首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice is the major staple food of Asia, and an important source of employment and income in rural areas, particularly in low-income countries. Research has contributed significantly in achieving food security by increasing the yield potential of rice in irrigated systems, reducing the crop maturity period and achieving yield stability by developing resistance against major insects and diseases in the modern high-yielding varieties. Poverty is, however, still extensive in fragile rainfed rice ecosystems where rice yield has remained low, as scientists have yet to develop high-yielding varieties resistant to abiotic stresses and problem soils. Rice production needs to be increased by another 70% over the next 30 years to meet growing food needs. This has to be achieved with less land, less water, and less labor to accommodate the demand for these inputs from the expanding nonagricultural sectors. The challenge to the rice research community is to make further shifts in yield potential of rice for the irrigated systems, to close the yield gaps in the rainfed systems through developing resistance of high yielding varieties to abiotic stresses, and greater understanding of the interactions between genotypes and environment, developing durable resistance against pests and diseases to reduce farmers' dependence on harmful agrochemicals, and to increase efficiency in the use of water, labor and fertilizers. As further intensification of rice cultivation is inevitable, scientists must understand the negative environmental side-effects of increasing rice productivity, to develop appropriate mitigation options.  相似文献   

2.
Two intensive aquaculture systems are described in which high yields are obtained for relatively low inputs of land area, water and supplementary feed. The one is a polyculture of a number of fish species in deep cotton irrigation reservoires (5–7 m deep) in Israel. The large volume of water in these reservoirs improves the oxygen regime and dilutes catabolites excreted by the fish. This allows the increase of fish density to 10,000–18,000 fish ha–1. It also enables the increase of the resevoir's productivity by manuring with liberal amounts of animal wastes. Yields obtained in this system reach over 10 ton ha–1 yr–1 at very low feed conversion rates. The second system is practiced in Taiwan for the culture of red tilapia. Pond water is stirred mechanically by paddlewheels to create a gentle current around a central water outlet. This supplies ample oxygen and concentrates wastes in the center of the pond, from where it is removed twice daily, thus alleviating the build-up of catabolite concentration in the pond. Densities of fish amount to 215,000 to 430,000 fish ha–1, and the yields are accordingly high reaching more than 200 ton ha–1 yr–1. The ecological principles involved in these systems are discussed.  相似文献   

3.
We conducted a study of the biogeochemical cycle of silicon in a rice field in Camargue (France) in order to evaluate the role of biogenic silicon particles (BSi) in the cycle. Opal-A biogenic particles (phytoliths, diatoms…), which dissolve more rapidly than other forms of silicate usually present in soils, are postulated to represent the easiest bioavailable Si for rice. We found 0.03–0.06 wt.% of BSi in soils (mainly phytoliths). This value is lower than other values from the literature. Each year, the exportation of BSi from rice cultivation is 270 ± 80 kg Si ha− 1. We show that BSi input by irrigation is mostly composed of diatoms and we estimate it at 100 kg Si ha− 1 year− 1. This value is more than a third of the annual Si need for rice. The budget of the dissolved silicon (DSi) fluxes gives the following results: the atmospheric and irrigation inputs represents 1% and roughly 10%, respectively, of the annual need for rice; the drainage and infiltration outputs represent 17 ± 14 and 12 ± 9 kg Si ha− 1 year− 1, respectively; the balance of our budget shows that at least 170 kg Si ha− 1 year− 1 are exported from the soil. If we consider the soil BSi as the only source of dissolved silicon, this stock could be exhausted in 5 years.  相似文献   

4.
Modern varieties — Their real contribution to food supply and equity   总被引:1,自引:0,他引:1  
Gurdev S. Khush 《GeoJournal》1995,35(3):275-284
Green revolution technology, centered on high-yielding varieties, has revolutionized rice production since the late 1960's. These varieties are characterized by higher yield potential, better grain quality, shorter growth duration, multiple resistance to diseases and insects and tolerance to problem soils. High yielding varieties are now planted to 70% of the world's rice lands. Most countries in the Asian rice belt have become self sufficient in rice and some have exportable surpluses. The real prices of rice have declined in most countries. This price decline has benefitted the urban poor and rural landless. Labor requirement has also increased from higher intensity of cropping and resulted in growth of income of the rural landless workers. Availability of rice varieties with multiple resistance reduced the need for application of agrochemicals and facilitated the adoption of integrated pest management practices. The population of rice consumers is increasing at the rate of 2% annually. However the rate of growth of rice production has slowed to 1.2%. To reverse this trend, rice plant types with higher yield potential are being developed.  相似文献   

5.
Iron and manganese redox cycling in the sediment — water interface region in the Kalix River estuary was investigated by using sediment trap data, pore-water and solid-phase sediment data. Nondetrital phases (presumably reactive Fe and Mn oxides) form substantial fractions of the total settling flux of Fe and Mn (51% of Fetotal and 84% of Mntotal). A steady-state box model reveals that nondetrital Fe and Mn differ considerably in reactivity during post-depositional redox cycling in the sediment. The production rate of dissolved Mn (1.6 mmol m–2 d–1) exceeded the depositional flux of nondetrital Mn (0.27 mmol m–2 d–1) by a factor of about 6. In contrast, the production rate of upwardly diffusing pore-water Fe (0.77 mmol m–2 d–1) amounted to only 22% of the depositional flux of nondetrital Fe (3.5 mmol m–2 d–1). Upwardly diffusing pore-water Fe and Mn are effectively oxidized and trapped in the oxic surface layer of the sediment, resulting in negligible benthic effluxes of Fe and Mn. Consequently, the concentrations of nondetrital Fe and Mn in permanently deposited, anoxic sediment are similar to those in the settling material. Reactive Fe oxides appear to form a substantial fraction of this buried, non-detrital Fe. The in-situ oxidation rates of Fe and Mn are tentatively estimated to be 0.51 and 0.16–1.7 mol cm–3 d–1, respectively.  相似文献   

6.
The 36Cl dating method is increasingly being used to determine the surface-exposure history of Quaternary landforms. Production rates for the 36Cl isotopic system, a critical component of the dating method, have now been refined using the well-constrained radiocarbon-based deglaciation history of Whidbey and Fidalgo Islands, Washington. The calculated total production rates due to calcium and potassium are 91±5 atoms 36Cl (g Ca)−1 yr−1 and are 228±18 atoms 36Cl (g K)−1 yr−1, respectively. The calculated ground-level secondary neutron production rate in air, Pf(0), inferred from thermal neutron absorption by 35Cl is 762±28 neutrons (g air)−1 yr−1 for samples with low water content (1–2 wt.%). Neutron absorption by serpentinized harzburgite samples of the same exposure age, having higher water content (8–12 wt.%), is 40% greater relative to that for dry samples. These data suggest that existing models do not adequately describe thermalization and capture of neutrons for hydrous rock samples. Calculated 36Cl ages of samples collected from the surfaces of a well-dated dacite flow (10,600–12,800 cal yr B.P.) and three disparate deglaciated localities are consistent with close limiting calibrated 14C ages, thereby supporting the validity of our 36Cl production rates integrated over the last 15,500 cal yr between latitudes of 46.5° and 51°N. Although our production rates are internally consistent and yield reasonable exposure ages for other localities, there nevertheless are significant differences between these production rates and those of other investigators.  相似文献   

7.
Elemental and Sr–Nd isotopic results are presented for the early Mesozoic volcanic sequence (~172 Ma) in southern Jiangxi Province, South China. The sequence is voluminously composed of ~45% subalkaline basaltic rocks (group 1), <5% high-mg andesite–dacites (group 2) and ~50% rhyolites (group 3). The group 1 rocks are characterized by (La/Yb)cn = 3.8–7.2, Eu/Eu* = 0.65–1.15, Nb/La = 0.64–0.99, 87Sr/86Sr(t) = 0.70602~0.70822 and Nd(t) = –1.63 to +0.11, similar to those of an EMII-like source. The group 2 rocks have mg=0.42~0.60, SiO2=60.24~66.71%, MgO=2.65~ 5.54%, Ni=24~102 ppm and Cr=84~266 ppm, classified as high-mg andesitic rocks. These rocks are more enriched in LILEs and LREE with more significant negative Eu anomaly (0.63~0.79), are more depleted in HFSEs with Nb/La ratios of 0.40–0.56 and have lower Nd(t) (–9.44 to –7.78) and higher 87Sr/86Sr(t) (0.70985~0.71016), in comparison with the group 1 rocks. They most likely originated from metasomatised veins in the lithospheric mantle. The origination of the group 1 and group 2 magma suggests the development of a peridotite-plus-vein lithospheric mantle during early Mesozoic era beneath the interior of the Cathaysian block. The group 3 rhyolites are characterized by high SiO2 (72.75~77.97%), Zr (99~290 ppm), Hf (3.9~9.7 ppm) and Ga/Al (2.76~3.87) and significant Nb–Ta, Ba–Sr and P–Ti depletions. These rhyolites exhibit Sr–Nd isotopic compositions (87Sr/86Sr(t) = 0.70962~0.71104, Nd(t) = –4.63 to –5.80) similar to the contemporaneous Zhaibei and Pitou A-type granites in the area. Such characteristics suggest that they might be derived from the underplating basaltic magma contaminated by crustal materials. Therefore, an early Mesozoic rifting model in response to intracontinental lithospheric extension is proposed to account for the early Mesozoic volcanism in southern Jiangxi Province, South China.  相似文献   

8.
The Fossa Bradanica in Basilicata (S Italy) is affected by almost 15% permanent Pleistocene and Holocene gullies. In the past decades climate versus land use management have dramatically increase both the soil loss rate and the muddy-flooding frequency. In this paper the impact of global change on soil production rates and erosion/deposition dynamics at medium-time scale (1949?C2000) for two permanent gullies (Fosso Lavandaio and Fosso San Teodoro) has been studied. Pluviometric regime, land use changes and multi-temporal (1949, 1986 and 2000) subtraction method of digital elevation models have been conducted. From 1949 to 1986 the sediment production rate was estimated in 1,988.43?Mg?ha?1?year?1 at Fosso Lavandaio and in 808.5?Mg?ha?1?year?1 at Fosso San Teodoro, with deposition prevailing over erosion processes. From 1986 to 2000 the sediment production rate was estimated in 2,487.92?Mg?ha?1?year?1 at Fosso Lavandaio and in 2,883.9?Mg?ha?1?year?1 at Fosso San Teodoro, with higher values of net erosion. The data confirm that the increase in sedimentation would be due to human activities, in particular the levelling of gully heads for the production of cereals and orchards. Differently, the increase of the erosion processes depends on the recent changes of the pluviometric regime characterized by the extension of dry horizon and the concentration of high magnitude precipitation in macro-events of three to four consecutive days.  相似文献   

9.
The Leuchtenberg granite (Oberpfalz, NE Bavaria) displays a continuous differentiation trend ranging from mildy peraluminous, coarse-grained, porphyritic biotite granites (BG) to strongly peraluminous, medium- to fine-grained, garnet-bearing muscovite granites (GMG). The Rb–Sr and K–Ar age determinations of whole-rock and mineral samples from the granite and associated intermediate rocks (redwitzites) have revealed two divergent age gradients: Rb–Sr wholerock dates decrease and initial 87Sr/86Sr ratios increase for successively more evolved subsets of the granite. All BG samples (87Rb/86Sr=2–16) yield a date of 326±2 Ma with a low initial 87Sr/86Sr ratio of 0.70778±0.00013 (1), while all GMG samples (87Rb/86Sr=70 to 1000) yield a younger date of 317±2 Ma with an enhanced initial 87Sr/86Sr ratio of 0.7146±0.0039. The K–Ar measurements on biotites and muscovites give closely concordant dates for the GMG (326–323 Ma) and the southern lobe of the BG (324–320 Ma). The northern lobe of the BG, including the redwitzites, shows a well-defined trend of decreasing K–Ar dates from 320 Ma to 300 Ma towards the northwest. Critical consideration of both isotope systems leads to the conclusion that the Rb–Sr system of the GMG was disturbed by a later hydrothermal event. The ca. 326 Ma whole-rock Rb–Sr date for the BG is not in conflict with any of the K–Ar mineral dates and is taken as approaching the crystallization age of the Leuchtenberg granite. The K–Ar age progression within the northern lobe of the BG indicates that this part either cooled down over a protracted period of some 20 Ma or experienced reheating at ca. 300 Ma. The study highlights the potential of combined Rb–Sr and K–Ar dating in deciphering detailed chronology on the scale of a single igneous intrusion.  相似文献   

10.
The Minqin Basin is a type area for examining stress on groundwater resources in the Gobi Desert, and has been investigated here using a combination of isotopic, noble gas and chemical indicators. The basin is composed of clastic sediments of widely differing grain size and during the past half century over 10 000 boreholes have been drilled with a groundwater decline of around 1 m a−1. Modern diffuse recharge is unlikely to exceed 3 mm a−1, as determined using unsaturated zone profiles and Cl mass balance. A small component of modern (<50 a) groundwater is identified in parts of the basin from 3H–3He data, probably from irrigation returns. A clear distinction is found between modern waters with median δ18O values of 6.5 ± 0.5‰ and most groundwaters in the basin with more depleted isotopic signatures. Radiocarbon values as pmc range from 0.6% to 85% modern, but it is difficult to assign absolute ages to these, although a value of 20% modern C probably represents the late Pleistocene to Holocene transition. The δ13C compositions remain near-constant throughout the basin (median value of −8.1‰ δ13C) and indicate that carbonate reactions are unimportant and also that little reaction takes place. There is a smooth decrease in 14C activity accompanied by a parallel increase in 4He accumulations from S–N across the basin, which define the occurrence of a regional flow system. Noble gas temperatures indicate recharge temperatures of about 5.6 °C for late Pleistocene samples, which is some 2–3 °C cooler than the modern mean annual air temperature and the recharge temperature obtained from several Holocene samples. Groundwaters in the Minqin Basin have salinities generally below 1 g/L and are aerobic, containing low Fe but elevated concentrations of U, Cr and Se (mean values of 27.5, 5.8 and 5.3 μg L−1, respectively). Nitrate is present at baseline concentrations of around 2 mg L−1 but there is little evidence of impact of high NO3 from irrigation returns. Strontium isotope and major ion ratios suggest that silicate reactions predominate in the aquifer. The results have important implications for groundwater management in the Minqin and other water-stressed basins in NW China – a region so far destined for rapid development. The large proportion of the water being used at present is in effect being mined and significant changes are urgently needed in water use strategy.  相似文献   

11.
Effective porosity value was analyzed from the tritium concentration of sampled groundwater using a three-dimensional groundwater-flow and advection-dispersion code based on the finite element method. The effective porosity value was about 10%. Porosity values measured from core samples were 7–15%. The groundwater flow velocity estimated from the tritium concentrations was about 1 × 10–5 cm s–1. Therefore, during the low groundwater flow velocity condition, effective porosity and porosity values were the same. At the same test site, a 0.48% effective porosity value, determined by another tracer test injecting Br solution into the aquifer during groundwater level change, was smaller than the porosity value when the flow velocity was 1.8×10–2 cm s–1. Thus the effective porosity value is concluded to be due to groundwater flow velocity. The specific yield value was calculated to be 0.6% by the total volume of tunnel seepage water and the total volume of the rock unsaturated during tunnel construction. However, as pore water continued to be drained after the groundwater level change was completed, the specific yield value became larger than 0.6%. Thus specific yield value is concluded to be due to drainage time.  相似文献   

12.
Hydrochemistry of groundwater in Chithar Basin, Tamil Nadu, India was used to assess the quality of groundwater for determining its suitability for drinking and agricultural purposes. Physical and chemical parameters of groundwater such as electrical conductivity, pH, total dissolved solids (TDS), Na+, K+, Ca2+, Mg2+, Cl, HCO3, CO32–, SO42–, NO3, F, B and SiO2 were determined. Concentrations of the chemical constituents in groundwater vary spatially and temporarily. Interpretation of analytical data shows that mixed Ca–Mg–Cl, Ca–Cl and Na–Cl are the dominant hydrochemical facies in the study area. Alkali earths (Ca2+, Mg2+) and strong acids (Cl, SO42–) are slightly dominating over alkalis (Na+, K+) and weak acids (HCO3, CO32–). The abundance of the major ions is as follows: Na+ Ca2+ Mg2+ > K+ = Cl > HCO3> SO42– > NO3 > CO32– . Groundwater in the area is generally hard, fresh to brackish, high to very high saline and low alkaline in nature. High total hardness and TDS in a few places identify the unsuitability of groundwater for drinking and irrigation. Such areas require special care to provide adequate drainage and introduce alternative salt tolerance cropping. Fluoride and boron are within the permissible limits for human consumption and crops as per the international standards.  相似文献   

13.
OH structure of metamorphic fluids has been studied by high temperature infrared (IR) microspectroscopy on natural fluid inclusions contained in quartz veins, over the temperature range 25–370 °C. Blueschist-facies veins from Tinos island core complex (Cyclades, Greece) display H2O–NaCl–CaCl2–CO2 inclusions whereas greenschist-facies veins contain H2O–NaCl ± CO2 inclusions. From 25 to 370 °C, peak positions of OH stretching IR absorption bands increase quasi-linearly with slopes of 0.25 and 0.50 cm–1 °C–1 for inclusions trapped under blueschist and greenschist conditions, respectively. Extrapolation to 400 °C yield peak positions of 3,475 cm–1 for blueschist inclusions and 3,585 cm–1 for greenschist inclusions. Because the smaller wave number indicates the shorter hydrogen-bond distance between water molecules, fluids involved in the greenschist event have a loose structure compared with blueschist fluids. We suggest that these properties might correspond to a low wetting angle of fluids. This would explain the high mobility of aqueous fluids suggested by structural observation and stable isotope analysis.Editorial responsibility: J. Hoefs  相似文献   

14.
In order to determine time-dependent changes in estuarine pore-water chemistry and flux variations across the sediment-water interface, sediment cores of an intertidal mud flat in the Weser Estuary were taken monthly over a one-year period. Sediment temperature, pH, Eh, Cl, O2, NO 3 , and SO 4 2– pore-water concentrations were measured and showed variations that relate to the changes of surface temperature and estuarine water composition. Fick's first law was applied to quantify diffusive fluxes from concentration gradients in the diffusive boundary layer and in the pore water. Total nitrate fluxes were calculated from flux chamber experiments. Diffusive oxygen fluxes increased from 5 mmol m–2 d–1 in winter to 18 mmol m–2 d–1 in early summer, while nitrate fluxes into the sediment increased from 3 mmol m–2 d–1 in winter to 60 mmol m–2 d–1 in early summer. Oxygen and nitrate fluxes into the sediment correlated linearly to sediment temperature. Sulfate fluxes increased from 0.5 mmol m–2 d–1 in winter to 10 mmol m–2 d–1 in August and September. Converted into carbon fluxes, the sum of these oxidants ranged from 10 mmol m–2 d–1 in winter to 80 mmol m–2 d–1 in summer. An estimation of the upper limit of the annual nitrate flux into the sediment showed that about 10% of the 250,000 t of nitrate discharged annually by the river may be decomposed within the inner Weser Estuary.  相似文献   

15.
A plot-scale evaluation of biochar application to agricultural soils was conducted in Tirunelveli, Tamil Nadu, India, to investigate the potential of biochar to improve soil fertility and moisture content. Biochar feedstocks need to be sustainably sourced: several locally available feedstocks (rice husk, cassia stems, palm leaves and sawdust) were analysed as proposed soil amendments so that no single biomass material is depleted to maintain biochar addition. The biochars from different biomass feedstock contained >20% C and were high in macro- and micronutrients. The results suggest that an application rate of 6.6 metric tonnes ha?1 cassia biochar was enough to initiate C-accumulation, which is reflected in an increase in OM and a net reduction in soil bulk density.  相似文献   

16.
Large groundwater resources are found in densely populated lowland areas, which consist often of young unconsolidated and reduced sediments. When anthropogenic activities lead to oxygenation of the aquifer, breakdown of the main reduced fractions, i.e. sedimentary organic matter (SOM) and pyrite, could lead to severe groundwater deterioration such as acidification, heavy metal mobilization, and increased hardness. The characterization of the reactive properties of these sediments is important in predicting groundwater deterioration, but is often complicated by the high degree of heterogeneity of these sediments. In this study, the potential reduction capacity (PRC, based on SOM and pyrite content), the potential buffer capacity (PBC, based on carbonate content), potential acidification capacity (PAC, based on the potential acid production by sulfide oxidation), and the measured reduction capacity (MRC) of five facies, which are typical of the riverine sediments in the Rhine–Meuse delta (The Netherlands) were determined. A universal facies-classification model was used to classify the deposits into more homogeneous sub-units based on lithologic and geogenic properties, with a further sub-division into oxic or anoxic redox environment based upon groundwater data and field observations. The bulk chemical data show strong variation across facies for the median values of PRC (186–9093 mmol O2 kg−1), PBC (17–132 mmol O2 kg−1), and PAC (36–1530 mmol H+ kg−1). The MRC was measured as reactivity to molecular O2 exposure and was 0.5–567.3 mmol O2 kg−1. Steady-state oxidation rates were in the wide range of 0.001–10.355 mmol O2 kg−1 day−1 but were typically about 3–8 times faster in fine facies than in coarse facies. Both the PRC and MRC depend strongly on grain size, but also on the syn/post-depositional environment and redox conditions. The main part of the PRC consists of SOM, but pyrite reactivity is higher than SOM reactivity as shown by the relative depletion of pyrite in oxic subfacies and the preferential oxidation during the oxidation experiments. Some facies are very prone to acidification because the PAC is higher than the PBC, but the oxidation experiments also show that acidification could already start before the PRC is fully exhausted. This study, is one of the few that combines bulk chemical data, groundwater data, and reactivity measurements and shows that a facies-based approach is a practical tool in characterizing the reactivity of heterogeneous deposits.  相似文献   

17.
Study on the kinetics of iron oxide leaching by oxalic acid   总被引:2,自引:0,他引:2  
The presence of iron oxides in clay or silica raw materials is detrimental to the manufacturing of high quality ceramics. Although iron has been traditionally removed by physical mineral processing, acid washing has been tested as it is more effective, especially for extremely low iron (of less than 0.1% w/w). However, inorganic acids such as sulphuric or hydrochloric acids easily contaminate the clay products with SO42− and Cl, and therefore should be avoided as much as possible. On the other hand, if oxalic acid is used, any acid left behind will be destroyed during the firing of the ceramic products. The characteristics of dissolution of iron oxides were therefore investigated in this study.The dissolution of iron oxides in oxalic acid was found to be very slow at temperatures within the range 25–60 °C, but its rate increases rapidly above 90 °C. The dissolution rate also increases with increasing oxalate concentration at the constant pH values set within the optimum range of pH2.5–3.0. At this optimum pH, the dissolution of fine pure hematite (Fe2O3) (105–140 μm) follows a diffusion-controlled shrinking core model. The rate expression expressed as 1 − (2 / 3)x − (1 − x)2 / 3 where x is a fraction of iron dissolution was found to be proportional to [oxalate]1.5.The addition of magnetite to the leach liquor at 10% w/w hematite was found to enhance the dissolution rate dramatically. Such addition of magnetite allows coarser hematite in the range 0.5–1.4 mm to be leached at a reasonable rate.  相似文献   

18.
Mg–Fe interdiffusion rates have been measured in wadsleyite aggregates at 16.0–17.0 GPa and 1230–1530 °C by the diffusion couple method. Oxygen fugacity was controlled using the NNO buffer, and water contents of wadsleyite were measured by infrared spectroscopy. Measured asymmetric diffusion profiles, analyzed using the Boltzmann–Matano equation, indicate that the diffusion rate increases with increasing iron concentration and decreasing grain size. In the case of wadsleyite containing 50–90 weight ppm H2O, the Mg–Fe interdiffusion coefficients at compositions of Mg/(Mg + Fe)=0.95 in the coarse-grained region (about 60 m) and 0.90 in the fine-grained region (about 6 m) were determined to be a DXmg = 0.95 (m2 s–1)=1.24 × 10–9 exp[–172 (kJ mol–1)/RT] and DXmg = 0.90 (m2 s–1)=1.77 × 10–9 exp[–143 (kJ mol–1)/RT], respectively. Grain-boundary diffusion rates were estimated to be about 4 orders of magnitude faster than the volume diffusion rate. Grain-boundary diffusion dominates when the grain size is less than a few tens of microns. Results for the nominally dry diffusion couple in the present study are roughly consistent with previous studies, taking into account differences in pressure and grain size, although water contents of samples were not clear in previous studies. We observed that the diffusivity is enhanced by about 1 order of magnitude in wadsleyite containing 300–2100 wt. ppm H2O at 1230 °C, which is almost identical to the enhancement associated with a 300 °C increase in temperature. It is still not conclusive that a jump in diffusivity exists between olivine and wadsleyite because water contents of olivine in previous diffusion studies and effects of water on the olivine diffusivity are uncertain.  相似文献   

19.
Diffusion of 40Ar in hornblende   总被引:8,自引:0,他引:8  
Measured radiogenic 40Ar loss from two compositionally contrasting hornblendes following isothermal-hydrothermal treatment have provided model diffusion coefficients in the temperature range of 750° C to 900° C. Eight experiments using a hornblende (77–600) with a Mg/(Mg +Fe) ratio of 0.72 yield a linear array on an Arrhenius plot with a slope corresponding to an activation energy of 66.1 kcal-mol–1 and a frequency factor of 0.061 cm2-sec–1, assuming spherical geometry for the mineral aggregate. Five experiments undertaken on a hornblende (M Mhb-1) with a Mg/(Mg+Fe) ratio of 0.36 show similar behavior to the Mgrich sample, suggesting that the diffusivity of Ar in hornblendes is not sensitive to the Mg/Fe ratio.These data are consistent with kinetic information obtained from a geological experiment using the thermal effect of a granitoid intrusion. Together these data yield an activation energy of 64.1±1.7 kcal-mol–1 and a frequency factor of 0.024± 0.011 0.053 cm2-sec–1. For a hornblende with an effective diffusion radius of 80 m, these diffusion parameters predict closure temperatures between 578° C and 490° C for cooling rates in the range 500 to 5° C-Ma–1.  相似文献   

20.
The sedimentation pattern of organic material in the Greenland-Norwegian Sea is reflected in the surface sediments, although less than 0.5% of the organic matter is buried in the sediment. Maximum fluxes and benthic responses are observed during June and/or August/September, following the pattern of export production in the pelagial zone. The annual remineralization rate on the Vøring Plateau is 3.0 g C m–2 a –1 Freshly settled phytodetritus, as detected by chlorophyll measurements, is rapidly mixed into the sediment and decomposed. It stimulates the activity of benthic organisms, especially foraminifera. The mixing coefficient for this material is D b=0.2 cm2 d–1, which is two to three orders of magnitude higher than that estimated from radiotracer methods. The effect on the geological record, however, is likely to be small. Chlorophyll-containing particles are at first very evenly distributed on the seafloor. After partial decomposition and resuspension, a secondary redistribution of particles occurs which can result in the formation of a high accumulation area, with an up to 80-fold increase in the sedimentation rate by lateral advection. This is mainly due to physical processes, because biodeposition mediated by benthic animals increases sedimentation by only a factor of two or three.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号