首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Fe(II)-catalysed transformation of synthetic schwertmannite, ferrihydrite, jarosite and lepidocrocite to more stable, crystalline Fe(III) oxyhydroxides is prevented by high, natural concentrations of Si and natural organic matter (NOM). Adsorption isotherms demonstrate that Si adsorbs to the iron minerals investigated and that increasing amounts of adsorbed Si results in a decrease in isotope exchange between aqueous Fe(II) and the Fe(III) mineral. This suggests that the adsorption of Si inhibits the direct adsorption of Fe(II) onto the mineral surface, providing an explanation for the inhibitory effect of Si on the Fe(II)-catalysed transformation of Fe(III) minerals. During the synthesis of lepidocrocite and ferrihydrite, the presence of equimolar concentrations of Si and Fe resulted in the formation of 2-line ferrihydrite containing co-precipitated Si in both cases. Isotope exchange experiments conducted with this freeze-dried Si co-precipitated ferrihydrite species (Si-ferrihydrite) demonstrated that the rate and extent of isotope exchange between aqueous Fe(II) and solid 55Fe(III) was very similar to that of 2-line ferrihydrite formed in the absence of Si and which had not been allowed to dry. In contrast to un-dried ferrihydrite formed in the absence of Si, Si-ferrihydrite did not transform into a more crystalline Fe(III) mineral phase over the 7-day period of investigation. Reductive dissolution studies using ascorbic acid demonstrated that both dried Si-ferrihydrite and un-dried 2-line ferrihydrite were very reactive, suggesting these species may be major contributors to the rapid release of dissolved iron following flooding and the onset of conditions conducive to reductive dissolution in acid sulphate soil environments.  相似文献   

2.
The poorly crystalline Fe(III) hydroxide ferrihydrite is considered one of the most important sinks for (in)organic contaminants and nutrients within soils, sediments, and waters. The ripening of ferrihydrite to more stable and hence less reactive phases such as goethite is catalyzed by surface reaction with aqueous Fe(II). While ferrihydrite within most natural environments contains high concentrations of adsorbed or co-precipitated cations (particularly Al), little is known regarding the impact of these cations on Fe(II)-induced transformation of ferrihydrite to secondary phases. Accordingly, we explored the extent, rates, and pathways of Fe(II)-induced secondary mineralization of Al-ferrihydrites by reacting aqueous Fe(II) (0.2 and 2.0 mM) with 2-line ferrihydrite containing a range of Al levels substituted within (6-24 mol% Al) or adsorbed on the surface (0.1-27% Γmax). Here, we show that regardless of the Fe(II) concentration, Al substituted within or adsorbed on ferrihydrite results in diminished secondary mineralization and preservation of ferrihydrite. In contrast to pure ferrihydrite, the concentration of Fe(II) may not in fact influence the mineralization products of Al-compromised ferrihydrites. Furthermore, the secondary mineral profiles upon Fe(II) reaction with ferrihydrite are not only a function of Al concentration but also the mode of Al incorporation. While Al substitution impedes lepidocrocite formation and magnetite nucleation, Al adsorption completely inhibits goethite formation and appears to have a lesser impact on magnetite nucleation. When normalized to total Al content associated with ferrihydrite, Al adsorption results in greater degree of ferrihydrite preservation relative to Al substitution. These findings provide insight into mechanisms that may be responsible for ferrihydrite preservation and low levels of secondary magnetite typically found in sedimentary environments. Considering the preponderance of cation substitution within and adsorption on ferrihydrite in soils and sediments, the reactivity of natural (compromised) ferrihydrites and the subsequent impact on mineral evolution needs to be more fully explored.  相似文献   

3.
Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by magnetite formation, potentially a result of lower Fe(III) activity. Conversely, the presence of lower initial Fe(II) concentrations followed by higher concentrations promotes goethite accumulation and inhibits magnetite precipitation even when Fe(II) concentrations later increase, thus revealing the importance of both the rate of Fe(II) generation and flow-induced Fe(II) profiles. As such, the operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH are governed principally by flow-regulated Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways.  相似文献   

4.
Due to the strong reducing capacity of ferrous Fe, the fate of Fe(II) following dissimilatory iron reduction will have a profound bearing on biogeochemical cycles. We have previously observed the rapid and near complete conversion of 2-line ferrihydrite to goethite (minor phase) and magnetite (major phase) under advective flow in an organic carbon-rich artificial groundwater medium. Yet, in many mineralogically mature environments, well-ordered iron (hydr)oxide phases dominate and may therefore control the extent and rate of Fe(III) reduction. Accordingly, here we compare the reducing capacity and Fe(II) sequestration mechanisms of goethite and hematite to 2-line ferrihydrite under advective flow within a medium mimicking that of natural groundwater supplemented with organic carbon. Introduction of dissolved organic carbon upon flow initiation results in the onset of dissimilatory iron reduction of all three Fe phases (2-line ferrihydrite, goethite, and hematite). While the initial surface area normalized rates are similar (∼10−11 mol Fe(II) m−2 g−1), the total amount of Fe(III) reduced over time along with the mechanisms and extent of Fe(II) sequestration differ among the three iron (hydr)oxide substrates. Following 16 d of reaction, the amount of Fe(III) reduced within the ferrihydrite, goethite, and hematite columns is 25, 5, and 1%, respectively. While 83% of the Fe(II) produced in the ferrihydrite system is retained within the solid-phase, merely 17% is retained within both the goethite and hematite columns. Magnetite precipitation is responsible for the majority of Fe(II) sequestration within ferrihydrite, yet magnetite was not detected in either the goethite or hematite systems. Instead, Fe(II) may be sequestered as localized spinel-like (magnetite) domains within surface hydrated layers (ca. 1 nm thick) on goethite and hematite or by electron delocalization within the bulk phase. The decreased solubility of goethite and hematite relative to ferrihydrite, resulting in lower Fe(III)aq and bacterially-generated Fe(II)aq concentrations, may hinder magnetite precipitation beyond mere surface reorganization into nanometer-sized, spinel-like domains. Nevertheless, following an initial, more rapid reduction period, the three Fe (hydr)oxides support similar aqueous ferrous iron concentrations, bacterial populations, and microbial Fe(III) reduction rates. A decline in microbial reduction rates and further Fe(II) retention in the solid-phase correlates with the initial degree of phase disorder (high energy sites). As such, sustained microbial reduction of 2-line ferrihydrite, goethite, and hematite appears to be controlled, in large part, by changes in surface reactivity (energy), which is influenced by microbial reduction and secondary Fe(II) sequestration processes regardless of structural order (crystallinity) and surface area.  相似文献   

5.
Iron (hydr)oxides are ubiquitous in soils and sediments and play a dominant role in the geochemistry of surface and subsurface environments. Their fate depends on local environmental conditions, which in structured soils may vary significantly over short distances due to mass-transfer limitations on solute delivery and metabolite removal. In the present study, artificial soil aggregates were used to investigate the coupling of physical and biogeochemical processes affecting the spatial distribution of iron (Fe) phases resulting from reductive transformation of ferrihydrite. Spherical aggregates made of ferrihydrite-coated sand were inoculated with the dissimilatory Fe-reducing bacterium Shewanella putrefaciens strain CN-32, and placed into a flow reactor, the reaction cell simulates a diffusion-dominated soil aggregate surrounded by an advective flow domain. The spatial and temporal evolution of secondary mineralization products resulting from dissimilatory Fe reduction of ferrihydrite were followed within the aggregates in response to a range of flow rates and lactate concentrations. Strong radial variations in the distribution of secondary phases were observed owing to diffusively controlled delivery of lactate and efflux of Fe(II) and bicarbonate. In the aggregate cortex, only limited formation of secondary Fe phases were observed over 30 d of reaction, despite high rates of ferrihydrite reduction. Under all flow conditions tested, ferrihydrite transformation was limited in the cortex (70-85 mol.% Fe remained as ferrihydrite) because metabolites such as Fe(II) and bicarbonate were efficiently removed in outflow solutes. In contrast, within the inner fractions of the aggregate, limited mass-transfer results in metabolite (Fe(II) and bicarbonate) build-up and the consummate transformation of ferrihydrite - only 15-40 mol.% Fe remained as ferrihydrite after 30 d of reaction. Goethite/lepidocrocite, and minor amounts of magnetite, formed in the aggregate mid-section and interior at low lactate concentration (0.3 mM) after 30 d of reaction. Under high lactate (3 mM) concentration, magnetite was observed only as a transitory phase, and rather goethite/lepidocrocite and siderite were the dominant secondary mineralization products. Our results illustrate the importance of slow diffusive transport of both electron donor and metabolites concentrations and concomitant biogeochemical reactions within soils and sediments, giving rise to heterogeneous products over small spatial (μm) scale.  相似文献   

6.
Reduction of As(V) and reductive dissolution and transformation of Fe (hydr)oxides are two dominant processes controlling As retention in soils and sediments. When developed within soils and sediments, Fe (hydr)oxides typically contain various impurities—Al being one of the most prominent—but little is known about how structural Al within Fe (hydr)oxides alters its biotransformation and subsequent As retention. Using a combination of batch and advective flow column studies with Fe(II) and Shewanella sp. ANA-3, we examined (1) the extent to which structural Al influences reductive dissolution and transformations of ferrihydrite, a highly reactive Fe hydroxide, and (2) the impact of adsorbed As on dissolution and transformation of (Al-substituted) ferrihydrite and subsequent As retention. Structural Al diminishes the extent of ferrihydrite reductive transformation; nearly three-orders of magnitude greater concentration of Fe(II) is required to induce Al-ferrihydrite transformation compared to pure two-line ferrihydrite. Structural Al decreases Fe(II) retention/incorporation on/into ferrihydrite and impedes Fe(II)-catalyzed transformation of ferrihydrite. Moreover, owing to cessation of Fe(II)-induced transformation to secondary products, Al-ferrihydrite dissolves (incongruently) to a greater extent compared to pure ferrihydrite during reaction with Shewanella sp. ANA-3. Additionally, adsorption of As(V) to Al-ferrihydrite completely arrests Fe(II)-catalyzed transformation of ferrihydrite, and it diminishes the difference in the rate and extent of ferrihydrite and Al-ferrihydrite reduction by Shewanella sp. ANA-3. Our study further shows that reductive dissolution of Al-ferrihydrite results in enrichment of Al sites, and As(V) reduction accelerates As release due to the low affinity of As(III) on these non-ferric sites.  相似文献   

7.
The reductive biotransformation of 6-line ferrihydrite located within porous silica (intragrain ferrihydrite) by Shewanella oneidensis MR-1 was investigated and compared to the behavior of 6-line ferrihydrite in suspension (free ferrihydrite). The effect of buffer type (PIPES and NaHCO3), phosphate (P), and an electron shuttle (AQDS) on the extent of reduction and formation of Fe(II) secondary phases was investigated under anoxic conditions. Electron microscopy and micro X-ray diffraction were applied to evaluate the morphology and mineralogy of the biogenic precipitates and to study the distribution of microorganisms on the surface of porous silica after bioreduction. Kinetic reduction experiments with free and intragrain ferrihydrite revealed contrasting behavior with respect to the buffer and presence of P. The overall amount of intragrain ferrihydrite reduction was less than that of free ferrihydrite [at 5 mmol L−1 Fe(III)T]. Reductive mineralization was not observed in the intragrain ferrihydrite incubations without P, and all biogenic Fe(II) concentrated in the aqueous phase. Irrespective of buffer and AQDS addition, rosettes of Fe(II) phosphate of approximate 20-30 μm size were observed on porous silica when P was present. The rosettes grew not only on the silica surface but also within it, forming a coherent spherical structure. These precipitates were well colonized by microorganisms and contained extracellular materials at the end of incubation. Microbial extracellular polymeric substances may have adsorbed Fe(II) promoting Fe(II) phosphate nucleation with subsequent crystal growth proceeding in different directions from a common center.  相似文献   

8.
Schwertmannite (Fe8O8(OH)6SO4) is a common Fe(III)-oxyhydroxysulfate mineral in acid-sulfate systems, where its formation and fate strongly influence water quality. The present study examines transformation of schwertmannite to goethite (FeOOH), as catalyzed by interactions with Fe(II) in anoxic aquatic environments. This study also evaluates the role of the Fe(II) pathway in influencing the formation of iron-sulfide minerals in such environments. At pH > 5, the rates of Fe(II)-catalyzed schwertmannite transformation were several orders of magnitude faster than transformation in the absence of Fe(II). Complete transformation of schwertmannite occurred within only 3-5 h at pH > 6 and Fe(II)(aq) ? 5 mmol L−1. Model calculations indicate that the Fe(II)-catalyzed transformation of schwertmannite to goethite greatly decreases the reactivity of the Fe(III) pool, thereby favoring SO4-reduction and facilitating the formation of iron-sulfide minerals (particularly mackinawite, tetragonal FeS). Examination of in situ sediment geochemistry in an acid-sulfate system revealed that the rapid Fe(II)-catalyzed transformation was consistent with an abrupt shift from an acidic Fe(III)-reducing regime with abundant schwertmannite near the sediment surface, to a near-neutral mackinawite-forming regime where goethite was dominant. This study demonstrates that the Fe(II) pathway exerts a major influence on schwertmannite transformation and iron-sulfide formation in anoxic acid-sulfate systems. These findings have important implications for understanding acidity dynamics and trace element mobility in such systems.  相似文献   

9.
Bioreduced anthraquinone-2,6-disulfonate (AH2DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)aq (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH2DS oxidation coupled with Fe(III) reduction occurred within 0.13-1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant:oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. Phosphate inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r:o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)aq system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)] = 0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)aq system, while AQDS was more effective than Fe(II)aq in promoting magnetite formation. The mineral products of the direct AH2DS-driven reductive reaction are different from those observed in AH2DS-ferrihydite systems with metal reducing bacteria, particularly in presence of P.  相似文献   

10.
Here we examine Fe speciation within Fe-encrusted biofilms formed during 2-month seafloor incubations of sulfide mineral assemblages at the Main Endeavor Segment of the Juan de Fuca Ridge. The biofilms were distributed heterogeneously across the surface of the incubated sulfide and composed primarily of particles with a twisted stalk morphology resembling those produced by some aerobic Fe-oxidizing microorganisms. Our objectives were to determine the form of biofilm-associated Fe, and identify the sulfide minerals associated with microbial growth. We used micro-focused synchrotron-radiation X-ray fluorescence mapping (μXRF), X-ray absorption spectroscopy (μΕXAFS), and X-ray diffraction (μXRD) in conjunction with focused ion beam (FIB) sectioning, and high resolution transmission electron microscopy (HRTEM). The chemical and mineralogical composition of an Fe-encrusted biofilm was queried at different spatial scales, and the spatial relationship between primary sulfide and secondary oxyhydroxide minerals was resolved. The Fe-encrusted biofilms formed preferentially at pyrrhotite-rich (Fe1−xS, 0 ? x ? 0.2) regions of the incubated chimney sulfide. At the nanometer spatial scale, particles within the biofilm exhibiting lattice fringing and diffraction patterns consistent with 2-line ferrihydrite were identified infrequently. At the micron spatial scale, Fe μEXAFS spectroscopy and μXRD measurements indicate that the dominant form of biofilm Fe is a short-range ordered Fe oxyhydroxide characterized by pervasive edge-sharing Fe-O6 octahedral linkages. Double corner-sharing Fe-O6 linkages, which are common to Fe oxyhydroxide mineral structures of 2-line ferrihydrite, 6-line ferrihydrite, and goethite, were not detected in the biogenic iron oxyhydroxide (BIO). The suspended development of the BIO mineral structure is consistent with Fe(III) hydrolysis and polymerization in the presence of high concentrations of Fe-complexing ligands. We hypothesize that microbiologically produced Fe-complexing ligands may play critical roles in both the delivery of Fe(II) to oxidases, and the limited Fe(III) oxyhydroxide crystallinity observed within the biofilm. Our research provides insight into the structure and formation of naturally occurring, microbiologically produced Fe oxyhydroxide minerals in the deep-sea. We describe the initiation of microbial seafloor weathering, and the morphological and mineralogical signals that result from that process. Our observations provide a starting point from which progressively older and more extensively weathered seafloor sulfide minerals may be examined, with the ultimate goal of improved interpretation of ancient microbial processes and associated biological signatures.  相似文献   

11.
Mining and metallurgical processing of gold and base metal ores can lead to the release of arsenic into the aqueous environment as a result of the weathering and leaching of As-bearing minerals during processing and following disposal. Arsenic in process solutions and mine drainage can be effectively stabilized through the precipitation of ferrihydrite. However, under anaerobic conditions imposed by burial and waste cover systems, ferrihydrite is susceptible to microbial reduction. This research, stimulated by the paucity of information and limited understanding of the microbial reduction of arsenical ferrihydrite, was conducted on synthetic adsorbed and co-precipitated arsenical 6-line ferrihydrite (Fe/As molar ratio of 10/1) using Shewanella sp. ANA-3 and Shewanella putrefaciens CN32 in a chemically defined medium containing 0.045 mM phosphate concentration. Both bacteria were equally effective in their reducing abilities around pH 7, resulting in initial rates of formation of dissolved As(III) of 0.10 μM/h for the adsorbed, and 0.08 μM/h for the co-precipitated arsenical 6-line ferrihydrite samples. The solid phases in the post-reduction samples were characterized by powder X-ray diffraction (XRD), micro-XRD, scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron microprobe and X-ray absorption spectroscopy (XAS) techniques. The results indicate the formation of secondary phases such as a biogenic Fe(II)–As(III) compound, akaganeite, goethite, hematite and possibly magnetite during bacterial reduction experiments. Holes and bacterial imprints measuring about 1–2 μm were observed on the surfaces of the secondary phases formed after 1200 h of reduction. This study demonstrates the influence of Fe and As reducing bacteria on the release of significant concentrations of more mobile and toxic As(III) species from arsenical 6-line ferrihydrite, more readily from the adsorbed than from the co-precipitated ferrihydrite.  相似文献   

12.
Schwertmannite (ideal formula: Fe8O8(OH)6SO4) is typically found as a secondary iron mineral in pyrite oxidizing environments. In this study, geochemical constraints upon its formation are established and its role in the geochemical cycling of iron between reducing and oxidizing conditions are discussed. The composition of surface waters was analyzed and sediments characterized by X-ray diffraction, FTIR spectroscopy and determination of the Fe:S ratio in the oxalate extractable fraction from 18 acidic mining lakes. The lakes are exposed to a permanent supply of pyritegenous ferrous iron from adjacent ground water. In 3 of the lakes the suspended matter was fractionated using ultra filtration and analyzed with respect to their mineral composition. In addition, stability experiments with synthetic schwertmannite were performed. The examined lake surface waters were O2-saturated and have sulfate concentrations (10.3 ± 5.5 mM) and pH values (3.0 ± 0.6) that are characteristic for the stability window of schwertmannite. Geochemical modeling implied that i) the waters were saturated with respect to schwertmannite, which controlled the activity of Fe3+ and sulfate, and ii) a redox equilibrium exists between Fe2+ and schwertmannite. In the uppermost sediment layers (1 to 5 cm depth), schwertmannite was detectable in 16 lakes—in 5 of them by all three methods. FTIR spectroscopy also proved its occurrence in the colloidal fraction (1-10 kDa) in all of the 3 investigated lake surface waters. The stability of synthetic schwertmannite was examined as a function of pH (2-7) by a 1-yr experiment. The transformation rate into goethite increased with increasing pH. Our study suggests that schwertmannite is the first mineral formed after oxidation and hydrolysis of a slightly acidic (pH 5-6), Fe(II)-SO4 solution, a process that directly affects the pH of the receiving water. Its occurrence is transient and restricted to environments, such as acidic mining lakes, where the coordination chemistry of Fe3+ is controlled by the competition between sulfate and hydroxy ions (i.e. mildly acidic).  相似文献   

13.
The biologically-mediated reduction of synthetic samples of the Fe(III)-bearing minerals hematite, goethite, lepidocrocite, feroxhyte, ford ferrihydrite, akaganeite and schwertmannite by Geobacter sulfurreducens has been investigated using microbiological techniques in conjunction with X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). This combination of approaches offers unique insights into the influence of subtle variations in the crystallinity of a given mineral on biogeochemical processes, and has highlighted the importance of (oxyhydr)oxide crystallite morphology in determining the changes occurring in a given mineral phase. Problems arising from normalising the biological Fe(III) reduction rates relative to the specific surface areas of the starting materials are also highlighted. These problems are caused primarily by particle aggregation, and compounded when using spectrophotometric assays to monitor reduction. For example, the initial rates of Fe(III) reduction observed for two synthetic feroxyhytes with different crystallinities (as shown by XRD and TEM studies) but almost identical surface areas, differ substantially. Both microbiological and high-resolution TEM studies show that hematite and goethite are susceptible to limited amounts of Fe(III) reduction, as evidenced by the accumulation of Fe(II) during incubation with G. sulfurreducens and the growth of nodular structures on crystalline goethite laths during incubation. Lepidocrocite and akaganeite readily transform into mixtures of magnetite and goethite, and XRD data indicate that the proportion of magnetite increases within the transformation products as the crystallinity of the starting material decreases. The presence of anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle increases both the initial rate and longer term extent of biological Fe(III) reduction for all of the synthetic minerals examined. High-resolution XPS indicates subtle but measurable differences in the Fe(III):Fe(II) ratios at the mineral surfaces following extended incubation. For example, for a poorly crystalline schwertmannite, deconvolution of the Fe2p3/2 peak suggests that the Fe(III):Fe(II) ratio of the near-surface regions varies from 1.0 in the starting material to 0.9 following 144 h of incubation with G.sulfurreducens, and to 0.75 following the same incubation period in the presence of 10 μM AQDS. These results have important implications for the biogeochemical cycling of iron.  相似文献   

14.
Schwertmannite is a ubiquitous mineral formed from acid rock drainage (ARD), and plays a major role in controlling the water chemistry of many acid streams. The formation of schwertmannite was investigated in the acid discharge of the Monte Romero abandoned mine (Iberian Pyrite Belt, SW, Spain). Schwertmannite precipitated from supersaturated solutions mainly owing to the oxidation of Fe(II) to Fe(III) and transformed with time into goethite and jarosite. In a few hours, schwertmannite precipitation removed more than half of the arsenic load from solution, whereas the concentration of divalent trace metals (Zn, Cu, Pb, Cd, Ni, and Co) remained almost unchanged. In the laboratory, natural schwertmannite was kept in contact with its coexisting acid water in a flask with a solid-liquid mass ratio of 1:5 for 353 days. During this time, the pH of the solution dropped from 3.07 to 1.74 and the concentrations of sulfate and Fe increased. During the first 164 days, schwertmannite transformed into goethite plus H3O-jarosite but, subsequently, goethite was the only mineral to form. Some of the trace elements, such as Al, Cu, Pb, and As were depleted in solution during the first stage as schwertmannite transformed into goethite plus H3O-jarosite. On the contrary, the transformation of schwertmannite to goethite (with no jarosite) during the second stage released Al, Cu, and As to the solution. Despite the variation in their concentrations in solution, approximately 80% of the total Al and Cu inventories and more than 99% As and Pb remained in the solid phase throughout the entire aging process.  相似文献   

15.
Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)(aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III)(s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.  相似文献   

16.
酸性矿山废水(acid mine drainage,AMD)是一类pH低并含有大量有毒金属元素的废水。AMD及受其影响的环境中次生高铁矿物类型主要包括羟基硫酸高铁矿物(如黄铁矾和施威特曼石等)和一些含水氧化铁矿物(如针铁矿和水铁矿等),而且这些矿物在不同条件下会发生相转变,如施氏矿物向针铁矿或黄铁矾矿物相转化。基于酸性环境中生物成因次生矿物的形成会"自然钝化"或"清除"废水中铁和有毒金属这一现象所获得的启示,提出利用这些矿物作为环境吸附材料去除地下水中砷,不但吸附量大(如施氏矿物对As的吸附可高达120mg/g),而且可直接吸附As(III),还几乎不受地下水中其他元素影响。利用AMD环境中羟基硫酸高铁矿物形成的原理,可将其应用于AMD石灰中和主动处理系统中,构成"强化微生物氧化诱导成矿-石灰中和"的联合主动处理系统,以提高AMD处理效果和降低石灰用量。利用微生物强化氧化与次生矿物晶体不断生长的原理构筑生物渗透性反应墙(PRB)并和石灰石渗透沟渠耦联,形成新型的AMD联合被动处理系统,这将有助于大幅度增加处理系统的寿命和处理效率。此外,文中还探讨了上述生物成因矿物形成在AMD和地下水处理方面应用的优点以及今后需要继续研究的问题。  相似文献   

17.
Amorphous ferric iron species (ferrihydrite or akaganeite of <5 nm in size) is the only known solid ferric iron oxide that can be reductively transformed by dissimilatory iron-reducing bacteria to magnetite completely. The lepidocrocite crystallite can be transformed into magnetite in the presence of abiotic Fe(II) at elevated pH or biogenic Fe(II) with particular growth conditions. The reduction of lepidocrocite by dissimilatory iron-reducing bacteria has been widely investigated showing varying results. Vali et al. (Proc Natl Acad Sci USA 101:16121–16126, 2004) captured a unique biologically mediated mineralization pathway where the amorphous hydrous ferric oxide transformed to lepidocrocite was followed by the complete reduction of lepidocrocite to single-domain magnetite. Here, we report the 57Fe Mössbauer hyperfine parameters of the time-course samples reported in Vali et al. (Proc Natl Acad Sci USA 101:16121–16126, 2004). Both the quadrupole splittings and linewidths of Fe(III) ions decrease consistently with the change of aqueous Fe(II) and transformations of mineral phases, showing the Fe(II)-mediated gradual regulation of the distorted coordination polyhedrons of Fe3+ during the biomineralization process. The aqueous Fe(II) catalyzes the transformations of Fe(III) minerals but does not enter the mineral structures until the mineralization of magnetite. The simulated abiotic reaction between Fe(II) and lepidocrocite in pH-buffered, anaerobic media shows the simultaneous formation of green rust and its gradual transformation to magnetite plus a small fraction of goethite. We suggested that the dynamics of Fe(II) supply is a critical factor for the mineral transformation in the dissimilatory iron-reducing cultures.  相似文献   

18.
Understanding the ecological processes that regulate the production and fate of methane (CH4) in wetland soils is essential for forecasting wetland CH4 emissions. Iron reduction is an important carbon mineralization pathway that is capable of suppressing CH4 production in freshwater wetlands, but our understanding of temperature regulation of iron oxide respiration and the subsequent impacts on CH4 production is limited. We tested the hypothesis that temperature regulates iron reduction rates indirectly through differential effects on Fe(II) oxidation versus Fe(III) reduction, which ultimately determines the size of the microbially labile, poorly crystalline Fe(III) pool. Our study indicates that rates of iron reduction are more sensitive to changes in temperature than rates of iron oxidation, which creates imbalance in the relative proportion of Fe(II) and Fe(III) in the poorly crystalline soil iron pool as temperatures change. Our results suggest that warmer temperatures can cause the Fe(III) oxide pool to decline, limiting the Fe(III) supply to iron reducers and relieving competition for organic carbon with methanogens.  相似文献   

19.
We examined the transformations of Fe and S associated with schwertmannite (Fe8O8(OH)6SO4) reduction in acidified coastal lowlands. This was achieved by conducting a 91 day diffusive-flux column experiment, which involved waterlogging of natural schwertmannite- and organic-rich soil material. This experiment was complemented by short-term batch experiments utilizing synthetic schwertmannite. Waterlogging readily induced bacterial reduction of schwertmannite-derived Fe(III), producing abundant pore-water FeII, SO4 and alkalinity. Production of alkalinity increased pH from pH 3.4 to pH ∼6.5 within the initial 14 days, facilitating the precipitation of siderite (FeCO3). Interactions between schwertmannite and FeII at pH ∼6.5 were found, for the first time, to catalyse the transformation of schwertmannite to goethite (αFeOOH). Thermodynamic calculations indicate that this FeII-catalysed transformation shifted the biogeochemical regime from an initial dominance of Fe(III)-reduction to a subsequent co-occurrence of both Fe(III)- and SO4-reduction. This lead firstly to the formation of elemental S via H2S oxidation by goethite, and later also to formation of nanoparticulate mackinawite (FeS) via H2S precipitation with FeII. Pyrite (FeS2) was a quantitatively insignificant product of reductive Fe and S mineralization. This study provides important new insights into Fe and S geochemistry in settings where schwertmannite is subjected to reducing conditions.  相似文献   

20.
Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to the formation of either dissolved Fe(II), i.e. Fe2+, in HEPES buffered medium or Fe(II) carbonate (siderite) in bicarbonate buffered medium. Besides the different identity of the Fe(II) compound formed at the end of Fe(III) reduction, there was no difference in the maximum rate and extent of microbial iron reduction and magnetite formation during FH reduction in the two buffer systems used. Our findings indicate that microbial magnetite formation during iron reduction depends on the geochemical conditions and can be of minor importance at low FH concentrations or be inhibited by adsorption of HS to the FH surface. Such scenarios could occur in soils with low iron mineral or high organic matter content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号