首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Abstract

Along the Periadriatic Lineament in the Alps and the Sava-Vardar Zone of the Dinarides and Hellenides, Paleogene magmatic associations form a continuous belt, about 1700 km long. The following magmatic associations occur: (1) Eocene granitoids; (2) Oligocene granitoids including tonalites; (3) Oligocene shoshonite and calc-alkaline volcanics with lamprophyres; (4) Egerian-Eggenburgian (Chattian) calc-alkaline volcanics and granitoids. All of these magmatic associations are constrained by radiometric ages, which indicate that the magmatic activity was mainly restricted to the time span between 55 and 29 Ma. These igneous rocks form, both at surface and in the subsurface, the distinct linear Periadriatic-Sava-Vardar magmatic belt, with three strikes that are controlled by the indentation of Apulia and Moesia and accompanying strike-slip faulting. The geology, seismicity, seismic tomography and magnetic anomalies within this belt suggest that it has been generated in the African-Eurasian suture zone. Based on published analytical data, the petrology, major and trace element contents and Sr, Nd and O isotopie composition of each magmatic association are briefly defined. These data show that Eocene and Oligocene magmatic associations of the Late Paleogene Periadriatic-Sava-Vardar magmatic belt originated along a consuming plate margin. Based on isotopie systems, two main rock groups can be distinguished: (1) 87Sr/86Sr = 0.7036–0.7080 and δ18O = 5.9–7.2‰, indicating basaltic partial melts derived from a continental mantle-lithosphere, and (2) 87Sr/86Sr = 0.7090–72131 and δ18O = 7.3–11.5‰, indicating crustal assimilation and melting. The mantle sources for the primary basalt melts are metasomatized garnet peridotites and/or spinel lherzolites and phlogopite lherzolites of upper mantle wedge origin. The geodynamic evolution of the plutonic and volcanic associations of the Periadriatic-Sava-Vardar magmatic belt was related to the Africa-Eurasia suture zone that was dominated by break-off of the subducted lithospheric slab of Mesozoic oceanic crust, at depths of 90–100 km. This is indicated by their contemporaneity along the 1700 km long belt. © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.  相似文献   

2.
The Urumieh-Dokhtar magmatic arc (UDMA) of Central Iran has been formed during Neotethyan Ocean subduction underneath Eurasia. The Rabor-Lalehzar magmatic complex (RLMC), covers an area ~1000?km2 in the Kerman magmatic belt (KMB), SE of UDMA. RLMC magmatic rocks include both granitoids and volcanic rocks with calc-alkaline and adakitic signatures but with different ages.Miocene adakitic rocks are characterd by relatively enrichmented in incompatible elements, high (Sr/Y)(N) (>40), and (La/Yb)(N) (>10) ratios with slightly negative Eu anomalies (EuN/Eu*≈ 0.9), depletion in HFSEs, and relatively non-radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7048–0.7049). In contrast, the Oligocene granitoids exhibit low Sr/Y (<20) and La/Yb (<9) ratios, negative Eu anomalies (EuN/Eu*?≈?0.5), and enrichment in HFSEs and radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7050–0.7052), showing affinity to the island arc rocks. Eocene volcanic rocks which crusscut the younger granitoid rocks comprise andesites and dacites. Geochemically, lavas show calc-alkaline character without any Eu anomaly (EuN/Eu*?≈?1.0). Based on the geochemical and isotopic data we propose that melt source for both calc-alkaline and adakitic rocks from the RLMC can be related to the melting of a sub-continental lithospheric mantle (SCLM). Basaltic melts derived from a metasomatized mantle wedge might be emplaced at the mantle-crust boundary and formed the juvenile mafic lower crust. However, some melts fractionated in the shallow magma chambers and continued to rise forming the volcanic intermediate-mafic rocks at the surface. On the other hand, the assimilation and fractional crystallization in the shallow magma chambers of may have been responsible for the development of Oligocene granitoids with calc-alkaline affinity. In the mid-Late Miocene, following the collision between Afro-Arabia and Iranian block the juvenile mafic crust of UDMA underwent thickening and metamorphosed into garnet-amphibolites. Subsequent upwelling of a hot asthenosphere during Miocene was responsible for partial melting of thickened juvenile crust of the SE UDMA (RLM complex). The adakitic melts ascended to the shallow crust to form the adakitic rocks in the KMB.  相似文献   

3.
Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere started to subduct, and whether the Indian continental crust has injected into the mantle beneath southern Lhasa block, are not clear. Here we report new results from the Quguosha gabbros of southern Lhasa block, southern Tibet. LA-ICP-MS zircon U–Pb dating of two samples gives a ca. 35 Ma formation age (i.e., the latest Eocene) for the Quguosha gabbros. The Quguosha gabbro samples are geochemically characterized by variable SiO2 and MgO contents, strongly negative Nb–Ta–Ti and slightly negative Eu anomalies, and uniform initial 87Sr/86Sr (0.7056–0.7058) and εNd(t) (− 2.2 to − 3.6). They exhibit Sr–Nd isotopic compositions different from those of the Jurassic–Eocene magmatic rocks with depleted Sr–Nd isotopic characteristics, but somewhat similar to those of Oligocene–Miocene K-rich magmatic rocks with enriched Sr–Nd isotopic characteristics. We therefore propose that an enriched Indian crustal component was added into the lithospheric mantle beneath southern Lhasa by continental subduction at least prior to the latest Eocene (ca. 35 Ma). We interpret the Quguosha mafic magmas to have been generated by partial melting of lithospheric mantle metasomatized by subducted continental sediments, which entered continental subduction channel(s) and then probably accreted or underplated into the overlying mantle during the northward subduction of the Indian continent. Continental subduction likely played a key role in the formation of the Tibetan plateau at an earlier date than previously thought.  相似文献   

4.
《Geodinamica Acta》2002,15(4):209-231
Along the Periadriatic Lineament in the Alps and the Sava–Vardar Zone of the Dinarides and Hellenides, Paleogene magmatic associations form a continuous belt, about 1700 km long. The following magmatic associations occur: (1) Eocene granitoids; (2) Oligocene granitoids including tonalites; (3) Oligocene shoshonite and calc-alkaline volcanics with lamprophyres; (4) Egerian–Eggenburgian (Chattian) calc-alkaline volcanics and granitoids. All of these magmatic associations are constrained by radiometric ages, which indicate that the magmatic activity was mainly restricted to the time span between 55 and 29 Ma. These igneous rocks form, both at surface and in the subsurface, the distinct linear Periadriatic–Sava–Vardar magmatic belt, with three strikes that are controlled by the indentation of Apulia and Moesia and accompanying strike-slip faulting. The geology, seismicity, seismic tomography and magnetic anomalies within this belt suggest that it has been generated in the African–Eurasian suture zone. Based on published analytical data, the petrology, major and trace element contents and Sr, Nd and O isotopic composition of each magmatic association are briefly defined. These data show that Eocene and Oligocene magmatic associations of the Late Paleogene Periadriatic–Sava–Vardar magmatic belt originated along a consuming plate margin. Based on isotopic systems, two main rock groups can be distinguished: (1) 87Sr/86Sr = 0.7036–0.7080 and δ18O = 5.9–7.2‰, indicating basaltic partial melts derived from a continental mantle–lithosphere, and (2) 87Sr/86Sr = 0.7090–72131 and δ18O = 7.3–11.5‰, indicating crustal assimilation and melting. The mantle sources for the primary basalt melts are metasomatized garnet peridotites and/or spinel lherzolites and phlogopite lherzolites of upper mantle wedge origin. The geodynamic evolution of the plutonic and volcanic associations of the Periadriatic–Sava–Vardar magmatic belt was related to the Africa–Eurasia suture zone that was dominated by break-off of the subducted lithospheric slab of Mesozoic oceanic crust, at depths of 90–100 km. This is indicated by their contemporaneity along the 1700 km long belt.  相似文献   

5.
The age and origin of alkaline rocks emplaced into the sediments of the rift‐related continental Lusitanian basin were investigated to constrain earliest magmatic activity occurring prior to oceanic plate formation between Iberia and Newfoundland. The U–Pb titanite ages are 146.5 ± 1.6 (2σSTERR), 145.3 ± 1.4 and 142.3 ± 1.0 Ma, and initial Pb isotopic ratios of feldspars lie at 18.418–18.978 for 206Pb/204Pb, at 15.594–15.925 for 207Pb/204Pb and at 37.105–39.216 for 208Pb/204Pb. Initial 87Sr/86Sr ratios measured in the same feldspar fractions lie at 0.705409–0.706462. This episode of magmatic activity lasting for at least 4.2 ± 2.6 Myr most likely marks a phase of maximum lithospheric thinning during which zones of weakness were created to allow deep magmas to reach the surface. Such zones are preferentially re‐activated Palaeozoic faults of the Iberian plate. The isotope data suggest that the dominant volume of alkaline magmas was generated by partial melting of the metasomatized subcontinental Iberian mantle.  相似文献   

6.
Lavas from the South Shetland Islands volcanic arc (northern Antarctic Peninsula) have been investigated in order to determine the age, petrogenesis and compositional evolution of a long-lived volcanic arc constructed on 32-km-thick crust, a thickness comparable with average continental crust. New 40Ar–39Ar ages for the volcanism range between 135 and 47 Ma and, together with published younger ages, confirm a broad geographical trend of decreasing ages for the volcanism from southwest to northeast. The migration pattern breaks down in Palaeogene time, with Eocene magmatism present on both Livingston and King George islands, which may be due to a change in both subduction direction and velocity after c. 60 Ma. The lavas range from tholeiitic to calc-alkaline, but there is no systematic change with age or geographic location. The compositions of lavas from the north-eastern islands indicate magma generation in a depleted mantle wedge with relatively low Sr and high Nd isotopic compositions and low U/Nb, Th/Nd and Ba/Nb ratios that was metasomatized by hydrous fluids from subducted basaltic oceanic crust. Lavas from the south-western islands show an additional sedimentary influence most likely due to fluid release from subducted sediments into the mantle wedge. Although magmatic activity in the South Shetland arc extended over c. 100 m.y., there is no evolution towards more enriched or evolved magmas with time. Few South Shetland arc lavas are sufficiently enriched with incompatible elements to provide a potential protolith for the generation of average continental crust. We conclude that even long-established subduction zones with magmatic systems founded on relatively thick crust do not necessarily form continental crustal building blocks. They probably represent only the juvenile stages of continental crust formation, and additional re-working, for example during subsequent arc-continental margin collision, is required before they can evolve into average continental crust.  相似文献   

7.
The isotope-geochemical study of the Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed a lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment, magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429–0.70564) and lower 143Nd/144Nd(ɛNd(T) = 0.06–2.9) ratios in the volcanic rocks from the Central Koryak segment presumably reflect the contribution of enriched mantle source; the high positive ɛNd(T) and low 87Sr/86Sr ratios in the magmatic rocks from the Northern Koryak segment area indicate their derivation from isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of the Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: the higher heat flow beneath Kamchatka led to the crustal melting and contamination of mantle suprasubduction magmas by crustal melts. The cessation of suprasubduction volcanism in the Western Kamchatka segment of the continentalmargin belt was possibly related to the accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to the closure of the Ukelayat basin in the Oligocene time.  相似文献   

8.
《International Geology Review》2012,54(16):2083-2095
Early Eocene adakitic volcanic and granitoid rocks are widespread in the Eastern Pontides of NE Turkey, providing significant constraints for the early Cenozoic tectonomagmatic evolution of the region. These adakitic rock units exhibit relatively high Sr/Y and La/Yb ratios, but low Y and Yb values, similar to modern adakites generated by partial fusion of a subducted oceanic slab. They also have high K2O and low MgO contents, and show moderately enriched ISr and low ?Nd(t) isotopic signatures. Our trace element modelling suggests that these adakitic magmas were generated from partial melting at low pressures of a garnet-bearing amphibolitic source in the continental lower crust. This lower crustal melting resulted from slab break off-induced asthenospheric upwelling and related magmatic underplating beneath the Eastern Pontides. We interpret this melting event and the adakitic magmatic activity as a syn- to post-collisional process involving early Cenozoic collision of the Pontide and Anatolide–Tauride continental blocks. The geochemical and tectonic constraints presented here indicate that early Eocene adakitic magmatism in the Eastern Pontides did not result from partial fusion of a subducted oceanic slab, but instead represent continental-type adakite formation.  相似文献   

9.
Miocene igneous rocks in the 1,600 km-long E–W Gangdese belt of southern Tibet form two groups separated at longitude ~89° E. The eastern group is characterized by mainly intermediate–felsic calc-alkaline plutons with relatively high Sr/Y ratios (23 to 342), low (87Sr/86Sr)i ratios (0.705 to 0.708), and high εNdi values (+5.5 to ?6.1). In contrast, the western group is characterized by mainly potassic to ultrapotassic volcanic rocks with relatively high Th and K2O contents, low Sr/Y ratios (11 to 163), high (87Sr/86Sr)i ratios (0.707 to 0.740), and low εNdi values (?4.1 to ?17.5). The eastern plutonic group is associated with several large porphyry Cu–Mo ± Au deposits, whereas the western group is largely barren. We propose that the sharp longitudinal distinction between magmatism and metallogenic potential in the Miocene Gangdese belt reflects the breakoff of the Greater India slab and the extent of underthrusting by the Indian continental lithosphere at that time. Magmas to the east of ~89° E were derived by partial melting of subduction-modified Tibetan lithosphere (mostly lower crust) triggered by heating of hot asthenospheric melt following slab breakoff. These magmas remobilized metals and volatile residual in the crustal roots from prior arc magmatism and generated porphyry Cu–Mo ± Au deposits upon emplacement in the upper crust. In contrast, magmas to the west of ~89° E were formed by smaller volume partial melting of Tibetan lithospheric mantle metasomatized by fluids and melts released from the underthrust Indian plate. They are less hydrous and oxidized and did not have the capacity to transport significant amounts of metals into the upper crust.  相似文献   

10.
The Banda arc of eastern Indonesia manifests the collision of a continent and an intra-oceanic island arc. The presently active arc is located on what appears to be oceanic crust whereas the associated subduction trench is underlain by continental crust.Recent lavas from the Banda arc are predominantly andesitic and range from tholeiitic in the north through calc-alkaline to high-K calc-alkaline varieties in the southern islands. Defining this regular geochemical variation are significant increases in the abundances of K (2,600–21,000 ppm), Rb (10–90 ppm), Cs (0.5–7.0 ppm), and Ba (100–1,000 ppm) from tholeiitic to high-K calc-alkaline lavas. 87Sr/86Sr ratios in the tholeiites are relatively low, from 0.7045 to 0.7047. In the calc-alkaline lavas, 87Sr/86Sr ratios range from 0.7052 to 0.7095, and in the high-K calc-alkaline lavas from 0.7065 to 0.7080. There is no correlation between 87Sr/86Sr and major and trace element abundances, even among lavas from the same volcano. Late Cenozoic cordierite — bearing lavas from Ambon, north of the presently active arc, are highly enriched in K, Rb and Cs, which together with 87Sr/86Sr ratios of approximately 0.715 is consistent with their derivation from partial melting of pelitic material in the locally — thick crust.The high 87Sr/86Sr ratios in the Recent calc-alkaline lavas are interpreted to result from mixing of a sialic component with a mantle derived component. The most likely cause is subduction and subsequent melting of either sea-floor sediments or continental crust. However, it is probably unrealistic to model this type of deep contamination by simple two-component mixing. Such contamination implies that the volcanic rocks from the Banda arc are at least partly a manifestation of melting at or near the Benioff seismic zone. Temperatures of at least 750–800 ° C at the top of the subducted lithospheric slab at depths of approximately 150 km are also implied; temperatures very close to the solidus of hydrous basalt (eclogite) at such pressure. It is concluded that partial melting of the crustal component of the subducted lithospheric slab may play a significant role in island arc petrogenesis.This paper is the result of a cooperative project with the Geological Survey of Indonesia, Ministry of Mines and Energy  相似文献   

11.
埃达克质岩的构造背景与岩石组合   总被引:6,自引:1,他引:5  
本文介绍了埃达克质岩形成的构造背景与岩石组合。埃达克质岩可以形成于不同的构造背景并与不同类型的岩石同时出现:1)火山弧环境中常出现埃达克质岩一高镁安山岩-富Nb玄武质岩组合,它的形成可能与板片熔融以及熔体一地幔橄榄岩的相互作用有关;2)大陆活动碰撞造山带环境(如羌塘)中埃达克质岩常与同期钾质或橄榄玄粗质岩共生,这可能与俯冲陆壳熔融和俯冲陆壳熔体交代的地幔橄榄岩熔融有关;3)造山带伸展垮塌环境(如大别山)中埃达克质岩会伴随有镁铁质一超镁铁质岩浆出露,增厚下地壳产生埃达克质岩浆后的榴辉岩质残留体拆沉进入地幔,与地幔橄榄岩的混合可能形成后期镁铁质一超镁铁质岩浆的源区;4)大陆板内伸展环境中埃达克质岩常与同期橄榄玄粗质的岩石共生,增厚、拆沉下地壳,以及富集地幔的熔融或岩浆混合在岩石的成因中发挥了重要作用。  相似文献   

12.
The Central Eastern Desert (CED) of Egypt, a part of Neoproterozoic Arabian Nubian Shield (ANS), embraces a multiplicity of rare metal bearing granitoids. Gabal El-Ineigi represents one of these granitic plutons and is a good example of the fluorite-bearing rare metal granites in the ANS. It is a composite pluton consisting of a porphyritic syenogranite (SG; normal granite) and coarse- to medium-grained highly evolved alkali-feldspar granite (AFG; fluorite and rare metal bearing granite) intruded into older granodiorite and metagabbro-diorite rocks. The rock-forming minerals are quartz, K-feldspar (Or94-99), plagioclase (An0-6) and biotite (protolithonite-siderophyllite) in both granitic types, with subordinate muscovite (Li-phengite) and fluorite in the AFG. Columbite-(Fe), fergusonite-(Y), rutile, zircon and thorite are the main accessory phases in the AFG while allanite-(Ce) and epidote are exclusively encountered in the SG. Texture and chemistry of minerals, especially fluorite, columbite and fergusonite, support their magmatic origin. Both granitic types are metaluminous to weakly peraluminous (A/CNK = 0.95–1.01) and belong to the post-collisional A2-type granites, indicating melting of underplated mafic lower crust. The late phase AFG has distinctive geochemical features typical of rare metal bearing granites; it is highly fractionated calc-alkaline characterized by high Rb, Nb, Y, U and many other HFSE and HREE contents, and by extremely low Sr and Ba. Moreover, the REE patterns show pronounced negative Eu anomalies (Eu/Eu1 = 0.03 and 0.06) and tetrad effect (TE1,3 = 1.13 and 1.27), implying extensive open system fractionation via fluid–rock interactions that characterize the late magmatic stage differentiation. The SG is remarkably enriched in Sr, Ba and invariably shows a relative enrichment in light rare-earth elements (LREEs). The SG rocks (569 ± 15 Ma) are characterized by relatively low initial 87Sr/86Sr ratios (0.7034–0.7035) that suggest their derivation from the mantle, with little contamination from the older continental crust. By contrast, the AFG has very high 87Rb/86Sr and 87Sr/86Sr ratios that reflect the disturbance of the Rb-Sr isotopic system and may give an indication for the high temperature magma-fluid interaction. The positive εNd(t) values of AFG (+7.40) and SG (+5.17), corresponding to young Nd-TDM2 ages ranging from 707 to 893 Ma, clearly reflect the juvenile crustal nature of Gabal El-Ineigi granitoids and preclude the occurrence of pre-Neoproterozoic continental crust in the ANS. The field relationships, chemical, petrological and isotopic characteristics of El-Ineigi SG and AFG prove that they are genetically not associated to each other and indicate a complex origin involving two compositionally distinct parental magmas that were both modified during magmatic fractionation processes. We argue that the SG was formed by partial melting of a mid-crustal source with subsequent fractional crystallization. In contrast, the AFG was generated by partial melting and fractionation of Nb- and Ta-rich amphibole (or biotite) of the lower crust. The appreciable amounts of fluorine in the magma appears to be responsible for the formation of rare metal element complexes (e.g., Nb, Ta, Sn and REEs), and could account for the rare metal mineralization in the El-Ineigi AFG.  相似文献   

13.
《地学前缘(英文版)》2020,11(3):1053-1068
The late Neoarchean metamorphosed volcanic rocks in the southern Liaoning Terrane (SLT) of the eastern North China Craton (NCC) are mainly composed of amphibolites and felsic gneisses and can be chemically classified as basalt (Group#1), basaltic andesite (Group#2), dacite (Group#3) and rhyodacite (Group#4). LA-ICP-MS zircon U–Th–Pb dating reveals that they formed at ~2.53–2.51 ​Ga. Group#1 samples are characterized by approximately flat chondrite-normalized rare earth element (REE) patterns with low (La/Yb)N ratios and a narrow range of (Hf/Sm)N ratios, and their magmatic precursors were generated by partial melting of a depleted mantle wedge weakly metasomatized by subducted slab fluids. Compared to Group#1 samples, Group#2 samples display strongly fractionated REE patterns with higher (La/Yb)N ratios and more scattered (Hf/Sm)N ratios, indicative of a depleted mantle wedge that had been intensely metasomatized by slab-derived melts and fluids. Group#3 samples are characterized by high MgO and transition trace element concentrations and fractionated REE patterns, which resemble typical high-Si adakites, and the magmatic precursors were derived from partial melting of a subducted oceanic slab. Group#4 samples have the highest SiO2 and the lowest MgO and transition trace element contents, and were derived from partial melting of basaltic rocks at lower crust levels. Integrating these tholeiitic to calc-alkaline volcanic rocks with the mass of contemporaneous dioritic-tonalitic-trondhjemitic-granodioritic gneisses, the late Neoarchean volcanic rocks in the SLT were most likely produced in an active continental margin. Furthermore, the affinities in lithological assemblages, metamorphism and tectonic regime among SLT, eastern Hebei to western Liaoning Terrane (EH–WLT), northern Liaoning to southern Jilin Terrane (NL–SJT), Anshan-Benxi continental nucleus (ABN) and Yishui complex (YSC) collectively indicate that an integral and much larger continental block had been formed in the late Neoarchean and the craton-scale lateral accretion was a dominantly geodynamic mechanism in the eastern NCC.  相似文献   

14.
We report zircon U–Pb geochronologic and geochemical data for the post-collisional volcanic rocks from the Batamayineishan (BS) Formation in the Shuangjingzi area, northwestern China. The zircon U–Pb ages of seven volcanic samples from the BS Formation show that the magmatic activity in the study area occurred during 342–304 Ma in the Carboniferous. The ages also indicate that the Palaeo-Karamaili Ocean had already closed by 342 Ma. Moreover, the volcanic rocks also contained 10 inherited zircons with ages ranging from 565 to 2626 Ma, indicating that Precambrian continental crust or microcontinents with accretionary arcs are two possible interpretations for the basement underlying the East Junggar terrane. The sampled mafic-intermediate rocks belong to the medium-K to high-K calc-alkaline and shoshonitic series, and the formation of these rocks involved fractional crystallization with little crustal contamination. These Carboniferous mafic-intermediate rocks show depletions in Nb and Ta and enrichments in large ion lithophile elements (e.g. Rb, Ba, U, and Th) and light rare earth elements. The low initial 87Sr/86Sr values (0.7034–0.7042) and positive εNd(t) values (+2.63 to +6.46) of these rocks suggest that they formed from depleted mantle material. The mafic-intermediate rocks were most likely generated by 5–10% partial melting of a mantle source composed primarily of spinel lherzolite with minor garnet lherzolite that had been metasomatized by slab-derived fluids and minor slab melts. In contrast, the felsic rocks in the BS Formation are A-type rhyolites with positive εNd(t) values and young model ages. These rocks are interpreted to be derived from the partial melting of juvenile basaltic lower crustal material. Taken together, the mafic-intermediate rocks formed in a post-collisional extensional setting generated by slap breakoff in the early Carboniferous (342–330 Ma) and the A-type rhyolites formed in a post-collisional extensional setting triggered by the upwelling asthenosphere in the late Carboniferous (330–304 Ma).  相似文献   

15.
The Plio-Pleistocene volcanic rocks of the Bohemian Massif comprise a compositional spectrum involving two series: an older basanitic series (6.0–0.8 Ma) and a younger, melilititic series (1.0–0.26 Ma). The former consists of relatively undifferentiated basaltic rocks, slightly silica-undersaturated, with Mg# ranging from 62 to almost primitive mantle-type values of 74. The major and trace element characteristics correspond to those of primitive intra-plate alkaline volcanic rocks from a common sub-lithospheric mantle source (European Asthenospheric Reservoir – EAR) including positive Nb, and negative K and Pb anomalies. 87Sr/86Sr ratios of 0.7032–0.7034 and 143Nd/144Nd of 0.51285–0.51288 indicate a moderately depleted mantle source as for other mafic rocks of the central European volcanic province with signs of HIMU-like characteristics commonly attributed to recycling of subducted oceanic crust in the upper mantle during the Variscan orogeny. The melilititic series is characterized by higher degrees of silica-undersaturation, and high Mg# of 68–72 values, compatible with primitive-mantle-derived compositions. The high OIB-like Ce/Pb (19–47) and Nb/U (32–53) ratios indicate that assimilation of crustal material was negligible. In both series, concentrations of incompatible elements are mildly elevated and 87Sr/86Sr ratios (0.7034–0.7036) and 143Nd/144Nd ratios (0.51285–0.51288) overlap. Variations in incompatible element concentrations and isotopic compositions in the basanitic series and melilititic series can be explained by a lower degree of mantle melting for the latter with preferential melting of enriched mantle domains. The Sr and Nd isotopic compositions of both rock series are similar to those of the EAR. Minor differences in geochemical characteristics between the two series may be attributed to: (i) to different settings with respect to crust and lithospheric mantle conditions in (a) Western Bohemia (WB) and (b) Northeastern Bohemia (NEB) and the Northern Moravia and Silesia (NMS) areas, (ii) a modally metasomatized mantle lithosphere in WB in contrast to cryptically metasomatized domains in the NEB and NMS, (iii) different degrees of partial melting with very low degrees in WB but higher degrees in NEB and NMS. The geochemical and isotopic similarity between the Plio-Pleistocene volcanic rocks and those of the late Cretaceous and Cenozoic (79–6 Ma) suggests that their magmas came from compositionally similar mantle sources, that underwent low degrees of melting over an interval of ∼80 Ma. The Oligocene to Miocene basanitic series that accompanied the Plio-Pleistoicene basanitic series in the NMS region indicate that they shared a common mantle source. There is no geochemical evidence for thermal erosion of the lithospheric mantle or significant changes in mantle compositions within the time of a weak thermal perturbation in the asthenospheric mantle. These perturbations were caused by a dispersed mantle plume or passively upwelling asthenosphere in zones of lithospheric thinning.  相似文献   

16.
The Early Cretaceous–Early Eocene granitoids in the Tengchong Block record the evolutionary history of the Mesozoic-Cenozoic tectono-magmatic evolution of Eastern Tethys. (a) The Early Cretaceous granitoids with relatively low (87Sr/86Sr)i ratios of 0.7090–0.7169 and εNd(t) values of ?9.8 to ?7.8 display metaluminous, calc-alkaline dominated by I-type granite affinity and hybrid mantle–crust geochemical signatures. They may have been derived from melting of the subducted Meso-Tethyan Bangong-Nujiang oceanic crust with terrigenous sediments in an arc-continent collisional setting. (b) The Late Cretaceous–Paleocene granitoids with relatively high (87Sr/86Sr)i ratios of 0.7109–0.7627, and εNd(t) values of ?12.1 to ?7.9 exhibit metaluminous to peraluminous, calc-alkaline dominated by S-type granite affinity and hybrid Lower–Upper crust geochemical signatures, which may be originated from partial melting of the Meso-Proterozoic continental crust in the collision setting between the Tengchong Block and Baoshan Block. (c) The Early Eocene granitoids have metaluminous, calc-alkaline I-type and S-type granites dual affinity, with relatively high (87Sr/86Sr)i ratios of 0.711–0.736, εNd(t) values of ?9.4 to ?4.7, showing crust-mantle mixing geochemical signatures. They may have been originated from partial melting of the late Meso-Proterozoic upper crustal components mixed with some upper mantle material during the ascent process of mantle magma caused by the subduction of the Neo-Tethyan Putao–Myitkyian oceanic crust, and collision between the Western Burma Block and the Tengchong Block. It is these multi-stage subductions and collisions that caused the spatial and temporal distribution of the granitic rocks in the Tengchong Block.  相似文献   

17.
Voluminous granitoids are widely distributed in the Langshan region, northeast of the Alxa block, and record the evolutionary processes of the southern Central Asian Orogenic Belt. The Dabashan pluton was emplaced into the Paleoproterozoic Diebusige complex. Early Carboniferous zircon LA-ICP MS U-Pb ages were from 327 Ma to 346 Ma. The Dabashan pluton can be classified as monzogranite and syenogranite, and exhibits high K2O contents and K2O/Na2O ratios, which reveal a high-K calc-alkaline nature. The samples display strongly fractionated REE patterns, and are enriched in large ion lithophile elements (LILE) relative to high field strength elements (HFSE). The Dabashan plutons display unusually high Ba (823–2817 ppm) and Sr (166–520 ppm) contents and K/Rb ratios (315–627), but low Rb/Ba ratios (0.02–0.14), and exhibit fertile zircon Hf isotopic compositions [εHf(t)=?14 to ?20], which are comparable to those of typical high Ba–Sr granitoids. Based on the geochemical compositions of the samples, we suggest that subducted sediments and ancient crustal materials both played important roles in their generation. Basaltic melts were derived from partial melting of subcontinental lithophile mantle metasomatized by subducted sediment-related melts with residual garnet in the source, which caused partial melting of ancient lower crust. Magmas derived from underplating ascended and emplaced in the middle–upper crust at different depths. The resultant magmas experienced some degree of fractional crystallization during their ascent. Given these geochemical characteristics, together with regional tectonic, magmatic, and structure analysis data, an active continental margin environment is proposed for the generation of these rocks.  相似文献   

18.
40~25 Ma之间通常被认为是拉萨地块特别是藏南冈底斯带岩浆活动的间歇期,与新特提斯洋板片断离后印度-亚洲大陆的硬碰撞有关.对出露于冈底斯东段南缘的冲木达石英二长岩-花岗闪长岩及相关的闪长质包体进行了锆石LA-ICPMS U-Pb定年和主微量元素、Sr-Nd同位素和锆石原位Hf同位素研究.年代学分析显示,侵入岩及其包...  相似文献   

19.
Zircon U–Pb ages, geochemical and Sr–Nd isotopic data are presented for the late Carboniferous Baoligaomiao Formation (BG Fm.) and Delewula Formation (DW Fm.) volcanic rocks, widely distributed in northern Inner Mongolia, in the northern part of the Xing'an–Mongolia Orogenic Belt (XMOB). The BG Fm. rocks mainly consist of basaltic andesites and andesites while the DW Fm. rocks include dacites, trachytes, rhyolites, pyroclastic rocks and minor andesites. New LA-ICPMS zircon U–Pb analyses constrain their eruption to late Carboniferous (317–322 Ma and 300–310 Ma, respectively). The BG Fm. volcanic rocks are characterized by enriched large ion lithophile elements (LILE) and depleted high field strength elements (HFSE), with initial 87Sr/86Sr ratios of 0.70854–0.70869 and negative εNd(t) (− 2.1 to − 2.4) values. They have low La/Ba (0.03–0.05), high La/Nb (2.05–3.70) ratios and variable Ba/Th (59.5–211) ratios. Such features suggest that they are derived from melting of heterogeneous sources including a metasomatized mantle wedge and Precambrian crustal material. The DW Fm. volcanic rocks are more depleted in HFSE with significant Nb, Ta, P, Ti anomalies. They have high initial 87Sr/86Sr ratios (0.72037–0.72234) and strong negative εNd(t) (− 11 to − 11.6) values which indicate those igneous rocks were mainly derived from reworking of the Paleoproterozoic crust. The late Carboniferous volcanic rocks have geochemical characteristics similar to those of the continental arc rocks which indicate the northward subduction of the Paleo Asian Ocean may have continued to the late Carboniferous. The volcanic association of this study together with the early Permian post-collisional magmatic rocks suggests that a tectonic transition from subduction-related continental margin arc volcanism to post-collisional magmatism occurred in the northern XMOB between the late Carboniferous and the early Permian.  相似文献   

20.
The Balkuyumcu region, located in the southwestern part of Ankara in the Izmir-Ankara suture zone (central Anatolia, Turkey), consists of basic andesitic, andesitic, dacitic and rhyolitic rocks extruded during the Early Miocene (20–22 Ma) as a result of post-collisional volcanism. Balkuyumcu volcanic rocks can be divided into two groups on the basis of their mineralogy and composition: The basic andesitic (BA) and andesitic, dacitic and rhyolitic (ADR) groups. The ADR and BA group of rocks have adakite-like and calc-alkaline characteristics, respectively. The ADR group has higher SiO2 content, Sr/Y and La/Yb ratios and low MgO, Mg#, Y and Yb contents than the BA group. Both groups have nearly the same Sr, Nd isotopic compositions and display similar normalized multi-element patterns with enrichments in LILE and LREE, depletions in Nb, Ti, Zr, P and a lack of Eu anomalies. Major, trace element and Sr, Nd isotopic data indicate that both groups of rocks were derived from the same source but affected by different magmatic processes during ascent. The adakite-like rocks may have been produced by partial melting of thickened lower continental crust. Fractional crystallization also played a major role in their formation. However, the BA group rocks were derived from partial melting of lower continental crust that was probably delaminated. These rocks appear to have had limited interaction with mantle peridodite during ascent to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号