首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The collectorless flotation process has been tested on six different chalcopyrite ores while monitoring the potentials (Eh) of the pulp. The results show that collectorless flotation is effective only under oxidizing conditions. In addition, the flotation requires that the chalcopyrite surface be relatively free of hydrophilic oxidation products, which can be accomplished by treating the ore pulp with sodium sulfide (Na2S). On the basis of these findings, methods of improving the collectorless flotation process are discussed.  相似文献   

2.
The change in collectorless flotation of sphalerite with pH and Cu(II) concentration was correlated with the type and proportion of species present on the sphalerite surface. The solution and surface species were determined using a combination of analytical techniques including zeta potential measurement and X-ray photoelectron spectroscopy. An optimum copper concentration for maximum sphalerite flotation was identified, beyond which flotation decreased. This decrease in flotation coincided with the precipitation of copper hydroxide in neutral to mildly alkaline pH conditions. The hydrophobic polysulfide and hydrophilic copper hydroxide species were the main surface species influencing sphalerite flotation.  相似文献   

3.
The bedded clastic ore widespread on the slopes and flanks of the deeply eroded sulfide mound at the Saf’yanovka volcanic-hosted copper massive sulfide deposit consists of products of destruction of the Paleozoic black smoker along with diverse newly formed sulfides. The size of ore clasts gradually decreases with distance from the massive ore mound, from more than tens of centimeters to a few millimeters. The clastic sediments are characterized by good preservation of sulfide material composed of hydrothermal sedimentary colloform pyrite, chalcopyrite with lamellae of relict isocubanite, and concentrically zoned sphalerite. Numerous pyrite framboids, nodules, and euhedral crystals; chalcopyrite segregations; and twinned sphalerite are typical of sulfide-bearing black shale. Enargite, tennantite, and galena were formed after pyrite, filling interstices between nodules or partially replacing and corroding the previously formed minerals. The interrelations between minerals show that the fine-clastic sulfide-bearing black shale underwent diagenesis in the presence of organic matter.  相似文献   

4.
拉屋铜锌矿床矿石矿物及结构构造特征   总被引:1,自引:0,他引:1  
拉屋铜锌矿床主要有用成分为铜、锌、铅,金属矿物有磁黄铁矿、黄铜矿、闪锌矿、方铅矿、黄铁矿、锡石等,矿石主要构造为浸染状构造、稠密浸染状构造和块状构造,结构有自形粒状结构、半自形粒状结构、他形粒状结构、文象结构、交代结构、网脉状结构等。  相似文献   

5.
黄典豪 《矿床地质》1999,18(3):244-252
通过对热液脉型的铅-锌-银矿床(3个)和银矿床(1个)和闪锌矿中硫化物包囊体的特征研究表明,石英-硫化物阶段富铁闪锌矿(主矿物)的硫化物包裹体十分发育:沿生长带产出的乳滴状黄铜矿与主矿物为共同沉淀成因;沿穿切主矿物的黄铜矿或石英细脉两侧,和受粗粒黄铜矿溶蚀的富铁闪锌矿近接触部位发育的乳滴状黄铜矿为渗透-交代产物;沿解理(裂隙)或粒间、粒内产出的各种形态磁黄铁矿是充填-交代的结果;沿解理分布的脉状毒  相似文献   

6.
A series of N-arylhydroxamic acids (31) were synthesized and tested as collectors to float sphalerite from a Canadian copper–zinc ore. The compounds were classified into four types namely, N-aryl-C-alkyl, N-aryl-C-aryl, N-aryl-C-aralkyl, and dihydroxamic acids based on the type of substitution. Dihydroxamic acids were found to be poor mineral collectors while the efficiency of sphalerite flotation increased in the order N-aryl-C-aryl < N-aryl-C-alkyl < N-aryl-C-aralkyl. Sphalerite was floated without activation by copper sulfate, and the best sphalerite recovery of about 80% (grade 32%) was achieved with N-hydrocinnamoyl-N-phenylhydroxylamine (HCNPHA) 67 g/t collector dosage. However, pyrite also floated along with sphalerite and this appeared as a major disadvantage to be addressed.  相似文献   

7.
Floatability and surface characteristics of sphalerite in the presence of different concentrations of copper sulphate and K-ethylxanthate, for various times of activation and collection, were studied. The resulting changes on the sphalerite surface were determined by infrated attenuated total reflection spectroscopy and correlated with electrokinetic measurement and floatability test results.The collectorless flotation of the examined sphalerite was very weak in alkaline media, independent of whether the mineral was activated with copper or without copper treatment. However, copper showed an activating effect on KEX sphalerite flotation in the alkaline region. Copper ions of high concentration provoked an “apparently depressing effect” on KEX sphalerite flotation, reacting with EX to form copper-ethylxanthate-like species in the bulk of the solution. After decantation of the solution, before KEX was added, the depressing effect disappeared and sphalerite flotation was virtually complete.Cu(I)-ethylxanthate was the main surface product under the different experimental conditions. The kinetics of the copper-ion adsorption and KEX adsorption was relatively fast.  相似文献   

8.
As the most abundant copper containing resource and zinc containing resource, chalcopyrite and sphalerite/marmatite commonly coexist as Cu-Zn mixed ores in deposits. However, it is difficult to completely separate sphalerite and chalcopyrite by flotation, thus resulting in the existence of zinc impurity in copper concentrate. Sphalerite/marmatite existed in copper sulfide concentrate as impurity may lead to severe damage of the smelting equipment, and cause the waste of copper and Zn resources, it will also decrease of the sale price of copper concentrates. Therefore, the deep separation of zinc from zinc bearing copper sulfide concentrate is of great significance. In this work, selective chemical leaching was developed to efficiently remove zinc from zinc containing copper sulfide concentrate. Under the optimal condition (i.e., sulfuric acid concentration exceed 100 g/L, temperature of 80 °C, pulp density of 10%, leaching time of 48 h), over 85% Zn was extracted into the leaching solution together with only about 10% Cu and Fe, according to the leaching experiment. Leaching slurry had good solid-liquid separation characteristics, and zinc can be further effectively recovered from the leaching solution. According to X-ray diffraction (XRD) and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) analysis, chalcopyrite was the main mineralogical phase in the residues, which can be regarded as high quality copper concentrate for metallurgy. Accordingly, a new process for deep and efficient separation of Cu-Zn mixed ores has been proposed.  相似文献   

9.
张五荣  张渊  李俊峰 《吉林地质》2010,29(2):106-108
小西沟锌铅矿床属于低温热液型矿床,矿石组成复杂,伴生铜和银,研究表明,该矿床矿石中的铅、锌、铜和银主要矿化元素以独立矿物产出,但部分黄铜矿与闪锌矿呈固溶体交生。根据矿石性质确定,该矿床矿石可采用混合浮选铜铅(铜、铅分离)—再浮选锌的工艺流程,通过试验获得符合标准的铜精矿、铅精矿和锌精矿,所用药剂没有环境污染,符合当前技术条件,可以开发利用。  相似文献   

10.
To determine the bulk chemical compositions of chalcopyrite containing starlike sphalerite and sphalerite including dotlike chalcopyrite, specimens from various types of ore deposits in Japan were used for modal and electron microprobe analyses. According to the analytical results, most of the measured zinc contents in chalcopyrite containing starlike sphalerite are less than 0.8 at%, corresponding to the maximum solubility of zinc in chalcopyrite as determined experimentally at 400°C. However, specimens from the Maruyama deposit in the Tsumo mine contain 1.2–1.4 at% Zn, which are within the solubility limit of an intermediate solid solution (ISS) above 400°C. It is therefore concluded that starlike sphalerite in chalcopyrite are exsolution products derived from primary chalcopyrite solid solution and/or zincic ISS. Measured copper contents in sphalerite including dotlike chalcopyrite yield considerably higher values, i.e., 1.5–6.0 at%, which exceed the solubility limits of copper in sphalerite solid solution as determined experimentally. This result suggests that not all the chalcopyrite dots were exsolved from sphalerite, but that most of them are the product of some other mechanisms.  相似文献   

11.
周兵  顾连兴 《地质论评》1999,45(1):15-18
福建尤溪梅仙块状硫化物矿床中的闪锌矿经50%HNO3浸蚀后发现,微米级的黄铜矿交生体呈乳滴状,棒条状,蠕虫状等沿闪锌矿解理面,双晶面和颗粒边界,裂隙等处分布,并且黄铜矿交生体所占体积均在5%以上,因上闪锌矿中有限的Cu的溶解度使出溶无法解释黄鲷矿交生体的成因,交生体的结构特征以其与黄铜矿脉的关系暗示其可能是交代成因。而对横切黄铜矿乳滴的电子探针分析中铁含量特征的研究,证实梅仙矿区闪锌矿中的黄铜矿交  相似文献   

12.
In an extensive programme of batch flotation tests on mixtures of purified minerals, it was established that freshly ground chalcopyrite displayed natural flotability in an oxidising environment and non-flotability in a reducing environment. No rational hypothesis to account for this behaviour has emerged. Grinding in an iron mill produced strongly reducing conditions and consequently suppressed flotation which was restored subsequently by raising the potential of the pulp either by aeration or by the addition of oxidants. The coarse particle sizes recovered more slowly than other fractions. The type and addition of frother had a pronouced effect on the natural flotability, but no proven effect on hydrophobicity. There is some evidence that whilst these observations apply to chalcopyrite from several sources when floated from mixtures with quartz, chalcopyrite in real ore samples does not necessarily show the same flotation behaviour.  相似文献   

13.
The metalized quartz veins is located 5 km west of the Iraqi-Iran border in the Qandil range. The quartz veins included sulfide and oxide ore minerals which mostly occur in the form of open-space filling texture. The polymetallic mesothermal quartz veins are hosted by marble and phyllite rocks. Within these veins, multiphase, open-space filling and crustiform, bedding to massive textures with pyrite, sphalerite, galena, chalcopyrite,galena, sphalerite, tenorite, azurite, and malachite are observed. Selected samples were analyzed by using ore microscopy and electron probe micro analyzer (EPMA) and scanning electron microscope (SEM). Ore minerals show replacement textures. The paragenesis diagram was made from a careful study of polished sections and three stages have been identified including pre-stage mineralization, mineralization, and post-mineralization stages.Fluid inclusion microthermometric analysis of 15 primary inclusions of quartz veins indicated that ore mineralization at the studied area were formed by a mesothermal, low to medium density, and dilute NaCl-type fluid system. The source of the fluid is mostly metamorphic which became mixed with other fluids later. Hydrothermal fluids of the selected studied area were classified into two groups based on microthermometry study; the first group had a higher homogenization temperature (335.5 to 386.8 °C) than the second group (194.1 to 298.5 °C), with a small difference in salinity between them. Nearly each group has different complexes including chloride and sulfide complexes respectively. The results of stable sulfur isotope of the ore minerals (chalcopyrite and sphalerite) confirmed the sedimentary and/or metamorphic origin of the ore mineralization.  相似文献   

14.
Unusual intergrowths of sphalerite, chalcopyrite, and stannite have been described in two samples from the St. Agnes (Cornwall) and Sinancha (southern Primorye) tin deposits. Possible origins of these sulfide intergrowths and their implications for understanding the formation conditions of the deposits are discussed on the basis of ore microscopy and analytical data. At the St. Agnes deposit, the intergrowths appeared due to the breakdown of a high-temperature solid solution with formation of a Zn-stannite matrix, chalcopyrite lamellae, and rounded drop-shaped inclusions of sphalerite. At the Sinancha deposit, the rare myrmekite stannite-sphalerite intergrowths are interpreted as eutectic textures of mutual penetration that resulted from ore metamorphism at the contact of a dike.  相似文献   

15.
The history of a zinc-copper sulfide ore, RU-1, is presented to show quantitatively the serious effects of ambient oxidation on unprotected samples that led to its rejection for inued use as a reference material. It is shown that pyrrhotite, sphalerite and chalcopyrite are much more susceptible to oxidation than is pyrite, the major constituent. The preparation of another sample, RU-2, from the same ore body verifies that oxidation also occurs to an appreciable extent during the preparation stages.  相似文献   

16.
Gallium-containing chlorite, mica, and magnetite (up to 14, 13, and 5–7 wt % of Ga) along with Ga hydroxides (oxyhydroxides?) were found for the first time in massive sulfide deposit in the Urals. The minerals identified within the cement of chalcopyrite–sphalerite breccias of the Shemur copper–zinc–massive sulfide deposit (Northern Urals) are associated with Ga-enriched sphalerite, chalcopyrite, and, less commonly, pyrite (33–364, 67–363, and 4–230 g/t, respectively).  相似文献   

17.
The Laloki and Federal Flag deposits are two of the many (over 45) polymetallic massive sulfide deposits that occur in the Astrolabe Mineral Field, Papua New Guinea. New data of the mineralogical compositions, mineral textures, and fluid inclusion studies on sphalerite from Laloki and Federal Flag deposits were investigated to clarify physiochemical conditions of the mineralization at both deposits. The two deposits are located about 2 km apart and they are stratigraphically hosted by siliceous to carbonaceous claystone and rare gray chert of Paleocene–Eocene age. Massive sulfide ore and host rock samples were collected from each deposit for mineralogical, geochemical, and fluid inclusion studies. Mineralization at the Laloki deposit consists of early‐stage massive sulfide mineralization (sphalerite‐barite, chalcopyrite, and pyrite–marcasite) and late‐stage brecciation and remobilization of early‐stage massive sulfides that was accompanied by late‐stage sphalerite mineralization. Occurrence of native gold blebs in early‐stage massive pyrite–marcasite‐chalcopyrite ore with the association of pyrrhotite‐hematite and abundant planktonic foraminifera remnants was due to reduction of hydrothermal fluids by the reaction with organic‐rich sediments and seawater mixing. Precipitation of fine‐grained gold blebs in late‐stage Fe‐rich sphalerite resulted from low temperature and higher salinity ore fluids in sulfur reducing conditions. In contrast, the massive sulfide ores from the Federal Flag deposit contain Fe‐rich sphalerite and subordinate sulfarsenides. Native gold blebs occur as inclusions in Fe‐rich sphalerite, along sphalerite grain boundaries, and in the siliceous‐hematitic matrix. Such occurrences of native gold suggest that gold was initially precipitated from high‐temperature, moderate to highly reduced, low‐sulfur ore fluids. Concentrations of Au and Ag from both Laloki and Federal Flag deposits were within the range (<10 ppm Au and <100 ppm Ag) of massive sulfides at a mid‐ocean ridge setting rather than typical arc‐type massive sulfides. The complex relationship between FeS contents in sphalerite and gold grades of both deposits is probably due to the initial deposition of gold on the seafloor that may have been controlled by factors such as Au complexes, pH, and fO2 in combination with temperature and sulfur fugacity.  相似文献   

18.
The ability of O-isopropyl-N-ethyl thionocarbamate (IPETC), O-isobutyl-N-ethoxycarbonyl thionocarbamate (IBECTC) and butyl ethoxycarbonyl thiourea (BECTU) collectors to increase the flotation of the sulphide minerals, chalcopyrite, galena and pyrite, has been studied. For each collector, the flotation characteristics of these minerals, flotation rate constant and flotation recovery maximum, have been calculated from the flotation data and compared as a function of pH and collector concentration. Overall, the flotation performance of these collectors is stronger for chalcopyrite than for galena and pyrite. Flotation increases with collector concentration and decreasing pH values. For chalcopyrite, the collector performances of BECTU are slightly better than those of IPETC but far superior to those of IBECTC, especially at high pH values or at low collector concentrations. The flotation performance of these collectors has been shown to be in good agreement with the amount of collector adsorbed at the mineral surface. The affinity of BECTU for the various minerals has been calculated using a multilayer adsorption model.  相似文献   

19.
李金春 《矿床地质》2009,28(4):473-480
天鹿铜矿床是古生代海相砂页岩型铜矿.其铜矿石主要为粉砂岩型,包括斑铜矿矿石、辉铜矿矿石、辉铜矿斑铜矿矿石、黄铜矿斑铜矿矿石、黄铜矿矿石、黄铁矿黄铜矿矿石等6种自然类型.矿石结构主要为结晶结构和交代结构,矿石构造以浸染状为主.主矿层中的矿化沿岩层垂向具有明显的分带性,从底部到顶板为:斑铜矿→辉铜矿→黄铜矿→黄铁矿,具有典型的化学沉积成因铜的硫化物排列组合特征.这些特点与中国及国外海相砂页岩型铜矿相一致.  相似文献   

20.
The polymetallic(Pb,Zn,Cu,etc) ore belt on the southwestern margin of Tarim is one of the major regions with the greatest prospecting potential in Xinjiang.Reported in this paper are the lead isotope data for 66 sulfide samples(including 50 galena samples,15 chalcopyrite samples and 1 pyrite sample) collected from such representative deposits as Tamu,Tiekelike,Kalangu,Abalieke,etc.in this ore belt.The Pb isotopic ratios of 206 Pb/204 Pb,207 Pb/204 Pb and 208 Pb/204 Pb in the galena samples range from 17.931 to 18.176,15.609 to 15.818 and 38.197 to 38.944,with the average values of 18.017,15.684 and 38.462,respectively.Those in the chalcopyrite samples range from 17.926 to 18.144,15.598 to 15.628 and 38.171 to 38.583,with the average values of 18.020,15.606 and 38.262,respectively.The pyrite sample has the Pb isotopic ratios of 206 Pb/204 Pb,207 Pb/204 Pb and 208 Pb/204 Pb to be 17.980,15.604 and 38.145,respectively.In combination with the previous Pb isotope data for sulfides,it is found that there is only a slight variation in the Pb isotopic composition of galena,chalcopyrite,sphalerite and pyrite in the ore belt.However,there is some difference in Pb isotopic characteristics between galena and chalcopyrite,especially the Pb isotopic composition of galena shows an obvious linear correlation with some other relevant parameters(e.g.β and γ).The comprehensive analysis suggested that lead in galena(maybe including sphalerite and pyrite) was derived principally from wall rocks and underlying basement,and that in chalcopyrite only originated from the basement.The single-stage model ages of these sulfides couldn’t indicate the time limit of metallogenesis(Pb,Zn,Cu,etc.),and the positive linear correlations for the Pb isotopic composition of galena are of no single-stage and two-stage Pb-Pb isochron significance.Furthermore,there are significant differences in Pb isotopic composition characteristics between the genetic type of deposits in this polymetallic ore belt and the Mississippi Valley type(MVT).In addition,the authors also pointed out that there is a phenomenon of differentiation(not paragenesis) for lead and copper elements during the process of metallogenesis in this ore belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号