首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
Carbon isotope chemostratigraphy has been used worldwide for stratigraphic correlation.In this study,δ13Ccarb values are estimated for the Early Cambrian Sugaitebulake section in the Tarim Basin,Xinjiang Autonomous Region,China.As a result,one positive and two negative carbon isotope excursions in the studied section were iden-tified.The δ13Ccarb values reached the maximum negative excursion(N1:-12.39‰) at the basal of the Yuertusi For-mation,and then increased to P1.After P1,δ13Ccarb values sharply decreased to about-7.06‰(N2) in the studied section.The pattern of δ13Ccarb in the Early Cambrian is comparable to the synchronous records of other sections,such as the Laolin section,the Xiaotan section and the Anjiahe section of the Yangtze Platform.It is concluded that the Early Cambrian Yuertusi Formation from the Tarim Basin is within the Nemakit-Daldynian stage,and the lower strata of the Yuertusi Formation may belong to the Zhujiaqing Formation(Meishucun Formation) of the Yangtze Platform.The Ediacaran/Cambrian boundary of the Tarim Block should be located in cherts and phosphorites suc-cessions at the basal of the Yuertusi Formation.The δ13Ccarb negative excursion N1 is just across the PC/C boundary,and may be related to certain biomass extinction due to anoxic sedimentary environment,transgression and/or the oceanic overturn.The second δ13Ccarb negative excursion N2 may account for the sea-level falling in the Early Cam-brian.  相似文献   

2.
High resolution carbon isotope analyses of carbonate and organic carbon from Meishan, South China showed that the variation of δ13Ccarb is marked by three large positive excursions during the Changhsingian (end-Permian). Carbon isotope stratigraphy during this stage shows three cyclic intervals in δ13Ccarb, with two cycles corresponding to the lower (Paleofusulinid minima Zone) and one corresponding to the upper Changhsingian (P. sinensis Zone). The large positive δ13Ccarb excursions indicate episodes of enhanced burial of isotopically light or-ganic carbon, presumably in response to deep-water anoxia episodically extending into shallow water with the rise of sea level. The organic carbon during the Changhsingian is distinguished into two groups, and the δ13Corg of each group parallels (separately) the more detailed profile of δ13Ccarb, strongly showing that the values of fractionation Δ13Ccab-org remain relatively constant, with only two intervals with anomaly. The enhanced fractionation Δ13Ccab-org with large negative δ13Corg excursions apparently indicates significant inputs from sulfide-oxidizing bacteria and green sulfur bacteria, notably at bed 24 just predating mass extinction. Our evidence appears to support that the ex-tended euxinic water is possible for the main pulse of mass extinction at the end-Permian.  相似文献   

3.
The global Hangenberg Crisis or Hangenberg Extinction is a mass extinction near the Devonian–Carboniferous boundary. Comprehensive research of petrology and geochemistry on the Devonian–Carboniferous boundary, as exposed in the Nanbiancun auxiliary stratotype section, South China, elucidates paleoenvironmental changes and controls on marine strontium (87Sr/86Sr) and carbonate carbon (δ13Ccarb) isotopes during the Hangenberg Crisis. The new 87Sr/86Sr data reveal a regression in the Middle Siphonodella praesulcata Zone, while the Hangenberg Extinction was occurring in South China. Moreover, the δ13Ccarb data records a negative excursion near the base of the Middle Siphonodella praesulcata Zone that may have been connected with the Hangenberg Extinction. A positive δ13Ccarb excursion, corresponding with the Upper Siphonodella praesulcata Zone, may reflect the effects of a vigorous biological pump. The magnitude of the Hangenberg Carbon Isotopic Excursion in peak δ13carb values and δ13Ccarb gradient in carbonate Devonian–Carboniferous boundary sections of the South China Craton during the Hangenberg Crisis, are a function of depositional water depth and distance from the shore. The carbon cycling during the Hangenberg Carbon Isotopic Excursion had a much stronger impact on oceanic surface waters than on the deep ocean and the δ13Ccarb gradient of local seawater was likely caused by enhanced marine productivity, associated with biological recovery in platform sediments during the Hangenberg Crisis.  相似文献   

4.
The ultra-deep Cambrian System in the Tarim Basin is an important field for petroleum exploration, while fine division of the Cambrian strata remains controversial. In recent years, carbon isotope stratigraphy of the Cambrian System has been established and widely used. Here, we report an integrated profile of carbonate and organic carbon isotopic values (δ13Ccarb and δ13Corg) from cuttings of the Tadong2 Well in the eastern Tarim Basin. Three carbon isotope anomalies of BACE, ROECE and SPICE were recognized on the δ13Ccarb profile. Three apogees and a nadir on the δ13Corg profile and the onset of ROECE on the δ13Ccarb profile were suggested as boundaries of the present four series of the Cambrian System. Suggested boundaries are easily identifiable on the gamma logging profile and is consistent with the previous division scheme, based on biostratigraphic evidence in outcrop sections. Abnormal carbon cycle perturbations and organic carbon burials during the BACE and SPICE events might be related to the reduction and expansion of a huge dissolved organic carbon reservoir in the deep ocean of the ancient Tarim Basin.  相似文献   

5.
In order to better understand the paleoceanographic sedimentary environment of the Lower Cambrian black shales extensively distributed in South China, outcropped along the present southern margin of the Yangtze Platform with a width of ca. 200-400 km and a length of more than 1500 km, we present new paired δ13C data on carbonates (δ13Ccarb) and associated organic carbon (δ13Corg) and δ34Spy data on sedimentary pyrite in black shales from three sections (Ganziping, Shancha and Xiaohekou) located in NW Hunan, China. In these sections, a total of 82 Lower Cambrian black shale samples have δ13Ccarb values ranging from -4.0‰ to 1.7‰ with an average value of -2.1‰, and δ13Corg values between -34.9‰ and -28.8‰, averaging -31.9‰. The ?34Spy values of 16 separated sedi-mentary pyrite samples from the black shales vary between +10.2‰ and +28.7‰ with an average value of +19.5‰, presenting a small isotope fractionation between seawater sulfate and sedimentary sulfide. The model calculation based on credible data from the paired analyses for δ13Ccarb and δ13Corg of 11 black shale samples shows a high CO2 concentration in the Early Cambrian atmosphere, about 20 times higher than pre-industrial revolution values, consis-tent with previous global predictions. The small sulfur isotope fractionation between seawater sulfate and sedimen-tary sulfide in black shales, only 15.5‰ on average, implies a low sulfate level in the Early Cambrian seawater around 1 mmol. In combination with a high degree of pyritization (DOP) in the black shales, it is suggested that sul-fidic deep-ocean water could have lingered up to the earliest Cambrian in this area. The black shale deposition is envisaged in a stratified marine basin, with a surface euphotic and oxygenated water layer and sulfidic deeper water, controlled by a continental margin rift.  相似文献   

6.
The Neoproterozoic Doushantuo Formation on the Yangtze Platform, South China, documents a sedimentary succession with different sedimentary facies from carbonate platform to slope and to deep sea basin, and hosts one of the world-class phosphorite deposits. In these strata, exquisitely preserved fossils have been discovered: the Weng'an biota. This study presents carbon isotope geochemistry which is associated paired carbonate and organic matter from the Weng'an section of a carbonate platform (shelf of the Yangtze Platform, Guizhou Province) from the Songtao section and Nanming section of a transition belt (slope of the Yangtze Platform, Guizhou Province) and from the Yanwutan section (basin area of the Yangtze Platform, Hunan Province). Environmental variations and bio-events on the Yangtze Platform during the Late Neoproterozoic and their causal relationship are discussed. Negative carbon isotope values for carbonate and organic carbon (mean δ^13Corg = -35.0‰) from the uppermost Nantuo Formation are followed by an overall increase in δ^13C up-section. Carbon isotope values vary between -9.9‰ and 3.6‰ for carbonate and between -35.6‰ and -21.5‰ for organic carbon, respectively. Heavier δ^13Ccarb values suggest an increase in organic carbon burial, possibly related to increasing productivity (such as the Weng'an biota). The δ^13C values of the sediments from the Doushantuo Formation decreased from the platform via the slope to basin, reflecting a reduced environment with minor dissolved inorganic carbon possibly due to a lower primary productivity. It is deduced that the classical upwelling process, the stratification structure and the hydrothermal eruption are principally important mechanisms to interpret the carbon isotopic compositions of the sediments from the Doushantuo Formation.  相似文献   

7.
Important ecological changes of the Earth(oxidization of the atmosphere and the ocean) increase in nutrient supply due to the break-up of the super continent(Rodinia) and the appearance of multi-cellular organisms(macroscopic algae and metazoan) took place in the Ediacaran period,priming the Cambrian explosion.The strong perturbations in carbon cycles in the ocean are recorded as excursions in carbonate and organic carbon isotope ratio(δ~(13)C_(carb) and δ~(13)C_(org)) from the Ediacaran through early Cambrian periods.The Ediacaran-early Cambrian sediment records of δ~(13)C_(carb) and δ~(13)C_(org),obtained from the drill-core samples in Three Gorges in South China,are compared with the results of numerical simulation of a simple one-zone model of the carbon cycle of the ocean,which has two reservoirs(i.e.,dissolved organic carbon(DOC) and dissolved inorganic carbon(DIC).The fluxes from the reservoirs are assumed to be proportional to the mass of the carbon reservoirs.We constructed a model,referred to here as the Best Fit Model(BFM),which reproduce δ~(13)C_(carb) and δ~(13)C_(org) records in the Ediacaran-early Cambrian period noted above.BFM reveals that the Shuram excursion is related to three major changes in the carbon cycle or the global ecological system of the Earth:(1) an increase in the coefficient of remineralization by a factor of ca.100,possibly corresponding to a change in the dominant metabolism from anaerobic respiration to aerobic respiration,(2) an increase of carbon fractionation index from 25‰ to 33‰,possibly corresponding to the change in the primary producer from rock-living cyanobacteria to free-living macro algae,and(3) an increase in the coefficient of the organic carbon burial by a factor of ca.100,possibly corresponding to the onset of a biological pump driven by the flourishing metazoan and zooplankton.The former two changes took place at the start of the Shuram excursion,while the third occurred at the end of the Shuram excursion.The other two excursions are explained by the tentative decrease in primary production due to cold periods,which correspond to the Gaskiers(ca.580 Ma) and Bikonor(ca.542 Ma) glaciations.  相似文献   

8.
The Permian global mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region should display certain responses during the evolution of carbon isotope. In this paper, the Permian carbon isotopic evolution in the Upper Yangtze region is examined through systematic stratotype section sampling and determination of 13C in the northern Upper-Yangtze regions and Southern China. Additionally, the carbon isotopic evolution response characteristics of the geological events in the region are evaluated, comparing the sea-level changes in the Upper Yangtze region and the global sea-level change curves. Results of this study indicated that the carbon isotopic curves of the Permian in the Upper Yangtze region are characterized by higher background carbon-isotope baseline values, with three distinct negative excursions, which are located at the Middle–Late Permian boundary and the late period and end of the Late Permian. The three distinct negative excursions provide an insightful record of the global Permian mass extinction events and the eruption of the Emeishan flood basalts in the Upper Yangtze region. The first negative excursion at the Middle–Late Permian boundary reflected the eruption of the Emeishan flood basalts, a decrease in sea level, and biological extinction events of different genera in varying degrees. The second negative excursion in the Late Permian included a decrease in sea level and large-scale biological replacement events. The third negative excursion of the carbon isotope at the end of the Permian corresponded unusually to a rise rather than a decrease in sea level, and it revealed the largest biological mass extinction event in history.  相似文献   

9.
Secular variations of carbon isotopic composition of organic carbon can be used in the study of global environmental variation, the carbon cycle, stratigraphic delimitation, and biological evolution, etc. Organic carbon isotopic analysis of the Nangao and Zhalagou sections in eastern Guizhou reveals a negative excursion near the Precambrian-Cambrian boundary that correlates with a distinct carbonate carbon isotopic negative excursion at this boundary globally. Our results also demonstrate that several alternating positive and negative shifts occur in the Meishucunian, and an obvious negative anomaly appears at the boundary between the Meishucunian and Qiongzhusian. The isotope values are stable in the middle and lower parts but became more positive in the upper part of the Qiongzhusian. Evolution of organic carbon isotopes from the two sections in the deepwater facies can be well correlated with that of the carbonate carbon isotopes from the section in the shallow water facies. Integrated with other stratigraphic tools, we can precisely establish a lower Cambrian stratigraphic framework from shallow shelf to deep basin of the Yangtze Platform.  相似文献   

10.
This work deals with the evolution of carbon isotope composition in the Luoyixi (罗依溪) Section, a candidate of the Global Standard Stratotype-section and Point (GSSP), defining the base of the as-yet-undefined seventh stage of Cambrian System at the first appearance of the cosmopolitan agnostoid Lejopyge laevigata. This level is favored in a vote of International Subcommission on Cambrian Stratigraphy (ISCS) as the biohorizon for defining the base of a global stage. Two hundred and sixty-four samples for carbon and oxygen isotope analysis have been collected from the carbonate successions at an interval of 0.25 to 0.5 m in this section. Results of the carbon isotope data exhibit a remarkable disciplinarian trend. The pattern of the carbon isotope evolution is gently undulant with a relatively long period during the underlying Drumian Stage, and then the values of δ13C fluctuate sharply with a short period in provisional seventh stage. The onset of sharp fluctuation in the δ13C values begins at the proposed GSSP level, defining the base of the global seventh stage, where δ13C values change from a gentle trend to a sharp trend. Distinct covariant-relationships among δ13C, δ13O, and sea level fluctuations suggest that a warming change in paleoclimate took place during the early global seventh stage, which led to a positive shift in δ13C values.  相似文献   

11.
In order to investigate the migration and accumulation efficiency of hydrocarbon natural gas in the Xujiaweizi fault depression, and to provide new evidence for the classification of its genesis, a source rock pyrolysis experiment in a closed system was designed and carried out. Based on this, kinetic models for describing gas generation from organic matter and carbon isotope fractionation during this process were established, calibrated and then extrapolated to geologic conditions by combining the thermal history data of the Xushen-1 Well. The results indicate that the coal measures in the Xujiaweizi fault depression are typical "high-efficiency gas sources", the natural gas generated from them has a high migration and accumulation efficiency, and consequently a large-scale natural gas accumulation occurred in the area. The highly/over matured coal measures in the Xujiaweizi fault depression generate coaliferous gas with a high δ^13C1 value (〉 -20‰) at the late stage, making the carbon isotope composition of organic alkane gases abnormally heavy. In addition, the mixing and dissipation through the caprock of natural gas can result in the negative carbon isotope sequence (δ^13C1 〉δ^13C2 〉δ^13C3 〉δ^13C4) of organic alkane gases, and the dissipation can also lead to the abnormally heavy carbon isotope composition of organic alkane gases. As for the discovery of inorganic nonhydrocarbon gas reservoirs, it can only serve as an accessorial evidence rather than a direct evidence that the hydrocarbon gas is inorganic. As a result, it needs stronger evidence to classify the hydrocarbon natural gas in the Xujiaweizi fault depression as inorganic gas.  相似文献   

12.
This paper presents new geological and geochemical data from the Shuanghu area in northern Tibet, which recorded the Early Toarcian Oceanic Anoxic Event. The stratigraphic succession in the Shuanghu area consists mostly of grey to dark-colored alternating oil shales, marls and mudstones. Ammonite beds are found at the top of the Shuanghu oil shale section, which are principally of early Toarcian age, roughly within the Harplocearasfalciferrum Zone. Therefore,the oil shale strata at Shuanghu can be correlated with early Toarcian black shales distributing extensively in the European epicontinental seas that contain the records of an Oceanic Anoxic Event. Sedimentary organic matter of laminated shale anomalously rich in organic carbon across the Shuanghu area is characterized by high organic carbon contents, ranging from 1.8% to 26.1%. The carbon isotope curve displays the δ^13C values of the kerogen (δ^13Ckerogen) fluctuating from -26.22 to -23.53‰ PDB with a positive excursion close to 2.17‰, which, albeit significantly smaller, may also have been associated with other Early Toarcian Oceanic Anoxic Events (OAEs) in Europe. The organic atomic C/N ratios range between 6 and 43, and the curve of C/N ratios is consistent with that of the δ^13Ckerogen values. The biological assemblage,characterized by scarcity of benthic organisms and bloom of calcareous nannofossils (coccoliths), reveals high biological productivity in the surface water and an unfavorable environment for the benthic fauna in the bottom water during the Oceanic Anoxic Event. On the basis of organic geochemistry and characteristics of the biological assemblage, this study suggests that the carbon-isotope excursion is caused by the changes of sea level and productivity, and that the black shale deposition, especially oil shales, is related to the bloom and high productivity of coccoliths.  相似文献   

13.
Although δ~(13)C data(either δ~(13)C_(carb) or δ~(13)C_(org)) of many Triassic–Jurassic(T-J) sections have been acquired,pairedδ~(13)C_(carb)and δ~(13)C_(org)from continuous T-J carbonate sections,especially in eastern Tethys,have been scarcely reported.This study presents paired and decoupled δ~(13)C_(carb)and δ~(13)C_(org)data from a continuous T-J carbonate section in Wadi Naqab.The T-J Wadi Naqab carbonate section,located in United Arab Emirates,Middle East,represents tropical and shallow marine sedimentation in eastern Tethys.At the T-J boundary interval,an initial carbon isotope excursion(CIE) is observed with different magnitude of isotope excursion and timing inδ~(13)C_(carb)and δ~(13)C_(org),while subsequently a positive CIE is only distinct in δ~(13)C_(carb).Based on petrological,carbon isotope,Rock-Eval and elemental analyses,the δ~(13)C_(carb)is thought to record marine inorganic carbon,and the δ~(13)C_(org) to record terrigenous organic carbon.Therefore,the paired δ~(13)C_(carb)and δ~(13)C_(org)herein potentially document simultaneous changes in T-J atmospheric and marine settings of eastern Tethys.Their decoupled behavior may likely be caused by different changes or evolution of carbon pool between marine and atmospheric settings.The initial CIE present in both δ~(13)C_(carb)and δ~(13)C_(org)may indicate influence of isotopically light carbon release related to CAMP activity in both atmospheric and marine settings.The following positive CIE only in δ~(13)C_(carb)suggests relatively steady carbon isotope composition in atmosphere,but enhanced burial of isotopically light carbon in marine settings.Furthermore,the T-J carbonates in the studied section were possibly deposited in normal and oxic shallow marine conditions.Global correlation based on the Wadi Naqab section and other T-J sections suggests spatially different T-J environmental parameters:in eastern Tethys and western Panthalassa,oxic condition,lacking organic-rich sediment,weaker ocean acidification and less influence of isotopically light carbon are more prevalent;in western Tethys and eastern Panthalassa,oxygen-depleted condition,black shales,stronger acidification and heavier influence of isotopically light carbon are more prevalent.These differences may be related to spatial distance from the CAMP or to different paleogeography.  相似文献   

14.
This paper reports a Lower Triassic carbon isotope profile from the North Pingdingshan Section in Chaohu, Anhui Province, China, which was stituated in a deep part of the Lower Yangtze carbonate rapm. The δ(^13C) excursion shows two periods from the Permian-Triassic boundary to the lower Spathian substage, corresponding to the ecosystem undergoing evolution and recovery after the end-Permian mass extinction and related events.The first period starts at the δ(^13C) depletion caused by the mass extinction and evolves with a gradual δ(^13C) increase resulting from the development of some disaster taxa during the Induan. The strong Smithian δ(^13C) depletion in the second period might be formed by the collapse of the disaster ecosystem and the biotic recovery occurred with the explosive increase of bioproductivity in the Spathian. Thus the δ(^13C) excursion in the Lower Triassic expresses patterns of biotic evolution and recovery during the eratic ecosystem that followed the great end-Permian mass extinction.  相似文献   

15.
Carbon isotopes of natural gases are controlled not only by source and mature effect,but also by accumulating (leakage and mixing)effect.The gases,distributed in the three paleo-uplifts,Tazhong,Tabei and Bachu in the Tarim Basin,are generated mainly from Cambrian and Lower Ordovician hydrocarbon-source rocks.Being under good preservation conditions,gas pools in the Tzahong region experienced a long accumulation period.rsulting in a successive gas accumulation region in this region.The gas carbon isotope values are more negative than those in other regions because of the strong accumulating effect.The tabei and Mazhatage regions have poor preservation conditions,the gas pools are formed in a short accumulation period,and the gas carbon isotope values are more positive.This is called the transiftion-stage gas accumulation region.Because of involvement of low mature gas.even biogenic gas from UpperMiddle Ordovician,some gas in ordovician reservoirs on the northern slope of the Tazhong uplift is characterized by much more negative δ13C1,The δ13C2-δ13C1 value is an effective index to measure the gas maturity of the main body in a gas pool,Combining δ13C2-δ13C1 with δ13c1 and δ13C2,the effects described above can be explained very well,results of our study show that the gas maturity for the Mazhatage region is the highest in the craton basin.followed by tabei,Gases in the Tazhong area are high-over mature gases though the gas carbon isotope values are highly negative.  相似文献   

16.
<正>This study of the Paleocene—Eocene boundary within a foreland basin of southern Tibet, which was dominated by a carbonate ramp depositional environment,documents more complex environmental conditions than can be derived from studies of the deep oceanic environment.Extinction rates for larger foraminiferal species in the Zongpu-1 Section apply to up to 46%of the larger foraminiferal taxa. The extinction rate in southern Tibet is similar to rates elsewhere in the world,but it shows that the Paleocene fauna disappeared stepwise through the Late Paleocene,with Eocene taxa appearing abruptly above the boundary.A foraminifera turnover was identified between Members 3 and 4 of the Zongpu Formation—from the Miscellanea—Daviesina assemblage to an Orbitolites—Alveolina assemblage.The Paleocene and Eocene boundary is between the SBZ 4 and SBZ 5,where it is marked by the extinction of Miscellanea miscella and the first appearance of Alveolina ellipsodalis and a large number of Orbitolites. Chemostratigraphically,theδ~(13)C values from both the Zongpu-1 and Zongpu-2 Sections show three negative excursions in the transitional strata,one in Late Paleocene,one at the boundary,and one in the early Eocene.The second negative excursion ofδ~(13),which is located at the P—E boundary,coincides with larger foraminifera overturn.These faunal changes and the observedδ~(13)C negative excursions provide new evidence on environmental changes across the Paleocene—Eocene boundary in Tibet.  相似文献   

17.
Carbon isotope (δ13Corg) analyses of non-marine clastic rocks and neritic carbonates and black shales spanning the Silurian/Devonian transition are compared from two richly fossiliferous sequences in Qujing of East Yunnan and Zoige of Sichuan, South China. The two sections, Xishancun and Putonggou sections in South China, reveal positive δ13Corg shifts happening in the Upper Pridoli and Lower Devonian and reaching peak values as heavy as ?25.2‰ (Xishancun) and ?19.9‰ (Putonggou) in the lowermost Lochkovian following the first occurrence of the thelodont Parathelodus and the conodont Icriodus woschmidti woschmidti (only in Putonggou Section and together with Protathyris-Lanceomyonia brachiopod fauna). These results replicate a globally known positive shift in δ13Corg from the uppermost Silurian to the lowermost Devonian. The δ13Corg variations across the Silurian/Devonian Boundary (SDB) at the two sections in South China exhibit a shift in carbon isotopic composition similar to the detailed SDB curves from the borehole Klonk-1 drilled at top of the Klonk Global Standard Stratotype-Section and Point (GSSP) in the Prague Basin, Czech Republic. In addition, four microvertebrate assemblages, including the Liaojiaoshan, Xishancun, Yanglugou and Xiaputonggou assemblages, are recognized from the Silurian/Devonian transition exposed in the Xishancun and Putonggou sections, respectively. The results from both carbon isotope stratigraphy and microvertebrate assemblage sequences suggest that the SDB in South China is located at the base of the Xishancun Formation (between sample QX-20 and sample QX-21) in the Xishancun Section and the lower part of the Xiaputonggou Formation (between sample ZP-09 and sample ZP-10) in the Putonggou Section. The isotopic trend for organic carbon together with the changes of microvertebrate remains across the SDB can offer an approach to a potential correlation of the SDB from different sedimentary facies, which help to correlate the marine with non-marine deposits.  相似文献   

18.
Few global syntheses of oxygen and carbon isotope composition of pedogenic carbonates have been attempted,unlike marine carbonates.Pedogenic carbonates represent in-situ indicators of the climate conditions prevailing on land.The δ~(18)O and δ~(13)C values of pedogenic carbonates are controlled by local and global factors,many of them not affecting the marine carbonates largely used to probe global climate changes.We compile pedogenic oxygen and carbon isotopic data(N= 12,167) from Cretaceous to Quaternary-aged paleosols to identify potential trends through time and tie them to possible controlling factors.While discrete events such as the PaleoceneEocene Thermal Maximum are clearly evidenced,our analysis reveals an increasing complexity in the distribution of the δ~(18)O vs δ~(13)C values through the Cenozoic.As could be expected,the rise of C_4 plants induces a shift towards higher δ~(13)C values during the Neogene and Quaternary.We also show that the increase in global hypsometry during the Neogene plays a major role in controlling the δ~(18)O and δ~(13)C values of pedogenic carbonates by increasing aridity downwind of orographic barriers.Finally,during the Quaternary,an increase of 3‰ inδ~(18)O values is recorded both by the pedogenic carbonates and the marine foraminifera suggesting that both indicators may be used to track global climate signal.  相似文献   

19.
This study dealt with the distribution characteristics of soil organic carbon (SOC) and the variation of stable carbon isotopic composition (δ^13C values) with depth in six soil profiles, including two soil types and three vegetation forms in the karst areas of Southwest China. The δ^13C values of plant-dominant species, leaf litter and soils were measured using the sealed-tube high-temperature combustion method. Soil organic carbon contents of the limestone soil profiles are all above 11.4 g/kg, with the highest value of 71.1 g/kg in the surface soil. However, the contents vary between 2.9 g/kg and 46.0 g/kg in three yellow soil profiles. The difference between the maximum and minimum δ^13C values of soil organic matter (SOM) changes from 2.2‰ to 2.9‰ for the three yellow soil profiles. But it changes from 0.8‰ to 1.6‰ for the limestone soil profiles. The contrast research indicated that there existed significant difference in vertical pattems of organic carbon and δ^13C values of SOM between yellow soil and limestone soil. This difference may reflect site-specific factors, such as soil type, vegetation form, soil pH value, and clay content, etc., which control the contents of different organic components comprising SOM and soil carbon turnover rates in the profiles. The vertical variation patterns of stable carbon isotope in SOM have a distinct regional character in the karst areas.  相似文献   

20.
Paired organic and carbonate carbon isotope compositions of Late Permian Wujiaping (吴家坪) and Dalong (大隆) formations at Shangsi (上寺), Northeast Sichuan (四川) were analyzed by MAT 251. An abrupt negative excursion in the two isotope records was observed in the middle part of Dalong Formation, in association with a drop in the carbon isotope difference of the two records and an increase of total organic carbon (TOC) content. The negative drop of the paired carbon isotope records issuggestive of the input of 12C-enriched CO2. The molecular ratios of pristane to phytane and dibenzothiophene to phenanthrene indicate the anoxic condition in this interval. The enhanced TOC content is indicative of the elevated preservation of organic matter due to the anoxic condition. These isotopic and organic geochemical data probably infer the occurrence of the upwelUng in this interval. The additional contribution of volcanism activity observed in South China cannot be excluded to the input of 12C-enriched CO2 and the negative shifts in carbon isotope composition of bulk organic matter and carbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号