首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
An updated analysis of geothermal data from the highland area of eastern Brazil has been carried out and the characteristics of regional variations in geothermal gradients and heat flow examined. The database employed includes results of geothermal measurements at 45 localities. The results indicate that the Salvador craton and the adjacent metamorphic fold belts northeastern parts of the study area are characterized by geothermal gradients in the range of 6–17°C/km. The estimated heat flow values fall in the range of 28–53 mW/m2, with low values in the cratonic area relative to the fold belts. On the other hand, the São Francisco craton and the intracratonic São Francisco sedimentary basin in the southwestern parts are characterized by relatively higher gradient values, in the range of 14–42°C/km, with the corresponding heat flow values falling in the range of 36–89 mW/m2. Maps of regional variations indicate that high heat flow anomaly in the São Francisco craton is limited to areas of sedimentary cover, to the west of the Espinhaço mountain belt. Crustal thermal models have been developed to examine the implications of the observed intracratonic variations in heat flow. The thermal models take into consideration variation of thermal conductivity with temperature as well as change of radiogenic heat generation with depth. Vertical distributions of seismic velocities were used in obtaining estimates of radiogenic heat production in crustal layers. Crustal temperatures are calculated based on a procedure that makes simultaneous use of the Kirchoff and Generalized Integral Transforms, providing thereby analytical solutions in 2D and 3D geometry. The results point to temperature variations of up to 300°C at the Moho depth, between the northern Salvador and southern São Francisco cratons. There are indications that differences in rheological properties, related to thermal field, are responsible for the contrasting styles of deformation patterns in the adjacent metamorphic fold belts.  相似文献   

2.
A map is presented based on all known Australian heat‐flow estimates, including five new ones. A second map, based on the first, also is presented, but excludes any determinations judged for any reason to be unreliable. The data show that heat flow over large areas of the continent is effectively uniform to within 0.5 heat flow units (i.e. to within 20 mW m‐2), with perhaps three major regional heat‐flow provinces being defined in western, central, and eastern Australia.  相似文献   

3.
International Journal of Earth Sciences - Heat flow high −80 ± 10 mW/m2 in the northern western parts of the Western Canadian foreland basin is in large...  相似文献   

4.
A reappraisal of the international heat flow database has been carried out and the corrected data set was employed in spherical harmonic analysis of the conductive component of global heat flow. Procedures used prior to harmonic analysis include analysis of the heat flow data and determination of representative mean values for a set of discretized area elements of the surface of the earth. Estimated heat flow values were assigned to area elements for which experimental data are not available. However, no corrections were made to account for the hypothetical effects of regional-scale convection heat transfer in areas of oceanic crust. New sets of coefficients for 12° spherical harmonic expansion were calculated on the basis of the revised and homogenized data set. Maps derived on the basis of these coefficients reveal several new features in the global heat flow distribution. The magnitudes of heat flow anomalies of the ocean ridge segments are found to have mean values of less than 150 mW/m2. Also, the mean global heat flow values for the raw and binned data are found to fall in the range of 56–67 mW/m2, down by nearly 25% compared to the previous estimate of 1993, but similar to earlier assessments based on raw data alone. To improve the spatial resolution of the heat flow anomalies, the spherical harmonic expansions have been extended to higher degrees. Maps derived using coefficients for 36° harmonic expansion have allowed identification of new features in regional heat flow fields of several oceanic and continental segments. For example, lateral extensions of heat flow anomalies of active spreading centers have been outlined with better resolution than was possible in earlier studies. Also, the characteristics of heat flow variations in oceanic crust away from ridge systems are found to be typical of conductive cooling of the lithosphere, there being little need to invoke the hypothesis of unconfined hydrothermal circulation on regional scales. Calculations of global conductive heat loss, compatible with the observational data set, are found to fall in the range of 29–34 TW, nearly 25% less than the 1993 estimate, which rely on one-dimensional conductive cooling models.  相似文献   

5.
The equation describing the conduction of heat in solids has, over the past two centuries, proved to be a powerful tool for analyzing the dynamic motion of heat as well as for solving an enormous array of diffusion-type problems in physical sciences, biological sciences, earth sciences, and social sciences. This equation was formulated at the beginning of the nineteenth century by one of the most gifted scholars of modern science, Joseph Fourier of France. A study of the historical context in which Fourier made his remarkable contribution and the subsequent impact his work has had on the development of modern science is as fascinating as it is educational. This paper is an attempt to present a picture of how certain ideas initially led to Fourier’s development of the heat equation and how, subsequently, Fourier’s work directly influenced and inspired others to use the heat diffusion model to describe other dynamic physical systems. Conversely, others concerned with the study of random processes found that the equations governing such random processes reduced, in the limit, to Fourier’s equation of heat diffusion. In the process of developing the flow of ideas, the paper also presents, to the extent possible, an account of the history and personalities involved. Reprinted by permission from theAmerican Geophysical Union, @ 1999. Originally published inReviews of Geophysics as “Fourier’s Heat Conduction Equation: History, Influence and Connections,” Vol. 37, issue 1, pages 151–172, February 1999. Appended here are eight figures of historical importance.  相似文献   

6.
The heat capacity at constant pressure, C p, of chlorapatite [Ca5(PO4)3Cl – ClAp], and fluorapatite [Ca5(PO4)3F – FAp], as well as of 12 compositions along the chlorapatite–fluorapatite join have been measured using relaxation calorimetry [heat capacity option of the physical properties measurement system (PPMS)] and differential scanning calorimetry (DSC) in the temperature range 5–764 K. The chlor-fluorapatites were synthesized at 1,375–1,220°C from Ca3(PO4)2 using the CaF2–CaCl2 flux method. Most of the chlor-fluorapatite compositions could be measured directly as single crystals using the PPMS such that they were attached to the sample platform of the calorimeter by a crystal face. However, the crystals were too small for the crystal face to be polished. In such cases, where the sample coupling was not optimal, an empirical procedure was developed to smoothly connect the PPMS to the DSC heat capacities around ambient T. The heat capacity of the end-members above 298 K can be represented by the polynomials: C pClAp = 613.21 − 2,313.90T −0.5 − 1.87964 × 107 T −2 + 2.79925 × 109 T −3 and C pFAp = 681.24 − 4,621.73 × T −0.5 − 6.38134 × 106 T −2 + 7.38088 × 108 T −3 (units, J mol−1 K−1). Their standard third-law entropy, derived from the low-temperature heat capacity measurements, is S° = 400.6 ± 1.6 J mol−1 K−1 for chlorapatite and S° = 383.2 ± 1.5 J mol−1 K−1 for fluorapatite. Positive excess heat capacities of mixing, ΔC pex, occur in the chlorapatite–fluorapatite solid solution around 80 K (and to a lesser degree at 200 K) and are asymmetrically distributed over the join reaching a maximum of 1.3 ± 0.3 J mol−1 K−1 for F-rich compositions. They are significant at these conditions exceeding the 2σ-uncertainty of the data. The excess entropy of mixing, ΔS ex, at 298 K reaches positive values of 3–4 J mol−1 K−1 in the F-rich portion of the binary, is, however, not significantly different from zero across the join within its 2σ-uncertainty.  相似文献   

7.
In terms of the research on groundwater–surface water heat-tracing methods, investigation of the interactions within the compound system of the groundwater–surface water–hyporheic zone can effectively reveal the relevant physicochemical processes and microbial properties. The evaluation of these properties represents a key component in qualitative and quantitative research on groundwater–surface water interactions. Therefore, this paper reviews the research results on groundwater–surface water interactions achieved by related researchers using heat as a natural tracer over the last decade. In connection with the application of heat-tracing theory to the basic principles of hyporheic exchange between groundwater and surface water, research on groundwater–surface water interaction through one-dimensional steady-state and transient-state heat transport analytical models, techniques to collect and analyze temperature time series data, and numerical simulation technology is reviewed. In addition, directions for future research using groundwater–surface water heat-tracing methods are suggested. First, hypothetical, difficult temperature boundary and hydrogeological conditions require further research. Second, hydrodynamic exchange capacity and the processes of heat exchange and solute concentration exchange in the hyporheic zone alongside riverbeds should be appropriately and accurately measured under multi-scale influences. Third, the overall study of the heat transport process inside the hyporheic zone induced by complex riverbed forms should be performed, and the response mechanism of riverbed hyporheic exchanges driven by riverbed form, the hydrodynamic force of surface water, and sediment permeability should be revealed. The objectives and goals of this paper are to encourage scholars interested in analyzing groundwater–surface water interactions using heat as a tracer to creatively solve practical problems and to improve the ecological functions of river aquatic habitats through new research results.  相似文献   

8.
9.
Urban universities are a microcosm of urban built-up areas, such as cities, but with a much smaller scale of spatial resolution. Within universities, there are many types of landscape features exhibiting different heat absorption and transmission capacities. These landscape features generate spatial–temporal heat signatures, and the knowledge about landscape features and urban heat hazard on university campuses is limited. The objective of this research is an assessment of landscape features and the potential heat hazard threats of two urban universities in ASEAN, located in the centre of the equatorial region. The focus of this research is on urban heat hazards in two urban universities in ASEAN, the University of Malaysia in Kuala Lumpur and the University of Indonesia in Jakarta, within the context of the spatial–temporal behaviour of urban heat and the urban heat effects on the environment and human well-being on campuses. The spatial and temporal analysis used to answer the objective of this research via data-gathering methods from image satellite, ground trough, and human perception study. The UM campus and UI campus, both urban campuses, had similar landscape features but had different total percentage areas of these features. The UM campus was 59.1% covered by the densely vegetated surface landscape feature, a percentage lower than that of the UI campus, which was 65.3% vegetation covered. The temporal results for the UHS of the UM campus in 2013–2016 show a maximum temperature of 39 °C. Therefore, the UHS of the UI campus demonstrated temporal behaviour in 2013–2016, with a maximum temperature of 38 °C. The UHS behaviour of the UM campus and UI campus had an air surface temperature with a maximum average temperature of 33 °C. The air surface temperatures exceeding 32 °C at the UM campus (12 pm until 6 pm?=?5 h) lasted for a longer time than those at the UI campus (12 pm until 3 pm?=?3 h). This study showed that, based on the perceptions on both campuses, if temperatures exceeded 30 °C, respondents were very hot and very uncomfortable, which will impact health and decrease work or academic achievements, as perceptions of heat intensity impact human well-being. Students perceived that heat intensity impacted their health and they reported becoming tired and lethargic under maximum temperatures and were very hot and very uncomfortable, and this condition impacted their work activity. These results indicated that, at both the UM and UI campuses, heat intensity impacts human well-being, with risks associated with hot temperatures. These two urban campuses are significant for ASEAN university awareness of the urban heat hazard of the equatorial area.  相似文献   

10.
The aim of the study is to evaluate the warming effect (thermal contamination) of city centres with high building density. This phenomenon has a number of scientific and practical implications. The case study was conducted in Bratislava (Slovakia), in the geological environment of alluvial gravels of the Danube River, where a permanent warming of the subsurface in the city centre is experienced, which is mainly affected by high building density and underground utilities. Thanks to this thermal contamination, the heat pumps efficiency is greater in winter, while in summer, their effectiveness is lower. Economically, this negative phenomenon in the case of heat pumps has a positive effect, since it increases energy efficiency during the heating period. This phenomenon is not universal and depends on the specific boundary conditions of the geological settings and hydrogeological conditions.  相似文献   

11.
Zhang  Wei  Zhao  Qianxing  Pei  Minjie 《Natural Hazards》2021,106(1):349-373
Natural Hazards - Increasing extreme heat events have threatened human health seriously in the context of global climate change. As an important policy tool to resist heat-related risks, growing...  相似文献   

12.
For a long time the Moslavačka Gora Massif in Croatia has been regarded as a major outcrop of Variscan crystalline basement of the South Tisia block. However, new geochronological data indicate that this massif consists of a Cretaceous S-type granite pluton intruding a Cretaceous low-pressure/high-temperature (LP/HT) metamorphic envelope. The age of the LP/HT metamorphism is estimated at ~90–100 Ma using the method of electron microprobe based monazite dating. The Central Granite was dated at 82 ± 1 Ma (LA-SF-ICP-MS zircon age). The metamorphic complex comprises mainly felsic anatexites and orthogneisses of granitic composition, some metapelites (paragneisses and mica schists) and amphibolites. Zircons from three different samples of metagranite were dated at 486 ± 6, 483 ± 6, and 491 ± 1 Ma, suggesting that most of the metamorphic complex represents an Early Ordovician granitic series. The Cretaceous regional metamorphism culminated in granulite facies conditions of ~750°C and 3–4 kbar. A retrograde metamorphic event at lower amphibolite facies conditions overprinted the metamorphic complex. This event is probably related to the intrusion of the Central Granite. The southeastern sector of the massif was additionally affected by post-granitic, predominantly NE oriented shearing at greenschist facies conditions. As yet there is no clear evidence for Variscan events in the Moslavačka Gora Massif. Mineral relics of a medium-pressure amphibolite facies metamorphism are preserved in amphibolites. They are older than the Cretaceous LP/HT regional metamorphism, but their age is presently unknown. Some indications for a Permian regional metamorphic event are provided by inherited zircons in the Central Granite that have been dated with a Permian age, and by Permian monazite relics in metapelites. The Cretaceous high heat flow regime recorded in the Moslavačka Gora Massif is unique in the subcrop of the Pannonian Basin and may be a local feature triggered by a mafic intrusion in the lower crust.  相似文献   

13.
Phanerozoic primary tin and tungsten deposits and lithium–cesium–tantalum (LCT) type pegmatites define discontinuous belts that reach several thousand kilometers length. Mineralization along these belts is irregularly distributed, diachronous, and occurs in different tectonic settings on both sides of major sutures. Although these deposits formed during late magmatic differentiation processes, magmatism may be related to different geodynamic settings, in particular subduction, continental collision, and anorogenic extension. Here we test the hypothesis that the formation of these belts is explained by a generic process, involving three independent steps as prerequisite for the development of deposits: (i) intense chemical weathering of sedimentary rocks on a stable continent resulting in the enrichment of Sn and W in the protoliths, (ii) sedimentary—followed by tectonic—accumulation of the enriched debris at continent margins, and (iii) heating of the voluminous sedimentary protoliths generating Sn and/or W enriched melts. The Sn and/or W belts reflect the spatial distribution of enriched protoliths, whereas the discontinuous distribution of Sn and W mineralization within the belts reflects both, the locally extreme sedimentary and tectonic accumulation and the distribution of heat sources.
  • (i)Intense chemical weathering results in the preferential loss of most feldspar-bound elements (e.g., Na, Ca, Sr, and Pb) and the residual enrichment of elements incorporated in or adsorbed on clay minerals (e.g., Li, K, Rb, Cs, Sn, and W), i.e., produces some of the hallmark geochemical signatures of tin granites that also are obtained by extreme magmatic fractionation of granitic melts. Intense chemical weathering occurs in tectonically stable areas with limited topography and may be particularly pronounced in the interior of large continental masses, such as late Proterozoic Rodinia, late Proterozoic to Cambrian Gondwana, and late Paleozoic to early Mesozoic Pangea.
  • (ii)Sedimentary accumulation occurs when these blankets of chemically intensely weathered sediments are redistributed from the continent interior to the margins of the continent. This fluviatile redistribution is typically related to the fragmentation of megacontinents or supercontinents. Tectonic accumulation may occur when passive-margin sedimentary packages later are reworked in an active margin setting.
  • (iii)The nature of the heat source controls type of mineralization and its relation to plate boundaries. Internal heating in orogenically thickened crust generates minimum-temperature melts that mobilize elements hosted in feldspar and muscovite and may generate granites and pegmatites with LCT-type signature. The formation of Sn and W mineralization requires higher temperatures to consume biotite. Such temperatures require heat advection from the mantle by (a) mantle-derived melts in subduction setting, (b) emplacement of ultrahigh-temperature metamorphic rocks that had been subducted to mantle depth during continental collision, or (c) mantle-derived melts in extensional settings. The age of mineralization within belt reflects the event of heat input.
The distribution of Sn and W mineralization within belts is the superposition of processes at the passive margin and processes at the active margin. Source enrichment and distribution is related to megacontinents (chemical weathering) and their fragmentation (sedimentary accumulation at the margin of fragments from a megacontinent). Therefore, Sn and W belts generally border to fragments of former megacontinents. Metal mobilization from the source rocks is controlled by the distribution of the heat sources and, thus, by processes at an active margin. The generic model explains both the arrangement of Sn and W mineralization in belts and their distribution with the belts. It allows for recurrent formation of mineralization within a single belt in contrasting tectonic settings and to both sides of major sutures. With source enrichment and source accumulation being necessary requirements of mineralization, the generic model also explains unmineralized gaps within Sn and W belts and why there are unmineralized magmatic belts of comparable setting and with granitic rocks of comparable magmatic development. Areas without voluminous packages of enriched protoliths or without ample heat sources to mobilize the ore elements from the protoliths have a low potential for hosting Sn and W mineralization.  相似文献   

14.
Heat treatment was performed on selected Fe-dominant tourmalines to establish the nature of any change in optical properties. Two tourmaline samples from Dolní Bory, Czech Republic (TDB) and Vlachovo, Slovakia (TVL) were heated at 450, 700 and 900°C at 0.1 mPa and ambient oxidation conditions for 8 h. EMPA study shows that tourmaline from Vlachovo has schorlitic composition and tourmaline from Dolní Bory is alkali-depleted schorl to foitite. Although the black colour remained unchanged after heating at 450°C, it changed to brown at 700°C and reddish brown at 900°C. No significant changes of chemical composition were observed during heating. X-ray diffraction, infrared and Mössbauer study showed negligible oxidation of tourmaline heated at 450°C, but a significant change in iron valency state and deprotonization at 700°C. The oxidation of Fe is the main cause of tourmaline colour change, and the substitution vector for oxidation of Fe is Fe3+OFe ?1 2+ (OH)?1. The predicted deprotonization of OH was confirmed by infrared spectroscopy, which documented a decrease in OH groups in both samples, mainly at the V site. The oxidation of Fe is mostly significant in the Y site as documented on the compression of the Y-site octahedra and subsequent decrease in the a lattice parameter. This feature is consistent with lattice dimensions in the transition from schorl and foitite dimensions to those consistent with fluor-buergerite. The Z-site octahedra did not compressed and were not affected by heating-induced Fe oxidation, which indicates only negligible content of Z Fe2+ in original samples. After heating at 900°C, the tourmaline structure collapsed likely due to the thermally induced weakening of bonds in Y and Z octahedra, which results in amorphization of tourmaline. Subsequently, breakdown products including Fe-oxides and mullite replaced alkali-depleted amorphized tourmaline.  相似文献   

15.
Two methods applying natural heat as a tracer to quantify surface water–groundwater exchange were evaluated using field data. Arrays capable of monitoring and recording the streambed response to diurnal temperature variations in the surface water were deployed for a 2-month period in three locations in perennial pools at Maules Creek, New South Wales, Australia. Multi-level array design, field deployment and parameter estimation are discussed. The applicability of analytical solutions derived from the heat transport equation to the streambed environments was analysed using the recorded temperature time series. The stream was found to lose water to the aquifer, which was supported by simultaneously recorded hydraulic gradients. However, the one-dimensional (1D) analytical solutions did not adequately describe the observed streambed thermal response at two locations. The resulting artefacts in the estimated flow velocities are discussed. It was hypothesised that the artefacts originate from model limitation due to streambed heterogeneity and application of 1D solutions to multi-dimensional and dynamic streambed flow. This consequently imposes limitations on the field applicability of the methods. Nevertheless, in combination with time series of surface water and streambed water levels, the use of heat as a tracer provided a powerful tool for better understanding the shallow hydrogeological system.  相似文献   

16.
《Atmósfera》2014,27(3):317-334
The Loop Current and its shed eddies dominate the circulation and dynamics of the Gulf of Mexico (GoM) basin. Those eddies are strongly energetic and are the cause of intense currents that may penetrate several hundred meters deep. However, there are regions in the GoM and periods of time in which the local atmospheric forcing plays an important role in its dynamics and thermodynamics. The circulation on the shelves, and particularly on the inner shelf, is mainly wind-driven with seasonality, changing direction during the year with periods of favorable upwelling/downwelling conditions. The wind-driven circulation is associated with the transport of waters with different temperature and salinity characteristics from one region to another. The interannual variability of the circulation on the shelves is linked to the atmospheric variability. Intraseasonal variability of the wind patterns considerably affects the likelihood and magnitude of upwelling and downwelling. The geometry of the GoM is such that large-scale winds may drive opposing upcoast/downcoast currents along different parts of the curving coast, resulting in convergence or divergence zones. The width of the shelves in the GoM is variable;while the West Florida Shelf, the Texas-Louisiana shelf and the Campeche Bank are more than 200 km wide, they are narrower near Veracruz and Tabasco. Another consequence of the GoM physiography and the wind forcing is the development of cross-shelf transports in the southern Bay of Campeche, the southern Texas shelf and southeast of the Mississippi river, which in turn vary during the year. During autumn-winter (from September to April), the GoM is affected by cold fronts coming from the northwest United States, which are associated with strong, dry, and cold winds that mix its waters and generate large sensible and latent heat fluxes from the ocean to the atmosphere. These frontal passages also cool the GoM surface waters due to mixing with lower temperature subsurface waters. During summer, tropical cyclones crossing the GoM can dramatically affect circulation and coastal upwelling.  相似文献   

17.
Time-series data on upper-ocean temperature, Vessel-Mounted Acoustic Doppler Current Profiler (VM-ADCP) measured currents and surface meteorological parameters have been obtained for the first time in the southern Bay of Bengal at 7‡N, 10‡N, and 13‡N locations along 87‡E during October–November, 1998 under BOBMEX-Pilot programme. These data have been analysed to examine the diurnal variability of upper oceanic heat budget and to estimate the eddy diffusivity coefficient of heat in the upper layer. Diurnal variation of near-surface temperature is typical at northern location (13‡N) with a range of 0.5‡C while the diurnal range of temperature is enhanced to 0.8‡C at the central location (10‡N) due to intense solar radiation (1050 W/m2), clear skies and low wind speeds. At the southern location (7‡N), the diurnal variation of temperature is atypical with the minimum temperature occurring at 2000 hrs instead of at early morning hours. In general, the diurnal curve of temperature penetrated up to 15 to 20 m with decreasing diurnal range with depth. The VM-ADCP measured horizontal currents in the upper ocean were predominantly easterly/northeasterly at southern location, north/northerly at central location and northwesterly at northern location, thus describing a large-scale cyclonic gyre with the northward meridional flow along 87‡E. The magnitudes of heat loss at the surface due to air-sea heat exchanges and in the upper 50 m layer due to vertical diffusion of heat are highest at the southern location where intense convective activity followed by overcast skies and synoptic disturbance prevailed in the lower atmosphere. This and the estimated higher value (0.0235 m2/s) of eddy diffusivity coefficient of heat in the upper ocean (0–50 m depth) suggest that 1-D processes controlled the upper layer heat budget at the southern location. On the other hand, during the fair weather conditions, at the central and northern locations, the upper layer gained heat energy, while the sea surface lost (gained) heat energy at northern (central) location. This and lower values of eddy diffusivity coefficient of heat (0.0045 and 0.0150 m2/s) and the northward intensification of horizontal currents at these locations suggest the greater role of horizontal heat advection over the 1-D processes in the upper ocean heat budget at these two locations.  相似文献   

18.
19.
A series of synthetic Ca-Tschermak–diopside (CaAlAlSiO6–CaMgSi2O6) clinopyroxenes were investigated by powder infrared spectroscopy at room temperature in the wavenumber range 80–2,000 cm−1. Measurable local structural heterogeneities in the crystals are suggested by the line broadening parameter, Δcorr that are observed for intermediate solid-solution compositions. The broadening is most pronounced in the high wavenumber region of the IR spectra that contains stretching modes involving the TO4 polyhedra. The effective line widths for three selected wavenumber regions deviate positively from linear behavior. This is also observed for the enthalpy of mixing of this solid solution. The relationship between “excess Δcorr”, δΔcorr, and heat of mixing, ΔH mix, behavior was investigated for this clinopyroxene series and for several other binary silicate solid solutions. The ΔH mix versus δΔcorr slope values show a linear relationship with respect to the integrated excess volume of the various solid solutions.  相似文献   

20.
Fresh rocks sampled from the 14.0°S hydrothermal field of the South Atlantic Ridge can be divided into two categories: olivine-gabbro and basalt. The olivine-gabbro is composed mainly of three types of minerals: olivine, clinopyroxene and plagioclase, while a multitude of melt inclusions occur in the plagioclase phenocrysts of the basalts. We analyzed the whole-rock, major and trace elements contents of the basaks, the mineral chemistry of phenocrysts and melt inclusions in the basalts, and the mineral chemistry of olivine-clinopyroxene-plagioclase in the olivine-gabbro, then simulated magma evolution within the crust using the COMAGMAT program. The whole-rock geochemistry shows that all the basalts exhibit typical N-MORB characteristics. In addition, the mineral chemistry characteristics of the olivine-gabbro (low-Fo olivine, low-Mg# clinopyroxene, high-TiO2 clinopyroxene, low-An plagioclase), show that strong magma differentiation occurred within the crust. Nevertheless, significant discrepancies between those minerals and phenocrysts in the basalts (high-Fo olivine, high-An plagioclase) reflect the heterogeneity of magma differentiation. High Mg# (-~0.72) melt inclusions isobaric partial crystallization simulations suggest that the magma differentiation occurred at the depth shallower than 13.03 km below the seafloor, and both the vertical differentiation column shows distinct discrepancies from that of a steady-state magma chamber. Instead, a series of independent magma intrusions probably occurred within the crust, and their corresponding crystallized bodies, as the primary high-temperature thermal anomalies within the off-axis crust, probably act as the heat source for the development of the 14.0°S hydrothermal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号