首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithosphere in NE China. In this paper, we carried out a comprehensive study for andesites from the Keyihe area using LA-ICP-MS zircon UPb dating and geochemical and Hf isotopic analysis to investigate the petrogenesis and tectonic setting of these andesites. The U-Pb dating yields an Early Cretaceous crystallization age of 128.3±0.4 Ma. Geochemically, the andesites contain high Sr(686–930 ppm) and HREE contents, low Y(11.9–19.8 ppm) and Yb(1.08–1.52 ppm) contents, and they therefore have high Sr/Y(42–63) and La/Yb(24–36) ratios, showing the characteristics of adakitic rocks. Moreover, they exhibit high K_2O/Na_2O ratios(0.57–0.81), low Mg O contents(0.77–3.06 wt%), low Mg# value(17–49) and negative εHf(t) values(-1.7 to-8.5) with no negative Eu anomalies, indicating that they are not related to the oceanic plate subduction. Based on the geochemical and isotopic data provided in this paper and regional geological data, it can be concluded that the Keyihe adakitic rocks were affected by the Mongol-Okhotsk tectonic regime, forming in a transition setting from crustal thickening to regional extension thinning. They were derived from the partial melting of the thickened lower crust. The closure of the Mongol-Okhotsk Ocean may finish in early Early Cretaceous, followed by the collisional orogenic process. The southern part region of its suture belt was in a post-orogenic extensional setting in the late Early Cretaceous.  相似文献   

2.
The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and mineralization. This paper reports zircon chronology, zircon Hf isotope data, whole-rock Sr–Nd isotope data, and geochemistry data of Balazha porphyry ores in the northern Lhasa block. Geochemical features show that Balazha ore-bearing porphyries in the northern Lhasa block belong to high-Mg# adakitic rocks with a formation age of ~90 Ma; this is consistent with the Late Cretaceous magmatic activity that occurred at around 90 Ma in the region. The age of adakitic rocks is similar to the molybdenite Re–Os model age of the ore-bearing porphyries in the northern Lhasa block, indicating that the diagenesis and mineralization of both occurred during the same magmatism event in the Late Cretaceous. The Hf and Sr–Nd isotope data indicate that these magmatic rocks are the product of crust–mantle mixing. Differing proportions of materials involved in such an event form different types of medium-acid rocks, including ore-bearing porphyries. Based on regional studies, it has been proposed that Late Cretaceous magmatism and porphyry mineralization in the northern Lhasa block occurred during collision between the Lhasa and Qiangtang blocks.  相似文献   

3.
Bangong-Nujiang collisional zone(BNCZ)is an older one in Qinghai-Tibet Plateau and resulted in the famous Bangong-Nujiang metallogenic belt,which plays an important role in evaluating the formation and uplift mechanism of plateau.The northern and central Lhasa Terrane composed the southern part of the BNCZ.Since ore deposits can be used as markers of geodynamic evolution,the authors carried 1∶50000 stream sedimental geochemical exploration in the Xiongmei area in the Northern Lhasa Terrane to manifest the mineralization,and based on this mineralization with geochemical and chronological characteristics of related magmatic rocks to constrain their geodynamics and connection with the evolution of the Lhasa Terrane.The authors find Early Cretaceous magma mainly resulted in Cu,Mo mineralization,Late Cretaceous magma mainly resulted in Cu,Mo,and W mineralization in the studying area.The results suggest a southward subduction,slab rolling back and break-off,and thickened lithosphere delamination successively occurred within the Northern Lhasa Terrane.  相似文献   

4.
The latest Cretaceous magmatic activity in the eastern segment of the Lhasa terrane provides important insights for tracking the magma source and geodynamic setting of the eastern Gangdese batholith, eastward of eastern Himalayan Syntaxis. Detailed petrological, geochemical and geochronological studies of the intrusive rocks (monzodiorites and granodiorites) of the eastern Gangdese batholith are presented with monzodiorites and granodiorites giving zircon U–Pb crystallization dates of 70–66 Ma and 71–66 Ma with εHf(t) values of ?4.8 to +6.2 and ?1.9 to +5.3, respectively. These rocks are metaluminous to weakly peraluminous I-type granites showing geochemically arc-related features of enrichment in LREEs and some LILEs, e.g., Rb, Th, and U, and depletion in HREEs and some HFSEs, e.g., Nb, Ta, and Ti. The rocks are interpreted to be derived from partial melting of mantle material and juvenile crust, respectively, which are proposed to be triggered by Neo-Tethyan slab rollback during northward subduction, with both experiencing ancient crustal contamination. The studied intrusive rocks formed in a transitional geodynamic setting caused by Neo-Tethyan oceanic flat subduction to slab rollback beneath the eastern Gangdese belt during the latest Cretaceous.  相似文献   

5.
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda–Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA–ICP–MS U–Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261–230 Ma); the Middle to Late Triassic (c. 229–210 Ma); the Early to Middle Jurassic (c. 206–165 Ma); the Early Cretaceous (c. 138–110 Ma) and the Late Cretaceous (c. 103–75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda–Weixi magmatic belt, showing arc–like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda–Weixi and Yidun magmatic belts, also demonstrating volcanic–arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garzê–Litang suture, showing the properties of syn–collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc–like and syn–collision–like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A–type granite features. These suggest that the co–collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co–collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda–Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within–plate magmatism in Yidun magmatic belt in late Cretaceous.  相似文献   

6.
A synthesis is given in this paper on late Mesozoic deformation pattern in the zones around the Ordos Basin based on lithostratigraphic and structural analyses. A relative chronology of the late Mesozoic tectonic stress evolution was established from the field analyses of fault kinematics and constrained by stratigraphic contact relationships. The results show alternation of tectonic compressional and extensional regimes. The Ordos Basin and its surroundings were in weak N-S to NNE-SSW extension during the Early to Middle Jurassic, which reactivated E-W-trending basement fractures. The tectonic regime changed to a multi-directional compressional one during the Late Jurassic, which resulted in crustal shortening deformation along the marginal zones of the Ordos Basin. Then it changed to an extensional one during the Early Cretaceous, which rifted the western, northwestern and southeastern margins of the Ordos Basin. A NW-SE compression occurred during the Late Cretaceous and caused the termination of sedimentation and uplift of the Ordos Basin. This phased evolution of the late Mesozoic tectonic stress regimes and associated deformation pattern around the Ordos Basin best records the changes in regional geodynamic settings in East Asia, from the Early to Middle Jurassic post-orogenic extension following the Triassic collision between the North and South China Blocks, to the Late Jurassic multi-directional compressions produced by synchronous convergence of the three plates (the Siberian Plate to the north, Paleo-Pacific Plate to the east and Lhasa Block to the west) towards the East Asian continent. Early Cretaceous extension might be the response to collapse and lithospheric thinning of the North China Craton.  相似文献   

7.
The Mesozoic–Cenozoic uplift history of South Tianshan has been reconstructed in many ways using thermochronological analyses for the rocks from the eastern Kuqa Depression. The main difference in the reconstructions concerns the existence and importance of Early Cretaceous and Paleogene tectonic activities, but the existence of a Cenozoic differential uplift in the Kuqa Depression remains enigmatic. Here, we present new apatite fission-track ages obtained for 12 sandstone samples from the well-exposed Early Triassic to Quaternary sequence of the Kapushaliang section in the western Kuqa Depression. The results reveal that there were four pulses of tectonic exhumation, which occurred during the Early Cretaceous(peak ages of 112 and 105 Ma), Late Cretaceous(peak age of 67 Ma), Paleocene–Eocene(peak ages at 60, 53, and 36 Ma), and early Oligocene to late Miocene(central ages spanning 30–11 Ma and peak ages of 23 and 14 Ma), respectively. A review of geochronological and geological evidence from both the western and eastern Kuqa Depression is shown as follows.(1) The major exhumation of South Tians Shan during the Early Cretaceous was possibly associated with docking of the Lhasa block with the southern margin of the Eurasian plate.(2) The Late Cretaceous uplift of the range occurred diachronically due to the far-field effects of the Kohistan-Dras Arc and Lhasa block accretion.(3) The Paleogene uplift in South Tianshan initially corresponded to the far-field effects of the India–Eurasia collision.(4) The rapid exhumation in late Cenozoic was driven by the continuous far-field effects of the collision between India and Eurasia plates. The apatite fission-track ages of 14–11 Ma suggest that late Cenozoic exhumation in the western Kuqa Depression prevailed during the middle to late Miocene, markedly later than the late Oligocene to early Miocene activity in the eastern segment. It can be hypothesized that a possible differential uplift in time occurred in the Kuqa Depression during the late Cenozoic.  相似文献   

8.
The Gangdese magmatic belt formed during Late Triassic to Neogene in the southernmost Lhasa terrane of the Tibetan plateau. It is interpreted as a major component of a continental margin related to the northward subduction of the Neo-Tethys oceanic slab beneath Eurasia and it is the key in understanding the tectonic framework of southern Tibet prior to the India-Eurasia collision. It is widely accepted that northward subduction of the Neo-Tethys oceanic crust formed the Gangdese magmatic belt, but the occurrence of Late Triassic magmatism and the detailed tectonic evolution of southern Tibet are still debated. This work presents new zircon U-Pb-Hf isotope data and whole-rock geochemical compositions of a mylonitic granite pluton in the central Gangdese belt, southern Tibet. Zircon U-Pb dating from two representative samples yields consistent ages of 225.3±1.8 Ma and 229.9±1.5 Ma, respectively, indicating that the granite pluton was formed during the early phase of Late Triassic instead of Early Eocene(47–52 Ma) as previously suggested. Geochemically, the mylonitic granite pluton has a sub-alkaline composition and low-medium K calc-alkaline affinities and it can be defined as an I-type granite with metaluminous features(A/CNK1.1). The analyzed samples are characterized by strong enrichments of LREE and pronounced depletions of Nb, Ta and Ti, suggesting that the granite was generated in an island-arc setting. However, the use of tectonic discrimination diagrams indicates a continental arc setting. Zircon Lu-Hf isotopes indicate that the granite has highly positive εHf(t) values ranging from +13.91 to +15.54(mean value +14.79), reflecting the input of depleted mantle material during its magmatic evolution, consistent with Mg~# numbers. Additionally, the studied samples also reveal relatively young Hf two-stage model ages ranging from 238 Ma to 342 Ma(mean value 292 Ma), suggesting that the pluton was derived from partial melting of juvenile crust. Geochemical discrimination diagrams also suggest that the granite was derived from partial melting of the mafic lower crust. Taking into account both the spatial and temporal distribution of the mylonitic granite, its geochemical fingerprints as well as previous studies, we propose that the northward subduction of the Neo-Tethys oceanic slab beneath the Lhasa terrane had already commenced in Late Triassic(~230 Ma), and that the Late Triassic magmatic events were formed in an active continental margin that subsequently evolved into the numerous subterranes, paleo-island-arcs and multiple collision phases that form the present southern Tibet.  相似文献   

9.
Late Mesozoic Nb-rich basaltic andesites and high-Mg adakitic volcanic rocks from the Hailar-Tamtsag Basin,northeast China,provide important insights into the recycling processes of crustal materials and their role in late Mesozoic lithospheric thinning.The Late Jurassic Nb-rich basaltic andesites(154 ± 4 Ma) are enriched in large-ion lithophile and light rare earth elements,slightly depleted in high-field-strength elements,and have high TiO_2,P_2 O_5,and Nb contents,and(Nb/Th)PM and Nb/U ratios,which together with the relatively depleted Sr-Nd-Hf isotopic compositions indicate a derivation from a mantle wedge metasomatized by hydrous melts from subducted oceanic crust.The Early Cretaceous high-Mg adakitic volcanic rocks(129-117 Ma) are characterized by low Y and heavy rare earth element contents,and high Sr contents and Sr/Y ratios,similar to those of rocks derived from partial melting of an eclogitic source.They also have high Rb/Sr, K_2 O/Na_2 O,and Mg#values,and high MgO, Cr, and Ni contents.These geochemical features sugge st that the adakitic lavas were derived from partial melting of delaminated lower continental crust,followed by interaction of the resulting melts with mantle material during their ascent Our data,along with available geological,paleomagnetic,and geophysical evidence,lead us to propose that recycling of Paleo-Pacific oceanic crustal materials into the upper mantle due to flat-slab subduction and rollback of the Paleo-Pacific Plate during the late Mesozoic likely provided the precondition for lithospheric thinning in northeast China,with consequent lithospheric delamination causing recycling of continental crustal materials and further lithospheric thinning.  相似文献   

10.
During the Late Cretaceous in the Eastern Mediterranean, the northern branch of the southern Neotethys was closed by multiple northward subductions. Of these, the most northerly located subduction created the Baskil continental arc at around 82–84 Ma. The more southerly and intra-oceanic subduction, on the other hand, produced an arc-basin system,the Yüksekova Complex, as early as the late Cenomanian–early Turonian. The abundant and relatively well-studied basaltic rocks of this complex were intruded by dykes, sills and small stocks of felsic–intermediate rocks, not previously studied in detail. The intrusives collected from five different localities in the Elaz?? region of eastern Turkey are all subalkaline, with low Nb/Y values. Most of them have been chemically classified as rhyodacites/dacites, whereas a small number appear to be andesites. In normal mid-ocean-ridge basalt(N-MORB)-normalised plots, the intrusives are characterised by relative enrichments in Th and La over Nb, Zr, Hf, Ti and high field strength elements(HREEs), indicating their derivation from a subduction-modified source. While their relatively high, positive εN d(i) values(+6.4 and +7.2) might suggest a depleted mantle source for their ultimate origin, somewhat radiogenic Pb values indicate a sedimentary contribution to the source of the rocks. The overall geochemical characteristics indicate their generation in an oceanic arc setting. The zircon U-Pb Laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) data obtained from five felsic-intermediate rock samples yielded intrusion dates of 80–88 Ma. This suggests that the Elaz?? oceanic arc-related intrusives are slightly younger than those of the Yüksekova arc-basin system, but coeval with the Baskil continental arc. However, the felsic–intermediate intrusives show different geochemical characteristics(oceanic arc-type, with a lack of crustal contamination)to those of the Baskil continental arc. This indicates that these two igneous systems are unrelated and likely developed in different tectonic settings. This, in turn, supports a geodynamic model in which the northern strand of the southern Neotethys was consumed by multiple northward subductions.  相似文献   

11.
国际埃迪卡拉系年代地层学研究进展与发展趋势   总被引:2,自引:0,他引:2  
埃迪卡拉系为国际地层表新增的新元古界最上部的系级年代地层单位,层型剖面被确定为南澳大利亚弗林德斯山脉依诺拉马河剖面,其底界点位(GSSP)选定为埃拉逖那冰成杂砾岩(Elatina diamictite)之上盖帽碳酸盐岩努卡利那组(Nuccaleena Formation)的下界(Gradstein et al.,2004;Knoll et al.,2004)。我国修定后的震旦系与埃迪卡拉系完全相当,底界以南沱冰碛岩之上盖帽碳酸盐岩的下界为界。本文综合国际地层委员会新元古代地层分会以及相关国家和地区近年来在埃迪卡拉系年代地层学领域研究的新进展、存在问题以及未来发展趋势作一概要介绍,以期引起国内晚前寒武纪地层古生物学者的广泛关注。  相似文献   

12.
塔里木盆地奥陶系层序地层格架   总被引:15,自引:1,他引:14  
在不同沉积相区典型露头、钻井及地震层序综合分析基础上,将塔里木盆地奥陶系海相地层划分出8个可全盆地对比的三级层序(OSQ1~OSQ8),首次建立了综合露头层序、钻井层序及地震层序划分的层序地层格架,建立了年代地层、牙形石生物地层、岩石地层与层序地层之间的相互关系(表1)。首次提出海相碳酸盐岩全岩或生物化石壳的碳同位素值可作为全球海平面变化的良好指标。在相似气候带及沉积环境具备相近的碳酸盐沉积速率的假设条件下,当沉积相分析所得到的相对海平面变化趋势与全岩碳同位素分析反映的全球海平面变化趋势总体一致时,说明碳酸盐层序的发育主要受控于全球海平面变化,反之则主要受控于区域构造沉降运动。鉴于这样的分析原理,我们认为塔里木盆地下奥陶统层序OSQ1及层序OSQ2属于主要受控于全球海平面变化的稳定加积型层序,而中、上奥陶统层序OSQ3~层序OSQ8则属于全球海平面总体上升背景下主要受区域构造运动控制形成的构造淹没型层序。  相似文献   

13.
14.
通过2 0 0 4年度各相关图幅的大力工作,在基础地质、矿产和资源等方面取得了大量实际材料,综合研究区域构造地层格架、青藏高原地质图和青藏高原南部火山岩及其地球动力学意义等,取得重要进展和新认识,在矿产资源、旅游和人文景观等方面也取得重要阶段性成果。  相似文献   

15.
燕山地区中元古代常州沟组潜穴化石   总被引:2,自引:4,他引:2  
刘鹏举 《地质论评》2003,49(5):522-524
在燕山地区中元古代常州沟组中发育有大量的潜穴化石,潜穴产于常州沟组中部的泥质粉砂岩中。潜穴呈个体较大的直管状,垂直层面保存。这是我国迄今为止发现的最古老的遗迹化石,表明在距今近1800Ma前就已出现古老的后生动物,这对于研究后生动物的起源及演化具有重要意义。  相似文献   

16.
综合运用钻井、测井、地震等资料,将黄骅坳陷目前的勘探热点地区——歧北次凹的主要勘探目的层段,即沙一下亚段划分为4个四级层序和8个五级层序,建立了沙一下亚段高精度层序地层格架。结合属性提取和测井约束反演等地球物理方法技术,在高精度层序地层格架约束下对歧北次凹目标层内单个地质体进行多层次多角度的精细刻画,研究其空间展布,并剖析其内部结构特征,分析地质体的控制因素。研究发现:物源供给、断裂陡坡带及断裂转换带对地质体的发育具有重要的控制作用,最后提炼出地质体发育模式,为研究区隐蔽油气藏的勘探和开发提供科学依据。  相似文献   

17.
通过2004年度各相关图幅的大力工作,在基础地质、矿产和资源等方面取得了大量实际材料,综合研究区域构造.地层格架、青藏高原地质图和青藏高原南部火山岩及其地球动力学意义等,取得重要进展和新认识,在矿产资源、旅游和人文景观等方面也取得重要阶段性成果。  相似文献   

18.
环境中硒形态分析方法的研究进展   总被引:2,自引:0,他引:2  
硒的形态研究是了解环境中硒的毒性、生物可利用性、迁移和生物地球化学循环等方面的基础,其研究方法一般分为直接和间接法。本文总结了环境中硒形态的研究方法,特别是对环境样品中常用的硒形态分析技术——连续化学浸提技术作了全面详细的讨论,并综述了其它硒形态分析方法的最新动态。  相似文献   

19.
Using the standard methods of paleogeographic analysis, small-scale paleogeographic sketch maps of the Verkhnyaya Bureya and Gudzhik depressions of the Bureya Foredeep are compiled for the Pliensbachian, Bajocian-Bathonian, Callovian, and Tithonian ages of the Jurassic. Marine sedimentation settings that existed during the Late Triassic and the major part of the Jurassic are characterized.  相似文献   

20.
泥岩可以作为烃源岩提供油气来源,也可以作为盖层保存油气。此外,泥岩在形成异常超压、控制地层流体分布方面也有着特殊的作用,对油气成藏有着非常重要的意义。鄂尔多斯盆地整体处于低压状态,但受泥岩排烃、欠压实影响,局部地层超压。由于区域上的直接盖层厚度较小,超压泥岩是区域油气保存的重要保障,预示着油气勘探的有利区带。盆地地层水外来补给较少,受厚层泥岩的封堵作用,矿化度和pH值整体较高,造成本区成岩作用阶段明显晚于同期同深度的其它区域地层。后期受泥岩中粘土矿物脱水作用影响,泥岩中的水释放使地层水矿化度有所降低,也形成了本区特殊的气水倒置的成藏结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号