首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
<正>行星的形成与分异的时标和机理可以用短寿命放射性同位素体系量化。182Hf经β-衰变为182W,其半衰期为8.90±0.09Ma[1],属于典型的短寿命放射性核素。利用该同位素体系,可用于限制行星和星子的增积、金属相与硅酸盐相分异时间(如核形成)及可应用于研究地球、月球等早期演化及核形成时间。近年来,许多学者利用Hf-W同位素体系做了如下研究:1)太阳系的起源和它的早期增生与分异[2-3];2)月球的年  相似文献   

2.
地球核幔相互作用的研究难点在于无法获得实际样品。洋岛玄武岩和溢流玄武岩被认为是地幔柱减压熔融的产物,携带了核幔边界的物质信息,可作为研究地球核幔相互作用的样品。182Hf-182W同位素体系的特殊化学性质,使W同位素成为研究核幔相互作用的重要工具。本文介绍了W同位素示踪的基本原理,并回顾了核幔相互作用的W同位素研究进展。目前已发表的数据表明,全球洋岛玄武岩具有W元素丰度富集(67×10-9~855×10-9)、182W同位素亏损(μ182W=-0.1~-16.1)的特征,由此推断洋岛玄武岩可能来源于核幔平衡源区。Baffin Bay和Ontong Java Plateau溢流玄武岩则具有182W富集(μ182W=23.4)的特征,可能来源于早期地幔源区。洋岛玄武岩和溢流玄武岩的μ182W差异可能是由地幔柱头尾异质性引起。此外,引起μ182W异常的其他原因可能有:原始地幔...  相似文献   

3.
<正>176Lu-176Hf同位素衰变体系是研究硅酸盐固体行星分异演化的一个重要工具,也能为认识地球最早期地壳的起源提供有利手段。然而,对于Lu-Hf同位素体系数据的解释,需要首先建立完好的地球总体Hf同位素的生长曲线。Lu和Hf均是难熔(highly refractory)的中等-强不相容元素。陨石中的Lu-Hf同位素组成是研究地球全球或硅酸盐地球Lu-Hf同位素组成的重要参考。然而,现代地球的176Hf/177Hf值和球粒陨石中的176Hf/177Hf值(即CHUR化学储库)相比有很大的变化范围,也  相似文献   

4.
支霞臣  秦协 《地球科学》2006,31(1):23-30
Re-Os同位素体系为研究地幔的成分-结构-演化提供了新的地球化学示踪和定年的工具.上地幔Os同位素组成演化的球粒陨石模型是Re-Os体系用于地幔物质定年的基础, 尤其在采用Re亏损模式年龄和Os同位素代理等时线年龄时.综合了铁陨石和各类球粒陨石、地幔橄榄岩包体和蛇绿岩豆荚状铬铁矿的Re-Os同位素体系研究的近期成果, 为认识对流上地幔Os同位素组成的演化提供了制约.对河北遵化蛇绿岩豆荚状铬铁矿岩的研究, 获得新太古代(2.5 Ga)时形成豆荚状铬铁矿的对流上地幔的187Os/188Os=0.110 2, 与球粒陨石型模式的一致.文献中常用的球粒陨石模式的参数如下: 地球形成时(4.558 Ga)初始值187Os/186Os为0.095 31, 现代值分别采用碳质球粒陨石的187Os/186Os比值为0.127 0和原始上地幔(PUM)的187Os/186Os比值为0.129 6, PUM与普通球粒陨石和顽火球粒陨石的187Os/186Os比值接近.   相似文献   

5.
大别地体超高压变质岩石锆石Lu-Hf同位素研究   总被引:2,自引:3,他引:2  
对大别山南部超高压变质带双河和黄镇地区的榴辉岩、片麻岩和硬玉石英岩中变质锆石进行了原位LA-MC-ICP- MS的Lu-Hf同位素分析。双河和黄镇的榴辉岩及双河的硬玉石英岩有低~(176)Lu/~(177)Hf和低~(176)Hf/~(177)Hf组成,两地的片麻岩有高~(176)Hf/~(177)Hf比和高且分散的~(176)Lu/~(177)Hf组成。锆石Hf同位素分布主要受变质原岩的形成时代控制,增生锆石基本上继承了原岩锆石的Hf同位素特征,既有增生锆石相对有低~(176)Lu/~(177)Hf和高~(176)Hf/~(177)Hf、继承重结晶锆石相对有高~(176)Lu/~(177)Hf和低~(176)Hf/~(177)Hf的特征,也有二者相互重叠没有区别的,它主要受原岩性质和变质过程中锆石遭受的溶蚀程度控制。增生锆石的低Lu/Hf是锆石在变质过程中Lu含量下降和Hf含量增高造成的,增生锆石的高~(176)Hf/~(177)Hf继承自岩石中其它高Lu/Hf比矿物的长期演化。继承锆石的初始Hf同位素组成ε_(Hf)值和亏损地幔模式年龄T_(DM)示踪表明,各超高压变质原岩的时代和成因是复杂的:双河榴辉岩原岩物质源自25亿年的亏损地幔和至少27亿年以上的古老晚太古地壳混合。双河片麻岩原岩年龄相同,但有不同的壳幔混合物源。黄镇榴辉岩原岩主要源于亏损幔源岩浆形成的初生地壳的重循环,很少的地壳混染。黄镇片麻岩和榴辉岩的物源区年龄相同。两地片麻岩原岩物源主要来自弱亏损地幔,存在古老地壳物质和地幔物质的混合。大别地区超高压变质岩锆石的Lu-Hf同位素特征主要反映了7~8亿年和18~19亿年时扬子克拉通北缘地区的岩浆活动特点和大地构造环境。  相似文献   

6.
W同位素的高精度测定对于研究地球、月球和太阳系其他行星的起源和早期演化、核幔相互作用等领域具有重要意义。本文开展了负离子热电离质谱(NTIMS)高精度W同位素测定方法研究(测定WO_3~-)。采用多接收动态跳扫方式对W同位素进行测定,实时在线测定~(18)O/~(16)O,并利用实验室实时在线氧校正NTIMS Os同位素分析时获得的~(17)O/~(16)O-~(18)O/~(16)O同位素分馏趋势线计算~(17)O/~(16)O,进行氧校正计算。对多接收动态和多接收静态数据处理方式及不同的同位素分馏校正方法进行了详细对比研究。在上述工作基础上,最终建立了以~(186)W/~(184)W=0.92767进行标准化,采用多接收动态方法进行数据处理的在线氧校正W同位素NTIMS测定方法。~(182)W/~(184)W测定结果的外部精度(2RSD)可达3×10~(-6)~6×10~(-6),基本满足地球、月球和行星早期演化等W同位素研究工作的需要。  相似文献   

7.
亲铜(亲铁)元素在行星增生演化、核幔分异、地幔岩浆过程、壳幔相互作用以及金属矿床成因等领域具有举足轻重的作用。本文从亲铜元素的地球化学性质出发,介绍了"高维度思维"的亲铜元素含量比值及其在地球科学领域的初步应用:①获得同一份样品中不同亲铜元素含量可在一定程度上降低样品的不均一性(块金效应)对含量比值的影响;②Cu/Ag值可以约束不同高温岩浆过程中硫化物固液状态和亲铜元素地球化学性质,进而认识地幔、洋壳和大陆地壳间的联系;③具有不同分配系数的亲铜元素含量的比值可以鉴别岩浆硫化物饱和史,比如通过亲铜元素的分异约束火星陨石母岩浆的硫化物不饱和演化历史;④依据In-Cd-Zn在硅酸盐地球的含量以及它们的相对亲铜亲铁性质,地球主体增生物质已经消失,不能由陨石代表。  相似文献   

8.
镍(Ni)具有独特的地球化学性质,其同位素在示踪早期地球的演化、大氧化事件、雪球地球、生物大灭绝、岩浆硫化物矿床成矿作用等方面显示出重要的潜力。本文系统综述了当前高温地质过程Ni同位素研究进展。已有研究初步查明了不同地质储库的Ni同位素变化范围。基于已发表的地幔橄榄岩、MORB、OIB和科马提岩的Ni同位素数据,估算全硅酸盐地球(Bulk Silicate Earth, BSE)的δ60NiBSE均值为0.10‰±0.18‰(2SD,n=179)。根据上述已有的Ni同位素数据,并结合实验岩石学和模拟计算,发现:(1)核幔分异过程不会产生可分辨的Ni同位素分馏;(2)地幔部分熔融和玄武质岩浆结晶分异过程不会产生显著的Ni同位素分馏;(3)地幔的Ni同位素组成明显不均一,可能与地幔交代和再循环物质加入相关;(4)岩浆硫化物熔离和分离结晶可能是导致Ni同位素分馏的重要过程。本文最后介绍了最新的Ni同位素研究实例,并尝试指出研究中存在的科学问题和探讨未来的发展前景。  相似文献   

9.
大别山超高压榴辉岩和花岗片麻岩中锆石Lu-Hf同位素研究   总被引:2,自引:11,他引:2  
对大别山超高压榴辉岩和花岗片麻岩进行了锆石Lu-Hf同位素分析,结果为原岩来源提供了制约,表明扬子陆块在Rodinia超大陆裂解时的裂谷岩浆活动中发生了显著的陆壳生长。对这些锆石的不同区域进行的U-Pb和Lu-Hf同位素分析和比较表明,不同成因的锆石在~(206)Pb/~(238)U年龄、初始Hf同位素组成、Th/U及Lu/Hf比值等方面具有明显的差异。与年龄较老的岩浆核部和幔部相比,年轻的变质增生边具有低的Th/U和Lu/Hf比值但高的ε_(Hf)(t)值。不同成因锆石的Th/U和Lu/Hf比值存在着正相关性,表明变质作用对锆石的U-Th-Pb和Lu-Hf同位素体系有着相似的影响。高级变质作用有时能够引起岩浆锆石增生边~(176)Hf/~(177)Hf比值的显著升高,导致变质新生颗粒或增生边类似于新生地壳的高ε_(Hf)(t)值假象。对榴辉岩和片麻岩锆石核部的分析发现,镁铁质和长英质原岩在大约750Ma左右形成一个双峰式火山岩套,另外包含少量的年龄约为2.15Ga的陆壳。初始Hf同位素组成可分成两组:第一组具有正的ε_(Hf)(t)值,为5.9±0.9~12.9±0.7;第二组ε_(Hf)(t)值在零左右,为-4.3±0.5-2.3±0.3。正的ε_(Hf)(t)值与较年轻的模式年龄相对应,负的ε_(Hf)(t)值与古元古代模式年龄相对应。前者表明,在扬子陆块北缘裂谷岩浆作用将亏损地幔物质加入到大陆地壳中,同时在新元古代中期的裂谷构造带中存在同时期的壳-幔相互作用。因此,在扬子陆块北缘新元古代中期裂谷岩浆活动中,既有新生地壳生长和即时再造,也有古老地壳再造。  相似文献   

10.
强亲铁元素(HSE)包括铂族元素(PGE):Os、Ir、Ru、Rh、Pt、Pd)及Re、Au,它们对金属与硫化物相具有强烈的亲和性,这种独特性质使其成为高温地球化学与天体化学研究中的优秀示踪剂。此外,强亲铁元素内含两种长半衰期(187Re-187Os,t1/2=41.6 Ga;190Pt-186Os,t1/2=469 Ga)和一种短半衰期(107Pd-107Ag,t1/2=6.5 Ma)放射性同位素衰变体系,可以用作地球与天体演化的时钟。在地幔部分熔融或分离结晶期间,PPGE(Rh、Pd、Pt)与Re、Au倾向于进入熔体相,IPGE(Os、Ir、Ru)则更多保留在残余固相。因此,通过地幔包体、地幔构造岩、镁铁质与超镁铁质火山岩的HSE丰度与Os同位素可约束地幔组成和相应的岩浆过程,以及制约地球早期演化过程。随着分析技术的改进,HSE与Re-Pt-Os同位素在行星增生与分异、核幔相互作用、壳幔分异、洋陆转换、克拉通形成与破坏、岩石圈俯冲再循环以及Ni-Cu-PGE矿床成因等方面均显示了巨大的应用潜力。  相似文献   

11.
The 182Hf-182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ∼1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al-26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ∼3 Myr after CAI formation and may have continued until ∼10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ∼20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained.The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to changing fO2 in differentiating planetary bodies. Calculated core formation ages for Mars range from 0 to 20 Myr after CAI formation and currently cannot distinguish between scenarios where Mars formed by runaway growth and where its formation was more protracted. Tungsten model ages for core formation in Earth range from ∼30 Myr to >100 Myr after CAIs and hence do not provide a unique age for the formation of Earth. However, the identical 182W/184W ratios of the lunar and terrestrial mantles provide powerful evidence that the Moon-forming giant impact and the final stage of Earth’s core formation occurred after extinction of 182Hf (i.e., more than ∼50 Myr after CAIs), unless the Hf/W ratios of the bulk silicate Moon and Earth are identical to within less than ∼10%. Furthermore, the identical 182W/184W of the lunar and terrestrial mantles is difficult to explain unless either the Moon consists predominantly of terrestrial material or the W in the proto-lunar magma disk isotopically equilibrated with the Earth’s mantle.Hafnium-tungsten chronometry also provides constraints on the duration of magma ocean solidification in terrestrial planets. Variations in the 182W/184W ratios of martian meteorites reflect an early differentiation of the martian mantle during the effective lifetime of 182Hf. In contrast, no 182W variations exist in the lunar mantle, demonstrating magma ocean solidification later than ∼60 Myr, in agreement with 147Sm-143Nd ages for ferroan anorthosites. The Moon-forming giant impact most likely erased any evidence of a prior differentiation of Earth’s mantle, consistent with a 146Sm-142Nd age of 50-200 Myr for the earliest differentiation of Earth’s mantle. However, the Hf-W chronology of the formation of Earth’s core and the Moon-forming impact is difficult to reconcile with the preservation of 146Sm-142Nd evidence for an early (<30 Myr after CAIs) differentiation of a chondritic Earth’s mantle. Instead, the combined 182W-142Nd evidence suggests that bulk Earth may have superchondritic Sm/Nd and Hf/W ratios, in which case formation of its core must have terminated more than ∼42 Myr after formation of CAIs, consistent with the Hf-W age for the formation of the Moon.  相似文献   

12.
The short-lived 182Hf-182W-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic 182Hf-182W-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 ε182W units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while 182Hf was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value.  相似文献   

13.
The estimation of the time of Earth??s core formation on the basis of isotopic systems with short-lived and long-lived parent nuclides gives significantly different results. Isotopic data for the 182Hf-182W system with a 182Hf half-life of approximately 9 Myr can be interpreted in such a way that the core was formed 34 Myr after the origin of the solar system assuming complete core-mantle equilibrium. Similar estimates on the basis of the U-Pb isotopic system suggest a significantly longer mean time of core formation of approximately 120 Myr. If the Earth??s core were formed instantaneously, both isotopic systems would have shown identical values corresponding to the true age. The discrepancy between the U-Pb and Hf-W systems can be resolved assuming prolonged differentiation of prototerrestrial material into silicate and metallic phases, which occurred not simultaneously and uniformly in different parts of the mantle. This resulted in the isotopic heterogeneity of the mantle, and its subsequent isotopic homogenization occurred slowly. Under such conditions, the mean isotopic compositions of W and Pb in the mantle do not correspond to the mean time of the separation of silicate and metallic phases. This is related to the fact that the exponential function of radioactive decay is strongly nonlinear at high values of the argument, and its mean value does not correspond to the mean value of the function. There are compelling reasons to believe that the early mantle was heterogeneous with respect to W isotopic composition and was subsequently homogenized by convective mixing. This follows from the fact that the lifetime of isotopic heterogeneities in the mantle is close to 1.8 Gyr for various long-lived isotopic systems. There is also no equilibrium between the mantle and the core with respect to the contents of siderophile elements. Because of this, the mean isotopic ratios of W and Pb cannot be used for the direct computation of the time of metal-silicate differentiation in the Earth. Such estimation requires more sophisticated models accounting for the duration of the differentiation process using several isotope pairs. Given the prolonged core formation, which has probably continued up to now, the question about its age becomes ambiguous, and only the most probable growth rate of the core can be estimated. The combined use of the U-Pb and Hf-W systems constrains the time of formation of 90% of the core mass between 0.12 and 2.7 billion years. These model estimates could have been realistic under the condition of complete disequilibrium between the silicate and metallic phases, which is as improbable as the suggestion of complete equilibrium between them on the whole Earth scale.  相似文献   

14.
The Earth’s tungsten budget during mantle melting and crust formation   总被引:1,自引:0,他引:1  
During silicate melting on Earth, W is one of the most incompatible trace elements, similar to Th, Ba or U. As W is also moderately siderophile during metal segregation, ratios of W and the lithophile Th and U in silicate rocks have therefore been used to constrain the W abundance of the Earth’s mantle and the Hf-W age of core formation. This study presents high-precision W concentration data obtained by isotope dilution for samples covering important silicate reservoirs on Earth. The data reveal significant fractionations of W from other highly incompatible lithophile elements such as Th, U, and Ta. Many arc lavas exhibit a selective enrichment of W relative to Th, U, and Nb-Ta, reflecting W enrichment in the sub-arc mantle via fluid-like components derived from subducting plates. In contrast, during enrichment by melt-like subduction components, W is generally slightly depleted relative to Th and U, but is still enriched relative to Ta. Hence, all arc rocks and the continental crust exhibit uniformly low Ta/W (ca. 1), whereas W/Th and W/U may show opposite fractionation trends, depending on the role of fluid- and melt-like subduction components. Further high-precision W data for OIBs and MORBs reveal a systematic depletion of W in both rock types relative to other HFSE, resulting in high Ta/W that are complementary to the low Ta/W observed in arc rocks and the continental crust. Similar to previous interpretations based on Nb/U and Ce/Pb systematics, our Ta/W data confirm a depletion of the depleted upper mantle (DM) in fluid mobile elements relative to the primitive mantle (PRIMA). The abundance of W in the depleted upper mantle relative to other immobile and highly incompatible elements such as Nb and Ta is therefore not representative of the bulk silicate Earth. Based on mass balance calculations using Ta-W systematics in the major silicate reservoirs, the W abundance of the Earth’s primitive mantle can be constrained to 12 ppb, resulting in revised ratios of W-U and W-Th of 0.53 and 0.14, respectively. The newly constrained Hf-W ratio of the silicate Earth is 25.8, significantly higher than previously estimated (18.7) and overlaps within error the Hf-W ratio proposed for the Moon (ca. 24.9). The 182Hf-182W model age for the formation of the Earth’s core that is inferred from the 182W abundance and the Hf/W of the silicate Earth is therefore younger than previously calculated, by up to 5 Myrs after solar system formation depending on the accretion models used. The similar Hf/W ratios and 182W compositions of the Earth and the silicate Moon suggest a strong link between the Moon forming giant impact and final metal-silicate equilibration on the Earth.  相似文献   

15.
Lunar rocks are inferred to tap the different fossil cumulate layers formed during crystallisation of a lunar magma ocean (LMO). A coherent dataset, including Zr isotope data and high precision HFSE (W, Nb, Ta, Zr, Hf) and REE (Nd, Sm, Lu) data, all obtained by isotope dilution, can now provide new insights into the processes active during LMO crystallisation and during the petrogenesis of lunar magmas. Measured 92Zr and 91Zr abundances agree with the terrestrial value within 0.2 ε-units. Incompatible-trace-element enriched rocks from the Procellarum KREEP Terrane (PKT) display Nb/Ta and Zr/Hf above the bulk lunar value (ca. 17), and mare basalts display lower ratios, generally confirming the presence of complementary enriched and depleted mantle reservoirs on the Moon. The full compositional spectrum of lunar basalts, however, also requires interaction with ilmenite-rich layers in the lunar mantle. Notably, the high-Ti mare basalts analysed display the lowest Nb/Ta and Zr/Hf of all lunar rocks, and also higher Sm/Nd at similar Lu/Hf than low-Ti basalts. The high-Ti basalts also exhibit higher and strongly correlated Ta/W (up to 25) and Hf/W (up to 140), at similar W contents, which is difficult to reconcile with ortho- and clinopyroxene-controlled melting. Altogether, these patterns can be explained via assimilation of up to ca. 20% of ilmenite- and clinopyroxene-rich LMO cumulates by more depleted melts from the lower lunar mantle. Direct melting of ilmenite-rich cumulates or the possible presence of residual metals in the lunar mantle both cannot easily account for the observed Ta/W and Hf/W patterns. Cumulate assimilation is also a viable mechanism that can partially buffer the Lu/Hf of mare basalts at relatively low values while generating variable Sm/Nd. Thus, the dichotomy between low Lu/Hf of lunar basalts and high time integrated source Lu/Hf as inferred from Hf isotope compositions can potentially be explained. The proposed assimilation model also has important implications for the short-lived nuclide chronology of the Earth-Moon system. The new Hf/W and Ta/W data, together with a compilation of existing W-Th-U data for lunar rocks, indicate that the terrestrial and lunar mantles are indistinguishable in their Hf/W. Virtually identical εW and Hf/W in the terrestrial and lunar mantle suggest a strong link between final core-mantle equilibration on Earth and the Moon forming giant impact. Previously, linear arrays of lunar samples in 182W vs. Hf/W and 142Nd vs. Sm/Nd spaces have been interpreted as isochrons, arguing for LMO crystallisation as late as 250 Myrs after solar system formation. Based on the proposed assimilation model, the 182W and 142Nd in many lunar magmas can be shown to be decoupled from their ambient Hf/W and Sm/Nd source compositions. As a consequence, the 182W vs. Hf/W and 142Nd vs. Sm/Nd arrays would constitute mixing lines rather than isochrons. Hence, the lunar 182Hf-182W and 146Sm-142Nd data would be fully consistent with an “early” crystallisation age of the LMO, even as early as 50 Myrs after solar system formation when the Moon was probably formed.  相似文献   

16.
The timescale of accretion and differentiation of asteroids and the terrestrial planets can be constrained using the extinct 182Hf-182W isotope system. We present new Hf-W data for seven carbonaceous chondrites, five eucrites, and three shergottites. The W isotope data for the carbonaceous chondrites agree with the previously revised 182W/184W of chondrites, and the combined chondrite data yield an improved ?W value for chondrites of −1.9 ± 0.1 relative to the terrestrial standard. New Hf-W data for the eucrites, in combination with published results, indicate that mantle differentiation in the eucrite parent body (Vesta) occurred at 4563.2 ± 1.4 Ma and suggest that core formation took place 0.9 ± 0.3 Myr before mantle differentiation. Core formation in asteroids within the first ∼5 Myr of the solar system is consistent with the timescales deduced from W isotope data of iron meteorites. New W isotope data for the three basaltic shergottites EETA 79001, DaG 476, and SAU 051, in combination with published 182W and 142Nd data for Martian meteorites reveal the preservation of three early formed mantle reservoirs in Mars. One reservoir (Shergottite group), represented by Zagami, ALH77005, Shergotty, EETA 79001, and possibly SAU 051, is characterized by chondritic 142Nd abundances and elevated ?W values of ∼0.4. The 182W excess of this mantle reservoir results from core formation. Another mantle reservoir (NC group) is sampled by Nakhla, Lafayette, and Chassigny and shows coupled 142Nd-182W excesses of 0.5-1 and 2-3 ? units, respectively. Formation of this mantle reservoir occurred 10-20 Myr after CAI condensation. Since the end of core formation is constrained to 7-15 Myr, a time difference between early silicate mantle differentiation and core formation is not resolvable for Mars. A third early formed mantle reservoir (DaG group) is represented by DaG 476 (and possibly SAU 051) and shows elevated 142Nd/144Nd ratios of 0.5-0.7 ? units and ?W values that are indistinguishable from the Shergottite group. The time of separation of this third reservoir can be constrained to 50-150 Myr after the start of the solar system. Preservation of these early formed mantle reservoirs indicates limited convective mixing in the Martian mantle as early as ∼15 Myr after CAI condensation and suggests that since this time no giant impact occurred on Mars that could have led to mantle homogenization. Given that core formation in planetesimals was completed within the first ∼5 Myr of the solar system, it is most likely that Mars and Earth accreted from pre-differentiated planetesimals. The metal cores of Mars and Earth, however, cannot have formed by simply combining cores from these pre-differentiated planetesimals. The 182W/184W ratios of the Martian and terrestrial mantles require late effective removal of radiogenic 182W, strongly suggesting the existence of magma oceans on both planets. Large impacts were probably the main heat source that generated magma oceans and led to the formation metallic cores in the terrestrial planets. In contrast, decay of short-lived 26Al and 60Fe were important heat sources for melting and core formation in asteroids.  相似文献   

17.
Recent 182Hf-182W age determinations on Allende Ca-, Al-rich refractory inclusions (CAIs) and on iron meteorites indicate that CAIs have initial ε182W (−3.47 ± 0.20, 2σ) identical to that of magmatic iron meteorites after correction of cosmogenic 182W burn-out (−3.47 ± 0.35, 2σ). Either the Allende CAIs were isotopically disturbed or the differentiation of magmatic irons (groups IIAB, IID, IIIAB, and IVB) all occurred <1 m.y. after CAI formation. To assess the extent of isotopic disturbance, we have analyzed the elemental distribution of Hf and W in two CAIs, Ef2 from Efremovka (CV3 reduced), and Golfball from Allende (CV3 oxidized). Fassaite is the sole host of Hf (10-25 ppm) and, therefore, of radiogenic W in CAIs, with 180Hf/184W > 103, which is lowered by the ubiquitous presence of metal inclusions to 180Hf/184W > 10 in bulk fassaite. Metal alloy (Ni ∼ 50%) is the sole host of W (∼500 ppm) in Ef2, while opaque assemblages (OAs) and secondary veins are the hosts of W in Golfball. A large metal alloy grain from Ef2, EM2, has 180Hf/184W < 0.006. Melilite has both Hf and W below detection limits (<0.01 ppm), but the presence of numerous metallic inclusions or OAs makes melilite a carrier for W, with 180Hf/184W < 1 in bulk melilite. Secondary processes had little impact on the 182Hf-182W systematics of Ef2, but a vein cross-cutting fassaite in Golfball has >100 ppm W with no detectable Pt or S. This vein provides evidence for transport of oxidized W in the CAI. Because of the ubiquitous distribution of OAs, interpretations of the 182Hf-182W isochron reported for Allende CAIs include: (i) all W in the OAs was derived by alteration of CAI metal, or (ii) at least some of the W in OAs may have been equilibrated with radiogenic W during metamorphism of Allende. Since (ii) cannot be ruled out, new 182Hf-182W determinations on CAIs from reduced CV3 chondrites are needed to firmly establish the initial W isotopic composition of the solar system.  相似文献   

18.
Hf isotopes have proven invaluable in understanding the evolution of Earth's crust-mantle system, but their use in reconstructing tectonic environments, in many cases, remains equivocal. In this study, we introduce a new approach to predict the Hf isotopic evolutionary pattern for rifting and collision based on the integration of numerical models and 176Hf/177Hf isotopes. The geodynamic numerical models allow us to estimate the proportion of juvenile material added to the crust through time. On the basis of this proportion, we calculate changing 176Hf/177Hf ratios using mixing models. Predicted Hf isotopic patterns generated through this numerical approach imply that juvenile signals are observed during back-arc extension, whereas evolved signatures dominate collisional settings. We use this novel modeling approach in the case study region of the Halls Creek Orogen to elucidate its tectonic setting through time. In addition, the geochemical features of magmatic rocks in the case study region imply partial melting of a sub-arc mantle wedge with magma-crust interaction on ascent in a convergent margin setting. The links between predicted Hf isotopic evolution, geodynamic numerical models, whole rock geochemistry and measured zircon Hf isotopic evolution trend resolve three discrete stages in the tectonomagmatic development of the Halls Creek Orogen: (1) oceanic crust subduction; (2) back-arc formation with addition of juvenile mantle input; and (3) docking of the North Australian and Kimberley cratons resulting in the development of mixed-source magmatism formed in a collisional setting. We provide a new method to validate geodynamic models with isotopic datasets, which should lead to more rigorous understanding of crustal evolution.  相似文献   

19.
Application of 182Hf-182W chronometry to constrain the duration of early solar system processes requires the precise knowledge of the initial Hf and W isotope compositions of the solar system. To determine these values, we investigated the Hf-W isotopic systematics of bulk samples and mineral separates from several Ca,Al-rich inclusions (CAIs) from the CV3 chondrites Allende and NWA 2364. Most of the investigated CAIs have relative proportions of 183W, 184W, and 186W that are indistinguishable from those of bulk chondrites and the terrestrial standard. In contrast, one of the investigated Allende CAIs has a lower 184W/183W ratio, most likely reflecting an overabundance of r-process relative to s-process isotopes of W. All other bulk CAIs have similar 180Hf/184W and 182W/184W ratios that are elevated relative to average carbonaceous chondrites, probably reflecting Hf-W fractionation in the solar nebula within the first ∼3 Myr. The limited spread in 180Hf/184W ratios among the bulk CAIs precludes determination of a CAI whole-rock isochron but the fassaites have high 180Hf/184W and radiogenic 182W/184W ratios up to ∼14 ε units higher than the bulk rock. This makes it possible to obtain precise internal Hf-W isochrons for CAIs. There is evidence of disturbed Hf-W systematics in one of the CAIs but all other investigated CAIs show no detectable effects of parent body processes such as alteration and thermal metamorphism. Except for two fractions from one Allende CAI, all fractions from the investigated CAIs plot on a single well-defined isochron, which defines the initial ε182W = −3.28 ± 0.12 and 182Hf/180Hf = (9.72 ± 0.44) × 10−5 at the time of CAI formation. The initial 182Hf/180Hf and 26Al/27Al ratios of the angrites D’Orbigny and Sahara 99555 are consistent with the decay from initial abundances of 182Hf and 26Al as measured in CAIs, suggesting that these two nuclides were homogeneously distributed throughout the solar system. However, the uncertainties on the initial 182Hf/180Hf and 26Al/27Al ratios are too large to exclude that some 26Al in CAIs was produced locally by particle irradiation close to an early active Sun. The initial 182Hf/180Hf of CAIs corresponds to an absolute age of 4568.3 ± 0.7 Ma, which may be defined as the age of the solar system. This age is 0.5-2 Myr older than the most precise 207Pb-206Pb age of Efremovka CAI 60, which does not seem to date CAI formation. Tungsten model ages for magmatic iron meteorites, calculated relative to the newly and more precisely defined initial ε182W of CAIs, indicate that core formation in their parent bodies occurred in less than ∼1 Myr after CAI formation. This confirms earlier conclusions that the accretion of the parent bodies of magmatic iron meteorites predated chondrule formation and that their differentiation was triggered by heating from decay of abundant 26Al. A more precise dating of core formation in iron meteorite parent bodies requires precise quantification of cosmic-ray effects on W isotopes but this has not been established yet.  相似文献   

20.
The origin of the observed niobium deficit in the bulk silicate Earth (BSE) compared to chondritic meteorites constitutes a long-standing problem in geochemistry. The deficit requires a large-scale process fractionating niobium from tantalum, and a super-chondritic Nb/Ta reservoir hidden in the deep silicate Earth and/or in the metallic core. The only voluminous super-chondritic Nb/Ta silicate reservoir analysed to date is found in lunar basalts that assimilated highly evolved Fe-rich rocks associated with anorthosites in the lunar crust. These Fe-rich rocks, enriched in incompatible elements, are thought to represent the last fractions of melt remaining at the end of lunar magma ocean crystallization. Here we report high-precision Nb-Ta data for a Fe-rich, late-stage rock suite associated with a terrestrial anorthosite from the Proterozoic Bolangir complex in India. The geochemical characteristics of this rock suite resemble those expected for late-stage residual melts from a terrestrial magma ocean. Samples show extreme, super-chondritic Nb/Ta up to 31.1 and highly elevated Nb concentrations up to 338 ppm. We argue that formation of an early enriched crustal reservoir (EECR) with these characteristics (high Fe, high Nb, superchondritic Nb/Ta) is likely in the course of Hadean late-stage terrestrial magma ocean solidification. Subduction and subsequent permanent deep mantle storage in the D′′ layer of a minor amount (∼0.5% of the BSE mass) of this EECR can readily explain the terrestrial Nb deficit, without the need to invoke core Nb storage. Our model is consistent with short-lived 142Nd and long-lived 176Hf-143Nd isotope models for early differentiation of the Earth’s crust. In addition, the inferred Lu/Hf of this EECR implies that this reservoir can also balance the offset of terrestrial Hf isotope ratios compared to the chondritic reservoir. As such, late-stage magma ocean residual melts may constitute the enigmatic parental reservoir of Hadean zircons with low time-integrated Hf isotope compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号