首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
大别造山带祝家铺辉长岩的铂族元素特征   总被引:8,自引:2,他引:8  
采用镍锍火试金法结合ICP-MS分析了祝家铺14个辉长岩样品中的Ir,Ru,Rh,Pt和Pd的含量。结果显示其PGE的含量较低,原始地幔标准化后的PGE分布模式呈正斜率型,PPGE相对原始地幔略微亏损,而IPGE强烈亏损,Pd/Ir值(22—138)远高于相应的地幔比值,表明铂族元素发生了分异。对祝家铺辉长岩的铂族元素研究表明,在其源区发生过硫化物的分异作用,地壳的混入可能促进了硫化物的饱和。祝家铺辉长岩中铂族元素的分异是因为在地幔部分熔融和岩浆演化过程中,PPGE主要受硫化物控制,而Ir则存在于非硫化物相如尖晶石、可能还有合金之中。  相似文献   

2.
A set of platinum group element (PGE) analyses of about 120 samples from a 250-m continuous drill core through the Mount Keith komatiite-hosted nickel orebody, combined with Ni, Cu, Co, S, and major elements, reveals a complex trend of covariance between the original cumulus components of a thick sequence of nearly pure olivine–sulphide liquid adcumulates. The intersection is divided into informal chemostratigraphic zones, defined primarily by combinations of fine-scale cyclicity in original olivine composition, defined by Mg#, and sulphide composition, defined by Pt/S and Ni/S. Contents of Ni and PGE in 100% sulphides (tenors) were determined from linear regressions of the Ni–S and PGE–S covariance for each zone. Inferred olivine compositions range from about Fo92 to Fo94.6 and show a broad decrease from bottom to top of the sequence complicated by numerous reversals, revealing crystallisation in an open conduit system. Ni and PGE tenors of Mount Keith sulphide ores have typical values similar to the type I deposits of the Kambalda Dome. Mobility of S, at least on the scale of 2-m sample composites, is evidently relatively minor. Tenors for the various zones range 12–22% Ni, 370–1540?ppb Pt, 970–3670?ppb Pd, 100–460?ppb Ir, 170–460?ppb Rh, and 710–1260?ppb Ru. Pt, Pd, and Rh tenors are very strongly correlated, but the iridium group of platinum group elements (IPGEs; Ir and Ru) less so. Tenor variations are predominantly controlled by variations in magma/sulphide ratio R (100–350), with a minor component of variance from equilibrium crystallisation trends in the parent magma. PGE depletion in the silicate melt due to sulphide liquid extraction is limited by entrainment of sulphide liquid droplets and continuous equilibration with the transporting silicate magma. Ratios of the PGEs to one another are similar to those in the host komatiite magma, with the exception of Pt, which is systematically depleted in ores, relative to Rh and Pd and relative to host magma, by a consistent factor of about 2 to 2.5. This anomalous Pt depletion relative to PGE element ratios in unmineralized komatiitic rocks matches that observed in bulk compositions of many komatiite-hosted orebodies. The highly consistent nature of this depletion, and particularly the very strong correlation between Pt, Pd, and Rh in the Mount Keith deposit, argue that this depletion is a primary magmatic signal and not an artefact of alteration. Differential diffusion rates between Pt and the other PGEs, giving rise to a low effective partition coefficient for Pt into sulphide liquid, is advanced as a possible but not definitive explanation.  相似文献   

3.
The Wengeqi complex in Guyang County, Inner Mongolia, is one of several Pd–Pt-mineralized Paleozoic mafic–ultramafic complexes along the north-central margin of the North China. The complex comprises pyroxenites, biotite pyroxenites, amphibole pyroxenites, gabbros, and amphibolites. Zircons extracted from a pyroxenite yield a U–Pb SHRIMP age of 399?±?4?Ma. Several 2–6-m wide syngenetic websterite dikes contain 1–3?ppm Pd?+?Pd and are dominated by pyrite–chalcopyrite–pyrrhotite–magnetite–(pentlandite) assemblages with minor sperrylite, sudburyite, and kotuskite. Textural relationships indicate that pyrite has replaced magmatic chalcopyrite and that magnetite has replaced magmatic pyrrhotite. The mineralization is enriched in Pd–Pt–Cu > Au >> Rh–Ir–Os–Ni > Ru, similar to other occurrences of hydrothermally modified magmatic mineralization, but very different from the much less fractionated compositions of magmatic PGE mineralization. Textural, mineralogical, and geochemical relationships are consistent with alteration of an original magmatic Fe–Ni–Cu sulfide assemblage by a S-rich oxidizing high-temperature (deuteric) hydrothermal fluid.  相似文献   

4.
The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block.In the present study,the Wuguiqing profile in thickness of about 1440 m is mainly composed of high-Ti basalts,with minor picrites in the lower part and andesites,trachytes,and rhyolites in the upper part.The picrites have relatively higher platinum-group element(PGE) contents(ΣPGE=16.3-28.2 ppb),with high Cu/Zr and Pd/Zr ratios,and low S contents(5.03-16.9 ppm),indicating the parental magma is S-unsaturated and generated by high degree of partial melting of the Emeishan large igneous province(ELIP) mantle source.The slightly high Cu/Pd ratios(11 000-24 000) relative to that of the primitive mantle suggest that 0.007%sulfides have been retained in the mantle source.The PGE contents of the high-Ti basalts exhibit a wider range(ΣPGE=0.517-30.8 ppb).The samples in the middle and upper parts are depleted in PGE and haveεNd(260 Ma) ratios ranging from -2.8 to -2.2,suggesting that crustal contamination of the parental magma during ascent triggered sulfur saturation and segregation of about 0.446%-0.554% sulfides,and the sulfide segregation process may also provide the ore-forming material for the magmatic Cu-Ni-PGE sulfide deposits close to the studied basalts.The samples in this area show Pt-Pd type primitive mantle-normalized PGE patterns,and the Pd/Ir ratios are higher than that of the primitive mantle(Pd/Ir=1),indicating that the obvious differentiation between Ir-group platinum-group elements(IPGE) and Pd-group platinum-group elements(PPGE) are mainly controlled by olivine or chromites fractionation during magma evolution.The Pd/Pt ratios of most samples are higher than the average ratio of mantle(Pd/Pt=0.55),showing that the differentiation happened between Pt and Pd.The differentiation in picrites may be relevant to Pt hosted in discrete refractory Pt-alloy phase in the mantle;whereas the differentiation in the high-Ti basalts is probably associated with the fractionation of Fe-Pt alloys,coprecipitating with Ir-Ru-Os alloys.Some high-Ti basalt samples exhibit negative Ru anomalies,possibly due to removal of laurite collected by the early crystallized chromites.  相似文献   

5.
来自蛇绿岩地幔的硫(砷)化物矿物组合   总被引:1,自引:0,他引:1  
近来在西藏雅鲁藏布江蛇绿岩带的罗布莎蛇绿岩块的地幔豆荚状铬铁矿中发现一个包括金刚石、柯石英、自然元素、合金、氧化物以及硫(砷)化物组成的地幔矿物群。该矿物群的硫(砷)化物具有特殊化学成分并呈包裹体分布在贱金属(BM)和铂族元素(PGE)或它们的合金中,大量化学成分分析得知它们主要由下列元素组成:S、As、Te、Fe、Ni、Co、Cu、Pt、Pd、Ru、Rh、Os、Ir、Mn和Ti。根据化学成分可辨别出约30种硫(砷)化物矿物:FeS、NiS、(Ni,Fe)S、Fe3S2、Ni3S2、(Ru,Os,Ir)S2、Rh7As3、Rh5Ni(Cu)As4、Pd4Rh3As3、Pd8As2、Pd3TeAs、Pd7Te3、RuAs、PtAs2、Ni4Rh3As3、Rh(As,S)2、(Rh,Ir)(As,S)2、Ir(As,S)2、MnS、Ti7S3、Ti7N3、Rh3.5Se3.5CuS2、RhS、Ir2S3、(Ir,Cu)2、S3(Co,Ni,Fe)2(As,S)3、(Ir,Pt)(As,S)2、Ru3(As,S)7以及(BM)x(PGE)yS10-(x y)等,其中包括已定名和未定名的矿物。由于矿物粒度小(<25μm),缺乏X射线分析资料,有待进一步研究。  相似文献   

6.
Data are presented on chromitites from the northern and southern sheets of the Il’chir ophiolite complex (Ospa–Kitoi and Khara-Nur (Kharanur) massifs). The new and published data are used to consider similarities and differences between ore chrome-spinel from the chromitites of the northern and southern ophiolite sheets as well as the species diversity of PGE minerals and the evolution of PGE mineralization. Previously unknown PGE minerals have been found in the studied chromitites.Ore chrome-spinel in the chromitites from the northern sheet occurs in medium- and low-alumina forms, whereas the chromitites from the southern sheet contain only medium-alumina chrome-spinel. The PGE minerals in the chromitites from the southern sheet are Os–Ir–Ru solid solutions as well as sulfides and sulfoarsenides of these metals. The chromitites from the northern sheet contain the same PGE minerals and diverse Rh–Pt–Pd mineralization: Pt–Ir–Ru–Os and isoferroplatinum with Ir and Os–Ir–Ru lamellae. Areas of altered chromitites contain a wide variety of low-temperature secondary PGE minerals: Pt–Cu, Pt–Pd–Cu, PdHg, Rh2SnCu, RhNiAs, PtAs2, and PtSb2. The speciation of the PGE minerals is described along with multiphase intergrowths. The relations of Os–Ir–Ru solid solutions with laurite and irarsite are considered along with the microstructure of irarsite–osarsite–ruarsite solid solutions. Zoned Os–Ir–Ru crystals have been found. Zone Os82–99 in these crystals contains Ni3S2 inclusions, which mark off crystal growth zones. Different sources of PGE mineralization are presumed for the chromitites from the northern and southern sheets.The stages of PGE mineralization have been defined for the chromitites from the Il’chir ophiolite belt. The Pt–Ir–Ru–Os and (Os, Ru)S2 inclusions in Os–Ir–Ru solid solutions might be relics of primitive-mantle PGE minerals. During the partial melting of the upper mantle, Os–Ir–Ru and Pt–Fe solid solutions formed syngenetically with the chromitites. During the late-magmatic stage, Os–Ir–Ru solid solutions were replaced by sulfides and sulfarsenides of these metals. Mantle metasomatism under the effect of reduced mantle fluids was accompanied by PGE remobilization and redeposition with the formation of the following assemblage: garutiite (Ni,Fe,Ir), zaccariniite (RhNiAs), (Ir,Ni,Cu)S3, Pt–Cu, Pt–Cu–Fe–Ni, Cu–Pt–Pd, and Rh–Cu–Sn–Sb. The zoned Os–Ir–Ru crystals in the chromitites from the northern sheet suggest dissolution and redeposition of Os–Ir–Ru primary-mantle solid solutions by bisulfide complexes. Most likely, the PGE remobilization took place during early serpentinization at 450–600 ºC and 13–16 kbar.During the crustal metamorphic stage, tectonic movements (obduction) and a change from reducing to oxidizing conditions were accompanied by the successive transformation of chrome-spinel into ferrichromite–chrome-magnetite with the active participation of a metamorphic fluid enriched in crustal components. The orcelite–maucherite–ferrichromite–sperrylite assemblage formed in epidote-amphibolitic facies settings during this stage.The PGE mineral assemblage reflects different stages in the formation of the chromitites and dunite-harzburgite host rocks and their transformation from primitive mantle to crustal metamorphic processes.  相似文献   

7.
金川铜镍硫化物矿床岩浆通道型矿体地质地球化学特征   总被引:7,自引:0,他引:7  
田毓龙  包国忠  汤中立  王玉山 《地质学报》2009,83(10):1515-1525
金川铜镍硫化物矿床6行富铜(铂族)矿体曾因Cu、Pt、Pd等含量明显高于相邻其它矿体而被认为是岩浆期后热液叠加作用的产物,研究发现,空间上该矿体受断层构造控制,在矿石组构、矿物组成和硫同位素组成方面与相邻岩浆融离型1号矿体一致,显示了该矿体岩浆成矿作用的特征。在元素地球化学方面,6行富铜(铂族)矿体的Cu、Ni、Pt、Pd含量及Cu/Ni比值明显高于1号主矿体,而Os、Ir、Rh、Ru却明显低于后者,同时,前者相对富含LREE,轻、重稀土分异程度高于后者。根据硫化物结晶分异过程中金属元素分配规律及稀土元素特征,阐明了6行富铜(铂族)矿体为岩浆通道型矿体,是岩浆硫化物晚期结晶的产物。矿区中西部存在的Cu、Ni、Pt、Pd、Au等含量高,而Os、Ir、Rh、Ru含量低的部位,是寻找岩浆通道型矿体的有利部位。  相似文献   

8.
对北山地区坡一和罗东含铜镍的镁铁-超镁铁质岩体铂族元素研究表明,两个岩体的铂族元素(PGE)总量较低,PPGE较IPGE富集,原始地幔标准化模式呈正斜率,均较原始地幔亏损,具Ir和Rh的弱负异常。较低的Pd/Ir比值表明岩石主要受岩浆作用控制,后期热液作用影响不明显。两个岩体的原生岩浆均为MgO 含量较高的PGE不亏损的拉斑玄武质岩浆,较高的Cu/Pd、Ti/Pd比值表明岩浆在演化过程中发生了硫化物的熔离。罗东岩体早期矿物相(橄榄石、铬铁矿)的分离结晶作用对岩浆中的硫达到饱和具有重要的贡献,而坡一岩体该作用对硫化物熔离的贡献不明显。坡一和罗东岩体的R值表明两岩体均具有达到中型Ni矿床的潜力。  相似文献   

9.
The contents of the platinum-group elements (PGEs: Os, Ir, Ru, Rh, Pt, Pd) in the Abulangdang ultramafic intrusion have been determined using ICP-MS after nickel sulfide fire assay preconcentration. Different samples show significant differences in absolute PGE abundance. They display a pronounced negative incline in mantle-normalized patterns which are characterized by strong enrichment in IPGEs (Os, Ir, Ru) and depleting to slight enrichment in PPGEs (Rh, Pt, Pd). The characteristics of PGE distribution in the Abulangdang rocks are due to the combined action of sulfide and non-sulfide (spinel/chromite or alloy or micro-granular aggregation of metals). In comparison with the mafic-ultramafic rocks which host Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP), it is assumed that the Abulangdang ultramafic intrusion may be the product of early-stage magma activity in the ELIP.  相似文献   

10.
中国铬铁矿的铂族元素分布特征   总被引:2,自引:0,他引:2  
周美付  白文吉 《矿物学报》1994,14(2):157-163
用NiS溶解和Te沉淀方法富集铂族元素(PGE),制成镍扣,再溶解于浓HCl中,使PGE和Te一起沉淀。制备的样品溶液在ELAN-5000型电感耦合等离子质谱仪(ICP-MS)上分析PGE。中国铬铁矿矿石,包括蛇绿岩套中的豆荚状铬铁矿床、非层状侵入体铬铁矿,计13个矿床(化)样品,其PGE模式表明,主要呈RU正异常模式,个别不同模式是由母岩不同以及铂族元素矿化叠加引起的。铬铁矿的PGE模式不取决于铬铁矿的化学成分,而取决于其母岩性质以及形成温度和铂族元素的熔点。  相似文献   

11.
铂族元素矿物共生组合(英文)   总被引:1,自引:2,他引:1  
CHEN Yuan 《现代地质》2001,15(2):131-142
由于铂族元素能有效地降低汽车尾气的污染 ,其需求量日益增加 ,对铂族元素矿床的寻找已是当务之急。着重从矿物矿床学角度对铂族元素的矿物共生特点进行了探讨。铂族元素可呈独立矿床产出 ,主要产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中。铂族元素也伴生于铜镍矿床中 ,该类铜镍矿床主要与苏长岩侵入体、溢流玄武岩及科马提岩有关。产于基性超基性层状侵入体中的铂族矿物有铂钯硫化物、铂铁合金、钌硫化物、铑硫化物、铂钯碲化物、钯砷化物及钯的合金。这些铂族矿物可与硫化物矿物共生 ,也可与硅酸盐矿物共生 ,还可与铬铁矿及其他氧化物矿物共生。产于蛇绿岩套中的铂族矿物主要是钌铱锇的矿物 ,而铂钯铑的矿物则较少出现 ,这些铂族矿物可呈合金、硫化物、硫砷化物以及砷化物 4种形式出现。产于阿拉斯加式侵入体中的铂族矿物主要有铂铁合金、锑铂矿、硫铂矿、砷铂矿、硫锇矿及马兰矿等少数几种 ,其中铂铁合金与铬铁矿及与其同时结晶的高温硅酸盐矿物共生 ,而其他的铂族矿物则与后来的变质作用及蛇纹岩化作用中形成的多金属硫化物及砷化物共生。产于铜镍矿床中的铂族矿物主要是铂和钯的矿物。产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中的铂族矿物的共同特点是它们均与铬铁矿?  相似文献   

12.
作为塔里木大火成岩省形成最晚的火成岩,新疆巴楚瓦吉里塔格霞石岩的岩浆源区性质的确定对于揭示塔里木大火成岩省的深部地质过程具有重要的约束作用。对瓦吉里塔格霞石岩的铂族元素地球化学特征进行了研究,铂族元素(PGE)分析结果显示,原始地幔标准化的PGE呈正斜率型分布,且Pd/Ir值高于原始地幔比值,说明霞石岩的铂族元素发生了分异。霞石岩全岩的PGE与Mg O呈正相关,Pd/Ir、Cu/Pd与Mg O则呈负相关,说明PGE的分异主要受到橄榄石的结晶分异作用控制,也是其Cu/Pd值极高及岩浆S饱和的因素之一,同时Cu/Pd值说明霞石岩岩浆为硫饱和岩浆,但是没有因素导致岩浆S过饱和进而发生硫化物的熔离。与其他大火成岩省岩石相比,瓦吉里塔格霞石岩极度亏损PGE,SCSS(硫承载量)计算结果表明母岩浆在形成之初就发生S过饱和,主要是地幔低程度部分熔融造成的,据此认为地幔源区的部分熔融程度在塔里木大火成岩省Cu-Ni硫化物铂族元素矿床形成过程中起着至关重要的作用。  相似文献   

13.
The Permian Hulu intrusion is one of several sulphide-bearing Permian mafic–ultramafic intrusions in the eastern part of the eastern Tianshan located at the southern margin of the Central Asian Orogenic Belt (CAOB) in Xinjiang, NW China. The intrusion is composed of lherzolite, olivine websterite, gabbro, and gabbro-diorite. Disseminated and net-textured Ni-Cu sulphide ores are located at the bottom of the lopolith complex. Negative Zr, Hf, Nb, and Ta anomalies, whole-rock εNd(t) values of +5.7 to +8.8, and variable (Th/Nb)PM values (from 1.06 to 8.13) suggest that the source of the Hulu complexes is depleted mantle metasomatized by subducted slab-derived fluid and/or melt (~5% global subducted sediment and 15% slab fluid) that has experienced approximately 3% lower crustal and 10% upper crustal contamination. The Hulu intrusion is characterized by low PGE abundances i.e. 0.03–1.08 ppb Ir, 0.04–0.69 ppb Ru, 0.02–2.15 ppb Rh, 0.30–48.71 ppb Pt, and 0.21–344 ppb Pd. Our calculations indicate that if the Pd, Os, Ir, and Cu contents of the primary magma were 2.1 ppb, 0.03 ppb, 0.05 ppb, and 200 ppm, respectively, a variable R-factor between 200 and 1600 with residual magma that had experienced 0.01% early-sulphide segregation can explain the variation in Pd, Os, and Ir contents of sulphide-poor and disseminated sulphide samples of the Hulu deposit. Basaltic magma fractionation and assimilation and/or contamination of sulphur-bearing crustal materials might have triggered sulphur saturation to form Cu-Ni sulphide ores. Tarim basaltic PGE contents cannot be used as the mineralized parent magma for the Hulu intrusion because of the differing evolutionary trends of the Ni/Pd and Cu/Ir values. However, similar Cu/Ni and Pd/Ir values in Tarim basalts and Hulu Cu-Ni sulphide ores, as well as the same early sulphide segregation process, show that certain genetic relationships between them and magma sources are probably similar to each other.  相似文献   

14.
Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.  相似文献   

15.
吉林省油页岩中铂族元素的化学牲及分配规律研究   总被引:2,自引:0,他引:2  
采用电感耦合等离子体发射质谱仪(ICP-MS)测定了吉林省油页岩中铂族元素的含量,并对油页岩中铂族元素的化学特征、与无机组分的相关性及其分布模式等进行了分析和阐述.通过油页岩中铂族元素的含量与地壳和中国东部出露地壳中铂族元素丰度的比较表明,Rh、Ru、Ir等元素相对富集,其中松原油页岩中Rh、Ir的含量约为地壳平均值的10倍.研究区油页岩中铂族元素以Pt-Pd分配模式为典型特征,一般Pt的丰度大于Pd.油页岩中铂族元素与无机组成相关分析的结果表明,油页岩中铂族元素可能呈吸附态存在于高岭石、伊利石等粘土矿物中.  相似文献   

16.
吉林省油页岩中铂族元素的化学特征及分配规律研究   总被引:2,自引:0,他引:2  
采用电感耦合等离子体发射质谱仪(ICP MS)测定了吉林省油页岩中铂族元素的含量,并对油页岩中铂族元素的化学特征、与无机组分的相关性及其分布模式等进行了分析和阐述。通过油页岩中铂族元素的含量与地壳和中国东部出露地壳中铂族元素丰度的比较表明,Rh、RuI、r等元素相对富集,其中松原油页岩中RhI、r的含量约为地壳平均值的10倍。研究区油页岩中铂族元素以Pt Pd分配模式为典型特征,一般Pt的丰度大于Pd。油页岩中铂族元素与无机组成相关分析的结果表明,油页岩中铂族元素可能呈吸附态存在于高岭石、伊利石等粘土矿物中。  相似文献   

17.
喀拉通克铜镍矿床位于准噶尔板块北缘,矿区主要矿体赋存于Y1-Y3号岩体中。矿石构造类型为致密块状和浸染状两大类,其中前者与后者呈贯入接触,不同浸染状类型之间为过渡关系。岩石和矿石的PGE总量偏低,且以PPGE为主,IPGE含量较低。整体上岩石中的PGE含量显示随基性程度降低而变小。矿石中的PGE含量随硫化物含量增加增大,显示PGE主要分布于硫化物熔离形成的物相中。100%硫化物计算后,矿石PGE含量平均仅为573×10-9。各岩体中浸染状矿石PGE组成并无明显差异;岩石和矿石具有相似的PGE分配模式,均属于Pt-Pd配分型。岩石Ni/Cu-Pd/Ir关系以及岩石地球化学资料显示,形成喀拉通克岩体的初始岩浆为MgO含量较高的玄武质岩浆,属于PGE不亏损的岩浆。基于PGE不亏损的大陆拉斑玄武岩初始岩浆推算,喀拉通克矿床母岩浆明显亏损PGE,而深部硫化物熔离可能是导致母岩浆PGE亏损的主要原因。岩石和矿石Pd/Pt比值总体特征,岩石Cr与Ni、Ir、Ru和Rh相关性,以及硫同位素和岩石学资料分析表明,初始岩浆在地壳深部发生的橄榄石、铬铁矿等矿物的分离结晶作用,可能是促使硫过饱和与深部熔离的主要因素。IPGE与PPGE分异特征及其相关分析,结合矿床宏观地质特征,推断该矿床浸染状矿的成矿作用经历了初始岩浆(PGE不亏损)→橄榄石等矿物分离结晶→硫化物深部熔离→成矿母岩浆(PGE亏损)→上侵并结晶分异的成矿过程。块状矿则可能是这一过程中PGE亏损的成矿母岩浆相对滞后熔离形成的硫化物熔体贯入的结果。  相似文献   

18.
Platinum-group elements (PGE) in PGE-rich porphyry copper (gold) deposits are mainly Pt and Pd, whereas the concentrations of other PGE (Ru, Rh, Os, Ir) are significantly low. Moreover, Pt and Pd mainly exist in sulfides in the forms of crystal lattice or tiny platinum-group mineral (PGM) inclusions. The present data show that there is a positive relationship between Pt and Pd concentrations and Cu (Au) in porphyry copper (gold) deposits. The comparison of chondrite-normalized PGE distribution patterns between the ore-bearing porphyry intrusions and ore-barren porphyry intrusions in arc setting, 187^Os/188^Os, 87^Sr/86^Sr and S isotopes for porphyry copper (gold) deposits shows that PGEs were mainly derived from the mantle, and fluids from subduction zones devoted trivial PGE to the magma. The porphyry copper (gold) deposits associated with subducted events are most probably enriched in PGE, whereas those related to crustal thickening, lithospheric delamination or underplating rarely concentrate PGE. The osmium isotopic compositions in porphyry copper (gold) deposits reveal that (187^Os/188^Os)i values are highly variable and not lower than those of primitive upper mantle (PUM) and mantle peridotite, however, osmium concentrations are commonly lower than mantle peridotite, suggesting that parental magmas of some porphyry intrusions had experienced crustal contamination during magma evolution. Experimental investigations have proved that PGE exist in the forms of Cl^- and HS^- complexes during transportation and migration of the oreforming fluids. This paper summarizes previous studies including crucial controlling factors and mechanisms for PGE enrichment, and points out that the mantle-derived magmas parental to porphyry intrusions are the prerequisite for PGE enrichment in porphyry copper (gold) deposits. Favorable physical and chemical conditions (including salinity, temperature, pressure, pH, and oxygen fugacity) in hydrothermal fluids crucially control the  相似文献   

19.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure distributions of the siderophile elements V, Fe, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in Fremdlinge with a spatial resolution of 15 to 25 μm. A sulfide vein in a refractory inclusion in Allende (CV3-oxidized) is enriched in Rh, Ru, and Os with no detectable Pd, Re, Ir, or Pt, indicating that Rh, Ru, and Os were redistributed by sulfidation of the inclusion, causing fractionation of Re/Os and other siderophile element ratios in Allende CAIs. Fremdlinge in compact Type-A inclusions from Efremovka (CV3-reduced) exhibit subsolidus exsolution into kamacite and taenite and minimal secondary formation of V-magnetite and schreibersite. Siderophile element partitioning between taenite and kamacite is similar to that observed previously in iron meteorites, while preferential incorporation of the light PGEs (Ru, Rh, Pd) relative to Re, Os, Ir, and Pt by schreibersite was observed. Fremdling EM2 (CAI Ef2) has an outer rim of P-free metal that preserves the PGE signature of schreibersite, indicating that EM2 originally had a phosphide rim and lost P to the surrounding inclusion during secondary processing. Most Fremdlinge have chondrite-normalized refractory PGE patterns that are unfractionated, with PGE abundances derived from a small range of condensation temperatures, ∼1480 to 1468 K at Ptot = 10−3 bar. Some Fremdlinge from the same CAI exhibit sloping PGE abundance patterns and Re/Os ratios up to 2 × CI that likely represent mixing of grains that condensed at various temperatures.  相似文献   

20.
The Palaeoproterozoic Ni–Cu sulphide deposits of the PechengaComplex, Kola Peninsula, occur in the lower parts of ferropicriticintrusions emplaced into the phyllitic and tuffaceous sedimentaryunit of the Pilgujärvi Zone. The intrusive rocks are comagmaticwith extrusive ferropicrites of the overlying volcanic formation.Massive lavas and chilled margins from layered flows and intrusionscontain <3–7 ng/g Pd and Pt and <0·02–2·0ng/g Ir, Os and Ru with low Pd/Ir ratios of 5–11. Theabundances of platinum group elements (PGE) correlate with eachother and with chalcophile elements such as Cu and Ni, and indicatea compatible behaviour during crystallization of the parentalmagma. Compared with the PGE-depleted central zones of differentiatedflows (spinifex and clinopyroxene cumulate zones) the olivinecumulate zones at the base contain elevated PGE abundances upto 10 ng/g Pd and Pt. A similar pattern is displayed in intrusivebodies, such as the Kammikivi sill and the Pilgujärvi intrusion.The olivine cumulates at the base of these bodies contain massiveand disseminated Ni–Cu-sulphides with up to 2 µg/gPd and Pt, but the PGE concentrations in the overlying clinopyroxenitesand gabbroic rocks are in many cases below the detection limits.The metal distribution observed in samples closely representingliquid compositions suggests that the parental magma becamesulphide saturated during the emplacement and depleted in chalcophileand siderophile metals as a result of fractional segregationof sulphide liquids. Relative sulphide liquid–silicatemelt partition coefficients decrease in the order of Ir >Rh > Os > Ru > Pt = Pd > Cu. R-factors (silicate-sulphidemass ratio) are high and of the order of 104–105, andthey indicate the segregation of only small amounts of sulphideliquid in the parental ferropicritic magma. In differentiatedflows and intrusions the sulphide liquids segregated and accumulatedat the base of these bodies, but because of a low silicate–sulphidemass ratio the sulphide liquids had a low PGE tenor and Pt/Irand Cu/Ir ratios similar to the parental silicate melts. Duringcooling the sulphide liquid crystallized 40–50% of monosulphidesolid solution (mss) and the residual sulphide liquid becameenriched in Cu, Pt and Pd and depleted in Ir, Os and Ru. TheCu-rich sulphide liquid locally assimilated components of thesurrounding S-rich sediments as suggested by the radiogenicOs isotopic composition of some sulphide ores (  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号