首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
Torsion experiments were performed on the Al2SiO5 polymorphs in the sillimanite stability field to determine basic rheological characteristics and the effect of deformation on polymorphic transformation. The experiments resulted in extensive transformation of andalusite and kyanite to sillimanite. No transformation occurred during the hot-press (no deformation) stage of sample preparation, which was carried out at similar PT conditions and duration as the torsion experiments. Experiments were conducted on fine-grained (< 15 µm) aggregates of natural andalusite, kyanite and sillimanite at 1250 °C, 300 MPa, and a constant shear strain rate of 2 × 10− 4/s to a maximum shear strain of 400%. Electron back-scattered diffraction (EBSD) analysis of the experiments revealed development of lattice-preferred orientations, with alignment of sillimanite and andalusite [001] slightly oblique to the shear plane. The kyanite experiment could not be analyzed using EBSD because of near complete transformation to sillimanite. Very little strain ( 30%) is required to produce widespread transformation in kyanite and andalusite. Polymorphic transformation in andalusite and kyanite experiments occurred primarily along 500 µm wide shear bands oriented slightly oblique and antithetic to the shear plane and dominated by sub-µm (100–150 nm) fibrolitic sillimanite. Shear bands are observed across the entire strain field preserved in the torsion samples. Scanning transmission electron microscope imaging shows evidence for transformation away from shear bands; e.g. fibrolitic rims on relict andalusite or kyanite. Relict grains typically have an asymmetry that is consistent with shear direction. These experimental results show that sillimanite is by far the weakest of the polymorphs, but no distinction can yet be made on the relative strengths of kyanite and andalusite. These observations also suggest that attaining high bulk strain energy in strong materials such as the Al2SiO5 polymorphs is not necessary for triggering transformation. Strain energy is concentrated along grain boundaries, and transformation occurs by a dynamic recrystallization type process. These experiments also illustrate the importance of grain-size sensitive creep at high strains in a system with simultaneous reaction and deformation.  相似文献   

2.
3.
This study examines the small-strain dynamic properties of mixtures composed of sandy and gravelly soils with granulated tire rubber in terms of shear modulus (GO), and damping ratio in shear (Dmin). Torsional resonant column tests are performed on dry, dense specimens of soil-rubber mixtures in a range of soil to rubber particles size 5:1–1:10 and rubber content from 0 to 35% by mixture weight. The experimental results indicate that the response of the mixtures is significantly affected by the content of rubber and the relative size of rubber to soil particles. Concering the small-strain shear modulus, an equivalent void ratio is introduced that considers the volume of rubber particles as part of the total volume of voids. Based on a comprehensive set of test results a series of equations were developed that can be used to evaluate the shear modulus and damping ratio at small shear strain levels if the confining pressure, the content of rubber by mixture weight, the grain size of soil and rubber particles, and the dynamic and physical properties of the intact soil are known.  相似文献   

4.
Carbon isotope composition (δ13C) in tree-rings has become routinely used in palaeoclimatic research for the assessment of changes in plant water availability in seasonally dry climates. However, the distribution of long tree-ring records around the world is very limited. Alternatively, the original climate signal of wood δ13C is well preserved in fossil charcoal and, accordingly, charcoal δ13C can be used to quantify past changes in water availability (e.g. precipitation). We report a case study on spatial palaeoclimate reconstruction which aims to characterize the transition between Bronze and Iron Ages, the so-called Iron Age Cold Epoch (ca. 900–300 BCE), using charcoals of Quercus ilex/coccifera from a set of 11 contemporary archaeological sites of eastern Spain. Climatic inferences were obtained after calibrating a linear model predicting seasonal precipitation from δ13C of Q. ilex wood samples obtained across a rainfall gradient. The best regression model corresponded to September–December (autumn) precipitation (Paut), in agreement with the fact that Q. ilex is able to exploit previous-year water reserves thanks to very effective water uptake. Subsequently, we estimated Paut from the δ13C of fossil charcoal to infer spatial patterns in water availability. Overall, estimated past Paut was about 19% higher (296 mm) than present-time values averaged across archaeological sites (249 mm). However, a clear geographic pattern of differences in precipitation could be observed in which the inner continental regions of eastern Spain were characterized by more humid conditions in the past, whereas the coastal strip of the Mediterranean Sea barely differed in past and present Paut values. The quite uniform distribution of archaeological sites over eastern Spain allowed development of contour maps of absolute and relative (to present) past Paut using gridded interpolation methods implemented in a GIS, highlighting the potential of this approach for reconstructing high-resolution spatial patterns of past climate.  相似文献   

5.
Hydrometallurgical processing of spent hydrodesulphurisation (HDS) catalyst for the recovery of molybdenum using sodium carbonate and hydrogen peroxide mixtures was investigated. The results indicated that the recovery of molybdenum was largely dependent on the concentrations of Na2CO3 and H2O2 in the reaction medium, which controls the acidity of the leach liquor and carry over of impurities such as Al, Ni, P, Si and V. Leaching process was exothermic and leaching efficiency of molybdenum decreased with increasing solid to liquid ratio. Large scale leaching of spent catalyst, under optimum conditions: 20% pulp density, 85 g/L Na2CO3, 10 vol.% H2O2 and 1 h reaction, resulted a leaching efficiency of 84% Mo. The obtained leach liquor contained (g/L): Mo — 22.0, Ni — 0.015 and Al — 0.82, P — 1.1, Si — 0.094 and minor quantities of V — 8 mg/L, As and Co — < 1 mg/L. Recovery of Mo from leach solution as MoO3 of 97.30% purity was achieved by ammonium molybdate precipitation method.  相似文献   

6.
Lateral load-deflection behaviour of single piles is often analysed in practice on the basis of methods of load-transfer PY curves. The paper is aimed at presenting the results of the interpretation of five full-scale horizontal loading tests of single instrumented piles in two sandy soils, in order to define the parameters of PY curves, namely the initial lateral reaction modulus and the lateral soil resistance, in correlation with the pressuremeter test parameters. PY curve parameters were found varying as a power of lateral pile/soil stiffness, on the basis of which hyperbolic PY curves in sand were proposed. The predictive capabilities of the proposed PY curves were assessed by predicting the soil/pile response in full-scale tests as well as in centrifuge tests and a very good agreement was found between the computed deflections and bending moments, and the measured ones. Small-sized database of full-scale pile loading tests in sand was built and a comparative study of some commonly used PY curve methods was undertaken. Moreover, it was shown that the load-deflection curves of these test piles may be normalised in a practical form for an approximate evaluation of pile deflection in a preliminary stage of pile design. At last, a parametric study undertaken on the basis of the proposed PY curves showed the significant influence of the lateral pile/soil stiffness on the non-linear load-deflection response.  相似文献   

7.
Using a recently developed petrogenetic grid for MORB + H2O, we propose a new model for the transportation of water from the subducting slab into the mantle transition zone. Depending on the geothermal gradient, two contrasting water-transportation mechanisms operate at depth in a subduction zone. If the geothermal gradient is low, lawsonite carries H2O into mantle depths of 300 km; with further subduction down to the mantle transition depth (approximately 400 km) lawsonite is no longer stable and thereafter H2O is once migrated upward to the mantle wedge then again carried down to the transition zone due to the induced convection. At this depth, hydrous β-phase olivine is stable and plays a role as a huge water reservoir. In contrast, if the geothermal gradient is high, the subducted slab may melt at 700–900 °C at depths shallower than 80 km to form felsic melt, into which water is dissolved. In this case, H2O cannot be transported into the mantle below 80 km. Between these two end-member mechanisms, two intermediate types are present. In the high-pressure intermediate type, the hydrous phase A plays an important role to carry water into the mantle transition zone. Water liberated by the lawsonite-consuming continuous reaction moves upward to form hydrous phase A in the hanging wall, which transports water into deeper mantle. This is due to a unique character of the reaction, because Phase A can become stable through the hydration reaction of olivine. In the case of low-pressure intermediate type, the presence of a dry mantle wedge below 100 km acts as a barrier to prevent H2O from entering into deeper mantle.  相似文献   

8.
Picea is an important taxon in late-glacial pollen records from eastern North America, but little is known about which species of Picea were present. We apply a recently developed palynological method for discriminating the three Picea species in eastern North America to three records from New England. Picea glauca was dominant at  14,500–14,000 cal yr BP, followed by a transition to Picea mariana between  14,000 and 13,500 cal yr BP. Comparison of the pollen data with hydrogen isotope data shows clearly that this transition began before the beginning of the Younger Dryas Chronozone. The ecological changes of the late-glacial interval were not a simple oscillation in the position of a single species' range, but rather major changes in vegetation structure and composition occurring during an interval of variations in several environmental factors, including climate, edaphic conditions, and atmospheric CO2 levels.  相似文献   

9.
Between 1996 and 2001 an experimental set up in a chaparral community near San Diego, CA, examined various plant and ecosystem responses to CO2 concentrations ranging from 250 to 750 μl l− 1. These experiments indicated a significant increase in soil C sequestration as CO2 rose above the ambient levels. In 2003, two years after the cessation of the CO2 treatments, we returned to this site to examine soil C dynamics with a particular emphasis on stability of specific pools of C. We found that in as little as two years, C content in the surface soils (0–15 cm) of previously CO2 enriched plots had dropped to levels below those of the ambient and pretreatment soils. In contrast, C retained in response to CO2 enrichment was more durable in the deeper soil layers (> 25 cm deep) where both organic and inorganic C were on average 26% and 55% greater, respectively, than C content of ambient plots. Using stable isotope tracers, we found that treatment C represented 25% of total soil C and contributed to 55% of soil CO2 efflux, suggesting that most of treatment C is readily accessible to decomposers. We also found that, C present before CO2 fumigation was decomposed at a faster rate in the plots that were exposed to elevated CO2 than in those exposed to ambient CO2 levels. To our knowledge, this is the first report that allows for a detail accounting of soil C after ceasing CO2 treatments. Our study provides a unique insight to how stable the accrued soil C is as CO2 increases in the atmosphere.  相似文献   

10.
We have developed a simple semblance-weighted stacking technique to estimate crustal thickness and average VP/VS ratio using teleseismic receiver functions. We have applied our method to data from 32 broadband seismograph stations that cover a 700 × 400 km2 region of the Grenville orogen, a 1.2–0.98 Ga Himalayan-scale collisional belt in eastern North America. Our seismograph network partly overlaps with Lithoprobe and other crustal refraction surveys. In 8 out of 9 cases where a crustal-refraction profile passes within 30 km of a seismograph station, the two independent crustal thickness estimates agree to within 7%. Our regional crustal-thickness model, constructed using both teleseismic and refraction observations, ranges between 34.0 and 52.4 km. Crustal-thickness trends show a strong correlation with geological belts, but do not correlate with surface topography and are far in excess of relief required to maintain local isostatic equilibrium. The thickest crust (52.4 ± 1.7 km) was found at a station located within the 1.1 Ga mid-continent (failed) rift. The Central Gneiss Belt, which contains rocks exhumed from deep levels of the crust, is characterized by VP/VS ranging from 1.78 to 1.85. In other parts of the Grenville orogen, VP/VS is found to be generally less than 1.80. The thinnest crust (34.5–37.0 km) occurs northeast of the 0.7 Ga Ottawa–Bonnechere graben and correlates with areas of high intraplate seismicity.  相似文献   

11.
A compiled database of shear wave velocity measurements in a variety of clays, silts and sands shows directional hierarchies between downhole (VsVH), standard crosshole (VsHV), and rotary crosshole (VsHH) tests. The special in situ database has been collected from 33 well-documented geotechnical test sites. Expressions relating the small-strain shear modulus in terms of effective confining stress level, stress history and void ratio are explored for each of these three modes of directional shear wave velocity. The relationships are separated initially into soil groups (intact clays, fissured clays, sands and silts), and then generalised to consider all soil types together.  相似文献   

12.
Holocene variations in annual precipitation (Pann) were reconstructed from pollen data from southern Argentinian Patagonia using a transfer function developed based on a weighted-averaging partial least squares (WA-PLS) regression. The pollen–climate calibration model consisted of 112 surface soil samples and 59 pollen types from the main vegetation units, and modern precipitation values obtained from a global climate database. The performance (r2 = 0.517; RMSEP = 126 mm) of the model was comparable or slightly lower than in other comparable pollen–climate models. Fossil pollen data were obtained from a sediment core from Cerro Frias site (50°24'S, 72°42'W) located at the forest-steppe ecotone. Reconstructed Pann values of about 200 mm suggest dry conditions during the Pleistocene–Holocene transition (12,500–10,500 cal yr BP). Pann values were about 300–350 mm from 10,500 to 8000 cal yr BP and increased to 400–500 mm between 8000 and 1000 cal yr BP. An abrupt decrease in Pann at about 1000 cal yr BP was associated with a Nothofagus decline. The reconstructed Pann suggests a weakening and southward shift of the westerlies during the early Holocene and intensification, with no major latitudinal shifts, during the mid-Holocene at high latitudes in southern Patagonia.  相似文献   

13.
The behaviour of synthetic Mg-ferrite (MgFe2O4) has been investigated at high pressure (in situ high-pressure synchrotron radiation powder diffraction at ESRF) and at high temperature (in situ high-temperature X-ray powder diffraction) conditions. The elastic properties determined by the third-order Birch–Murnaghan equation of state result in K0=181.5(± 1.3) GPa, K=6.32(± 0.14) and K= –0.0638 GPa–1. The symmetry-independent coordinate of oxygen does not show significant sensitivity to pressure, and the structure shrinking is mainly attributable to the shortening of the cell edge (homogeneous strain). The lattice parameter thermal expansion is described by a0+a1*(T–298)+a2/(T–298)2, where a0=9.1(1) 10–6 K–1, a1=4.9(2) 10–9 K–2 and a2= 5.1(5) 10–2 K. The high-temperature cation-ordering reaction which MgFe-spinel undergoes has been interpreted by the ONeill model, whose parameters are = 22.2(± 1.8) kJ mol–1 and =–17.6(± 1.2) kJ mol–1. The elastic and thermal properties measured have then been used to model the phase diagram of MgFe2O4, which shows that the high-pressure transition from spinel to orthorombic CaMn2O4-like structure at T < 1700 K is preceded by a decomposition into MgO and Fe2O3.  相似文献   

14.
Numerical models on thermal structure, convective flow of solid, generation and transportation of H2O-rich fluid in subduction zones are consolidated to have a comprehensive view of the subduction zone processes: heat balance, circulation of H2O magmatism–metamorphism, growth of arcs and continental margins. A large scale convection model with steady subduction of a cold old slab (130 Myr old) predicts rapid ( 100 Myr) cooling of subduction zones, resulting in cessation of magmatism. The model also predicts that the mantle temperature beneath arcs and continental margins is greatly affected by the effective temperature of the subducting slab, i.e., the age of the subducting slab. If subduction of a young hot slab, including ridge subduction, occurs every 60 to 120 Myr as is suggested for eastern Asia, the average temperature beneath arcs is increased by about 300 °C, which may explain the long-lasting magmatism in eastern Asia. Associated with subduction of young slabs and ridges, thermal structure and circulation of H2O are greatly modified to cause a transition from (1) normal arc magmatism, (2) forearc mantle melting, to (3) slab melting to produce a significant amount (100 km3) of granitic melts, associated with both high-P/T and low-P/T type metamorphism. The last stage of (3) can result in formation of a granitic batholith belt and a paired metamorphic belts. Synthesis of the numerical models and observations suggest that episodic subduction of young slabs and ridges can explain heat source for generating a large amount of granitic magmas of batholiths, synchronous formation of batholith and regional metamorphic belts, and PT conditions of the paired metamorphism. Even the high-P/T metamorphism requires an elevated geothermal structure in the forearc region, associated with ridge subduction. Although the emplacement of the batholiths and the regional metamorphic belts, and the mass balance in subduction zones are not well constrained at present, the episodic event associated with ridge subduction is thought to be essential for net growth of arcs and continental margins, as well as for the long-term heat balance in subduction zones.  相似文献   

15.
The variation and distribution of temperature and water moisture in the seasonal frozen soil is an important factor in the study of both the soil water cycle and heat balance within the source region of the Yellow River, especially under the different conditions of vegetation coverage. In this study, the impact of various degrees of vegetation coverage on soil water content and temperature was assessed. Soil moisture (θ v) and soil temperature (T s) were monitored on a daily basis. Measurements were made under different vegetation coverage (95, 70–80, 40–50 and 10%) and on both thawed and frozen soils. Contour charts of T s and θ v as well as a θ vT s coupling model were developed in order to account for the influence of vegetation cover and the interaction between T s and θ v. It was observed that soil water content affected both the overall range and trend in the soil temperature. The regression analysis of θ v versus T s plots indicated that the soil freezing and thawing processes were significantly affected by vegetation cover changes. Vegetation coverage changes also caused variations in the θ vT s interaction. The effect of soil water content on soil temperature during the freezing period was larger than during the thawing period. Moreover, the soil with higher vegetation coverage retained more water than that with lower coverage. In the process of freezing, the higher vegetation coverage reduced the rate of the reduction in the soil temperature because the thermal capacity of water is higher than that of soil. Areas with higher vegetation coverage also functioned better for the purpose of heat-insulating. This phenomenon may thus play an important role in the environmental protection and effective uses of frozen soil.  相似文献   

16.
The metamorphic evolution of a key sector of the western Mediterranean internal Alpine orogenic belt (southern Calabrian Peloritani Orogen) is identified and described by means of PT pseudosections calculated for selected metapelite specimens, showing evidence of multi-stage metamorphism.Attention focused on the two lowermost basement nappes of the Aspromonte Massif (southern Calabria), which were differently affected by poly-orogenic multi-stage evolution. After a complete Variscan orogenic cycle, the upper unit (Aspromonte Peloritani Unit) was involved in a late-Alpine shearing event. In contrast, the several underlying metapelite slices, here grouped together as Lower Metapelite Group, show exclusive evidence of a complete Alpine orogenic cycle.In order to obtain reliable PT constraints, an integrated approach was employed, based on: a) garnet isopleth thermobarometry; and b) theoretical predictions of the PT stability fields of representative equilibrium assemblages. This approach, which takes into account the role of the local equilibrium volumes in controlling textural developments, yielded reliable information about PT conditions from early to peak metamorphic stages, as well as estimates of the retrograde trajectory in the pseudosection PT space.According to inferred detailed PT paths, the evolution of the Aspromonte Peloritani Unit is characterised by a multi-stage Variscan cycle, subdivided into an early crustal thickening stage with PT conditions ranging from 0.56 ± 0.05 GPa at 570 ± 10 °C to 0.63–0.93 GPa at 650–710 °C (peak conditions) and evolving to a later crustal thinning episode in lower PT conditions (0.25 GPa at 540 °C), as documented by the retrograde trajectory.Conversely, the prograde evolution of the rocks of the Lower Metapelite Group shows evidence of a HP-LT early Alpine multi-stage cycle, with PT evolving from 0.75–0.90 GPa at 510–530 °C towards peak conditions, with pressure increasing northwards from 1.12 ± 0.02 GPa to 1.24 ± 0.02 GPa, and temperatures of 540–570 °C.A late-Alpine mylonitic overprint affected the rocks of both the Aspromonte Peloritani Unit and the Lower Metapelite Group. This overprint was characterised by an initial retrograde decompression trajectory (0.75 ± 0.05 GPa at 570–600 °C), followed by a joint cooling history, ranging from 0.38 ± 0.14 at temperature from 450 to 520 °C.These inferred results were then used: a) to interpret the Lower Metapelite Group as a single crystalline basement unit exclusively affected by a complete Alpine orogenic cycle, according to the very similar features of PT paths, comparable petrography and analogous structural characteristics; b) as a tool for more reliable correlations between the Aspromonte Massif, the other Calabrian terranes and the north African Orogenic Complexes. They may therefore consider a contribution to the geodynamic modelling of the western Mediterranean.  相似文献   

17.
As a part of the MONTBLEX-90 observational programme, Kytoon and Doppler sodar observations were taken at Kharagpur. These data are analysed to study the turbulent characteristics of the atmospheric boundary layer in terms of stability, temperature structure function (C T 2 ) and velocity structure function (C v 2 ).C T 2 follows aZ −4/3 law on most of the days, whereas the variation ofC V 2 is not systematic.C V 2 andC T 2 values are found to vary between 10−5−10−1 m4/3s−2 and 10−5−10−2°C2 m−2/3 respectively.  相似文献   

18.
Metamorphic decarbonation reactions and volcanic degassing lead to significant influx of CO2, a major greenhouse gas, into the ocean-atmosphere system from the solid Earth. Here we present quantitative estimates on CO2 derived through metamorphic degassing during ultrahigh-temperature (UHT) metamorphism in the Neoproterozoic through the mineralogical and geological analyses of the UHT decarbonation. Our computations show that an extra flux of CO2 was added to the atmosphere through a Himalayan scale UHT metamorphism to the extent of 6 × 1016 to 3.0 × 1018 mol/my, for a duration of 10 my. A calculation of the impact of the extra CO2 influx to the global mean temperature in the context of carbon cycle and greenhouse effect of CO2 shows that at the peak influx stage, the steady state temperature would be raised by 4 °C from 15 °C and by 13 °C from 4 °C. Our results have important bearing in evaluating the mechanism of melting and the duration of the Snowball Earth. Our estimate of the maximum degassing rate during UHT metamorphism suggests that the duration of the Marinoan snowball Earth was probably shorter, and the recovery from an ice-covered Earth to ocean-covered Earth was faster than previous estimates.  相似文献   

19.
Predictions of rainfall-induced fast-moving mass flow and/or debris flows require better knowledge of the mechanism controlling the debris discharge of slopes in debris source areas. A series of rainfall tests on 0.32 m-deep, 0.7 m-high, 1.35 m-wide sandy slopes resting on a bi-linear impermeable rigid base was performed. Soil moisture content and solid discharge measurements were performed to gain insights into the rainfall-induced retrogressive slope failure. The solid (or debris) discharge is a result of the wash-out of the fluidized slope toe by the interflow along the soil–bedrock interface. Characteristics of the failure process for the slopes are represented by mass wasting curves or ‘solid discharge (Qs) vs. time (t)’ curves which are functions of the rainfall intensity and/or the cumulative rainfall. The mass wasting curves have inflection points representing transitions from minor toe failures into remarkable retrogressive failures. The first inflection point of the soil moisture (ω) vs. t curve measured at the soil–bedrock interface signaling the arrival of the descending ‘wet front’, may serve as a precursor for predicting the onset of an abrupt solid discharge induced by shallow slope failures. The time of peak water content measured at the soil–bedrock interface may approximate the time of 5% total solid volume discharge. Up to the time of 5% of total slope volume discharge, a fully saturated state (Sr  100%) was never observed at the 0.2 m-below-surface zone; however, it was observed along the soil–bedrock interface at near-toe zone of the slope, regardless of the intensity of rainfall investigated. Retrogressive failures were essentially associated with nonuniformly distributed water content in the slope. For both the 0.2 m-below-surface zone and the soil–bedrock interface, a more uniform distribution of Sr along the full height of the slope was found for slopes subjected to high rainfall intensities of 47 and 65 mm/h than that for the slope subjected to a low rainfall intensity of 23 mm/h. At the inflection point of the Qs vs. t curve and 5% of total solid volume discharge, values of Sr at a certain distance from the toe for the soil–bedrock interface were higher than those measured at the same distance from the toe for the 0.2 m-below-surface zone, indicating the effect of infiltration-induced interflow along the soil–bedrock interface and its effects on the fluidization of the slope toe and the retrogressive failure of the slope.  相似文献   

20.
We have studied the paleomagnetism of the middle Cretaceous Iritono granite of the Abukuma massif in northeast Japan together with 40Ar–39Ar dating. Paleomagnetic samples were collected from ten sites of the Iritono granite (102 Ma 40Ar–39Ar age) and two sites of its associated gabbroic dikes. The samples were carefully subjected to alternating field and thermal demagnetizations and to rock magnetic analyses. Most of natural remanent magnetizations show mixtures of two components: (1) H component, high coercivity (Bc > 50–90 mT) or high blocking temperature (Tb > 350–560 °C) component and (2) L component, relatively low Bc or low Tb component. H component was obtained from all the 12 sites to give a mean direction of shallow inclination and northwesterly declination (I = 29.9°, D = 311.0°, α95 = 2.7°, N = 12). This direction is different from the geocentric axial dipole field at the present latitude (I = 56.5°) and the typical direction of the Cenozoic remagnetization in northeast Japan. Since rock magnetic properties indicate that the H component of the Iritono granite is carried mainly by magnetite inclusions in plagioclase, this component probably retains a primary one. Thus the shallow inclination indicates that the Abukuma massif was located at a low latitude (16.1 ± 1.6°N) about 100 Ma and then drifted northward by about 20° in latitude. The northwesterly deflection is attributed mostly to the counterclockwise rotation of northeast Japan due to Miocene opening of the Japan Sea. According to this model, the low-pressure and high-temperature (low-P/high-T) metamorphism of the Abukuma massif, which has been well known as a typical location, would have not occurred in the present location. On the other hand, the L component is carried mainly by pyrrhotite and its mean direction shows a moderate inclination and a northwesterly declination (I = 42.8°, D = 311.5°, α95 = 3.3°, N = 9). Since this direction is intermediate between the H component and early Cenozoic remagnetization in northeast Japan, some thermal event would have occurred at lower temperature than pyrrhotite Curie point ( 320 °C) during the middle Cretaceous to early Cenozoic time to have resulted in partial remagnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号