted in the Jurassic to form the NW margin of Australia. This passive continental margin first entered the Sunda Trench in the Timor region at around 7–8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and emerge as a series of mountainous islands in the young Banda collision zone. Eventually, the Australian continental margin will collide with the southern edge of the Asian plate and these Gondwanan terranes will rejoin.  相似文献   

13.
Melanges play a key role in the interpretation of orogenic belts, including those that have experienced deformation and metamorphism during continental collision. This is exemplified by a Palaeozoic tectonic-sedimentary melange (part of the Konya complex) that is exposed beneath a regionally metamorphosed carbonate platform near the city of Konya in central Anatolia. The Konya complex as a whole comprises three units: a dismembered, latest Silurian–Early Carboniferous carbonate platform, a Carboniferous melange made up of sedimentary and igneous blocks in a sedimentary matrix (also known as the Hal?c? Group or S?zma Group), and an overlying Volcanic-sedimentary Unit (earliest Permian?). The Palaeozoic carbonates accumulated on a subsiding carbonate platform that bordered the northern margin of Gondwana, perhaps as an off-margin unit. The matrix of the melange was mainly deposited as turbidites, debris flows and background terrigenous muds. Petrographic evidence shows that the clastic sediments were mostly derived from granitic and psammitic/pelitic metamorphic rocks, typical of upper continental crust. Both extension- and contraction-related origins of the melange can be considered. However, we interpret the melange as a Carboniferous subduction complex that formed along the northern margin of Gondwana, related to partial closure of Palaeotethys. Blocks and slices of Upper Palaeozoic radiolarian chert, basic igneous rocks and shallow-water carbonates were accreted and locally reworked by gravity processes. Large (up to km-sized) blocks and slices of shallow-water limestone were emplaced in response to collision of the Palaeozoic Carbonate Platform with the subduction zone. The overlying Volcanic-sedimentary Unit (earliest Permian?) comprises alkaline lava flows, interbedded with volcaniclastic debris flows and turbidites, volcanogenic shales and tuff. The complex as a whole is overlain by shallow-water, mixed carbonate–siliciclastic sediments of mainly Late Permian age that accumulated on a regional-scale shelf adjacent to Gondwana. Successions pass transitionally into Lower Triassic rift-related shallow-water carbonates and terrigenous sandstones in the southwest of the area. In contrast, Triassic sediments in the southeast overlie the melange unconformably and pass upwards from non-marine clastic sediments into shallow-marine calcareous sediments of Mid-Triassic age, marking the base of a regional Mesozoic carbonate platform. During the latest Cretaceous–Early Cenozoic the entire assemblage subducted northwards and underwent high pressure/low temperature metamorphism and polyphase folding as a part of the regional Anatolide unit.  相似文献   

14.
The Neo-Tethys Ocean began to form at Early Permian times, when continental flood basalts were emplaced in various areas of the newly-formed Indian passive margin, exposed today in the so-called Tibetan Sedimentary Zone of the Himalaya. Lower Permian mafic volcanic rocks, which have long been known from various Himalayan localities from Kashmir to Arunachal Pradesh, are here for the first time reported to occur also in South Tibet (Bhote Kosi Basalts of the Gyirong County). The basalts unconformably overlie lowermost Permian diamictites, with locally intervening black shales and debris flow deposits, and are followed in turn by chert-bearing quartzarenites and silty to phosphatic marls yielding brachiopods of Roadian–Wordian age. The age of the lavas can thus be bracketed as late Early Permian (post-Sakmarian and pre-Roadian).The geochemistry of these subalkalic tholeiites, akin to MORBs, testifies to their similarity not only with the adjacent Nar-Tsum Spilites of central Nepal, but also with the Panjal Traps and Abor Volcanics of the western and eastern Himalayas respectively. The geochemical signature of Lower Permian volcanic rocks is in fact uniform all along the Himalayan Range, and markedly different from that of basaltic–rhyolitic alkalic products sporadically emplaced during the previous rifting stage. Rift volcanism in the Tethys Himalaya began in the Early Carboniferous and came to an end in Sakmarian times. In the Early Permian, initial submergence of the rift shoulders and sediment starvation were followed by tholeiitic magmatism, which is therefore interpreted as following break-up and incipient sea-floor spreading in the Neotethys Ocean. Roughly contemporaneous emplacement of continental flood basalts of similar geochemical signature along a 2000 km long rift axis would in fact suggest extensive mantle melting at the transition from continental rifting to break-up and opening of the Neotethys between Northern Gondwana and the Peri-Gondwanian blocks.  相似文献   

15.
In the Cambrian, the paleo-Pacific margin of the East Gondwana continent, including East Antarctica, Australia, Tasmania and New Zealand, was affected by the Ross–Delamerian Orogeny. The evidence from geochemistry of volcanic rocks and petrography of clastic sediments in northern Victoria Land (Antarctica) reveals that orogenesis occurred during a phase of oblique subduction accompanied by the opening and subsequent closure of a back-arc basin. A similar sequence of events is recognized in New Zealand. In both regions Middle Cambrian volcanic rocks are interpreted as arc/back-arc assemblages produced by west-directed subduction; sediments interbedded with the volcanic rocks show provenance both from the arc and from the Gondwana margin and therefore place the basin close to the continent. Rapid back-arc closure in the Late Cambrian was likely accomplished through changes to the subduction system.  相似文献   

16.
A mixed siliciclastic-carbonate system that responds to changes in Permian climate and subsequent carbonate platform evolution is investigated using microscopic details of the Middle Permian Amb Formation(Fm.),in Saiyiduwali section,Khisor Range,northern Pakistan.Thin sections were made from rocks throughout the stratigraphic section of the Amb Fm.and analyzed with an emphasis on carbonate and clastic microfacies,and the latter interpreted within the existing chronostratigraphic framework.Outcrop observations reveal that the units comprise coarse-grained,channelized,ripplemarked,and burrowed sandstone and sandy,fossiliferous limestone with minor marls and shale intercalations,suggesting deposition in a subaqueous tide-dominated delta to beach barrier.Based on the determined seven microfacies coupled with outcrop observation,the Amb Fm.was deposited in a tide-influenced subaqueous delta to middle shelf environment under fluctuating sea level.The deposition of compositionally mature sandstone in the lower part of the formation suggests reworking of detritus from the rift shoulders and an adjacent source area with an ambient warm and humid climate.The stratal mixing of carbonates and compositionally mature siliciclastic units in the middle part suggest deposition under tectonic and climate-induced terrigenous and carbonate fluxes to the basin.Thus the deposition shows a perfect transition from clastic-dominated deltaic to pure carbonate platform settings as a result of warm climate and tectonics.This Middle Permian warming is confirmed by sea-level rise and the presence of a temperature-sensitive fusulinid fauna in association with photozoan-based ooids.Deposition of the Amb Fm.and establishment of a carbonate platform are envisaged to be associated with major rifting of northern Gondwana,which subsequently resulted in the development of a rift basin at the passive margin of the NW Indian Plate then in northern Pakistan.  相似文献   

17.
特提斯构造域与油气勘探   总被引:17,自引:5,他引:12       下载免费PDF全文
Klimmi和Ulmishek(1991)将全球已探明的油气可采储量分为四大域:特提斯域、北方欧亚域、南方冈瓦纳域和太平洋域。其中特提斯域内的油气储量主要分布在中东地区。板块学说进入大地之后,给特提斯的研究带来了新的启示。阿尔卑斯-喜马拉邪念造山带是新特提斯海消亡的产物,而现今提出的古特提斯和基梅里造山带已突破Suess原提出的时空范围,其演化时间已延长到古生代,地域上已达亚洲中纬度地区。中国的青  相似文献   

18.
The Mesozoic sediments of Thakkhola (central Nepal) were deposited on a broad eastern north Gondwanan passive margin at mid-latitudes (28–41 °S) facing the Southern Tethys ocean to the north. The facies is strikingly similar over a distance of several thousand kilometres from Ladakh in the west to Tibet and to the paleogeographically adjacent north-west Australian margin (Exmouth Plateau, ODP Legs 122/123) and Timor in the east. Late Paleozoic rifting led to the opening of the Neo-Tethys ocean in Early Triassic times. An almost uninterrupted about 2 km thick sequence of syn-rift sediments was deposited on a slowly subsiding shelf and slope from Early Triassic to late Valanginian times when break-up between Gondwana (north-west Australia) and Greater India formed the proto-Indian Ocean. The sedimentation is controlled by (1) global events (eustasy; climatic/oceanographic changes due to latitudinal drift; plate reorganization leading to rift-type block-faulting) and (2) local factors, such as varying fluvio-deltaic sediment input, especially during Permian and late Norian times. Sea level was extremely low in Permian, high in Carnian and low again during Rhaeto-Liassic times. Third-order sea-level cycles may have occurred in the Early Triassic and late Norian to Rhaeto-Liassic. During the Permian pure quartz sand and gravel were deposited as shallowing upward series of submarine channel or barrier island sands. The high compositional maturity is typical of a stable craton-type hinterland, uplifted during a major rifting episode. During the early Triassic a 20–30 m thick condensed sequence of nodular ‘ammonitico rosso’-type marlstone with a ‘pelagic’ fauna was deposited (Tamba Kurkur Formation). This indicates tectonic subsidence and sediment starvation during the transgression of the Neo-Tethys ocean. During Carnian times a 400 m thick sequence of fining upward, filament-rich wackestone/shale cycles was deposited in a bathyal environment (Mukut Formation). This is overlain by about 300 m of sandy shale and siltstone intercalated with quartz-rich bioclastic grain- to rudstone (Tarap Shale Formation, late Carnian-Norian). The upper Norian to (?lower) Rhaetian Quartzite Formation consists of (sub)arkosic sandstones and pure quartz arenites, indicating different sediment sources. The fluvio-deltaic sandstones are intercalated with silty shale, coal and bioclastic limestone, as well as mixed siliciclastic-bioclastic rocks. The depositional environment was marginal marine to shallow subtidal. The fluvio-deltaic influence decreased towards the overlying carbonates of Rhaeto-Liassic (?) age (Jomosom Formation correlative with the Kioto Limestone), when the region entered tropical paleolatitudes resulting in platform carbonates.  相似文献   

19.
Abstract

This article reports the depositional environment and provenance for the Tianquanshan Formation in the Longmuco–Shuanghu–Lancangjiang suture zone, and uses these to better understand the tectonic evolution of this region. Zircons in the andesite of the Tianquanshan Formation yielded concordia ages of 246, 247, and 254 Ma, indicating that the Tianquanshan Formation formed during the late Permian–Early Triassic. The Tianquanshan Formation consists of flysch and ocean island rock assemblages, indicating that the Longmuco–Shuanghu–Lancangjiang Palaeo-Tethys Ocean continued to exist as a mature ocean in the late Permian–Early Triassic. The detrital zircons in the greywackes of the Tianquanshan Formation yielded peak ages of 470–620, 710–830, 910–1080, 1450–1660, and 2400–2650 Ma, indicating the provenance of the Tianquanshan Formation was either Indian Gondwana or terranes that have an affinity with Indian Gondwana in the Tibetan Plateau (i.e. the Southern Qiangtang, Lhasa, and Himalayan terranes). The Ordovician quartzites, Carboniferous sandstones, Carboniferous–Permian diamictites, and the Upper Permian–Lower Triassic greywackes in the Southern Qiangtang, Lhasa, and Himalayan terranes all contain detrital zircons with youngest ages of ca. 470 Ma, indicating their source areas have been in a stable tectonic environment since the Ordovician, and this inference is supported by the continuous deposition in a littoral–neritic passive margin in these regions from the Ordovician to the lower Permian. Combining the present results with regional geological data, we infer that the Southern Qiangtang, Lhasa, and Himalayan terranes were all in a stable passive continental margin along the northern part of Indian Gondwana during the long period from the Ordovician to the early Permian. At early Permian, because of the opening of the Neo-Tethys Ocean, the tectonic framework of this region underwent a marked change to a rifting and active environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号