首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The several-hundred-m-thick Miocene Upper Red Formation in northwestern Iran hosts stratiform and fault-controlled copper mineralization. Copper enrichment in the percent range occurs in dm-thick carbonaceous sandstone and shale units within the clastic redbed sequence and consists of fine-grained disseminated copper sulfides (chalcopyrite, bornite, chalcocite) and supergene alteration minerals (covellite, malachite and azurite). The copper mineralization formed after calcite cementation of the primary rock permeability. Copper sulfides occur mainly as replacement of diagenetic pyrite, which, in turn, replaced organic matter. Electron microprobe analysis on bornite, chalcocite and covellite identifies elevated silver contents in these minerals (up to 0.12, 0.72 and 1.21 wt%, respectively), whereas chalcopyrite and pyrite have only trace amounts of silver (<0.26 and 0.06 wt%, respectively). Microthermometric data on fluid inclusions in authigenic quartz and calcite indicate that the Cu mineralization is related to a diagenetic fluid of moderate-to low temperature (Th = 96–160 °C) but high salinity (25–38 wt% CaCl2 equiv.). The range of δ34S in pyrite is −41.9 to −16.4‰ (average −31.4‰), where framboidal pyrite shows the most negative values between −41.9 and −31.8‰, and fine-grained pyrite has relatively heavier δ34S values (−29.2 to −16.4‰), consistent with a bacteriogenic derivation of the sulfur. The Cu-sulfides (chalcopyrite, bornite and chalcocite) show slightly heavier values from −14.6 to −9.0‰, and their sulfur sources may be both the precursor pyrite-S and the bacterial reduction of sulfate-bearing basinal brines. Carbonates related to the ore stage show isotopically light values of δ13CV-PDB from −8.2 to −5.1‰ and δ18OV-PDB from −10.3 to −7.2‰, indicating a mixed source of oxidation of organic carbon (ca. −20‰) and HCO3 from seawater/porewater (ca. 0‰). The copper mineralization is mainly controlled by organic matter content and paleopermeability (intragranular space to large fracture patterns), enhanced by feldspar and calcite dissolution. The Cheshmeh-Konan deposit can be classified as a redbed-type sediment-hosted stratiform copper (SSC) deposit.  相似文献   

2.
Pyrobitumen has been shown to be an essential component in formation of some Chilean manto-type (strata-bound) copper deposits and its presence has been observed in a number of other deposits but has received limited investigation. In this paper we present paragenetic and geochemical data from two central Chilean manto-type deposits from the Uchumi and Talcuna districts where solid pyrobitumen (residual petroleum) is intimately associated with copper sulfides.Pyrobitumen in the Uchumi deposit occurs in pore space within the host conglomerates and is adjacent to a granitoid stock; pyrobitumen predates bornite–chalcocite mineralization and may have reduced subsequent mineralizing fluids. Pyrobitumen from the Manto Delirio deposit, Talcuna District, fills the cores of early sphalerite veins and was partially replaced by later Cu–As mineralization; pyrobitumen is petrographically intergrown with Cu–Fe sulfides and light δ13C values of gangue calcite indicates the interaction of pyrobitumen with the mineralizing fluid.The presence of pyrobitumen within the ores of other manto-type copper deposits in the Lower Cretaceous basin of Chile suggests that degraded petroleum reservoirs, in particular if biodegradation generated authigenic pyrite, can be important controls for metallic mineralization derived from hydrothermal solutions of different sources.  相似文献   

3.
4.
The basinal facies of the Lopingian Zechstein Limestone in SW Poland consists of thin (often less than 1 m thick) limestones and/or dolomites, often containing the Kupferschiefer (few tens of centimetres thick) at their base, and local thick (up to 90 m) reefal carbonates. The δ13C curve of these basal Zechstein deposits strongly suggests that even when the Kupferschiefer is lacking, the thin (condensed) sequences record the entire interval of the Zechstein prior to the onset of evaporite deposition, in contrast to the thick reef sequences which lack the characteristic δ13C curve for the lowermost part of the Zechstein. The calcite samples show considerable ranges of δ18O values. If the maximum δ18O values are considered to be the closest to the pristine original ones and if δ18Owater value = 0 is assumed, then the calculated range of palaeotemperatures for the Kupferschiefer and Zechstein Limestone calcite ranges from 19 to 34 °C. The faunal restriction, common dwarf foraminifers and the predominance of lagenids in the foraminiferal assemblage indicate continual dysaerobic conditions and possibly elevated salinity of seawater during deposition of thin basinal Zechstein Limestone deposits. The mixing of shallow and deeper waters in the stratified Zechstein Basin caused by upwelling could result in prolific carbonate precipitation in reefs located at the slope of the marginal carbonate platform of the Zechstein Limestone and in isolated reefs related to palaeohighs within the basin; however, there is no isotopic record of eventual upwelling. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Chilean manto-type (CMT) Cu(–Ag) hydrothermal deposits share a characteristic association of volcano-sedimentary Jurassic to Lower Cretaceous host rocks, style of mineralization, ore and associated mineralogy and geochemistry, with ore grades typically > 1%Cu, that make this family of deposits significant and interesting, both academically and economically. Although often stratabound, geological evidence supports an epigenetic origin for these deposits. We present a detailed stable isotope study of La Serena and Melipilla–Naltahua Lower Cretaceous deposits, central Chile, which reveals extremely negative δ34S values, to − 50‰, which are among the lowest values found in any ore deposit. In addition, the range of δ34S values from sulfides in the two areas is very wide: − 38.3 to − 6.9‰ in La Serena, and − 50.4 to − 0.6‰ in Melipilla–Naltahua. These new data significantly extended the reported range of δ34S data for CMT deposits. Co-existing sulfates range from 7.9 to 14.3‰, and are exclusive to La Serena deposit. The wide sulfide isotopic range occurs at deposit and hand specimen scale, and suggests a polygenic sulfur source for these deposits, where bacteriogenic sulfide dominates. While sulfur isotope data for the bulk of Jurassic CMT deposits, northern Chile, suggests a predominant magmatic source in their origin (mean =  2.7 ± 1.9‰, 1σ), contributions of a magmatic component is only likely to be involved at Melipilla–Naltahua deposit.The δ13C values obtained for calcites associated with the mineralization range from − 20.1 to 0.2‰ also suggesting polygenic carbon sources, with the likely strong involvement of degradation of organic matter and leaching of limestone.Two different genetic models, with involvement of hydrocarbon, are proposed for both areas. For Melipilla–Naltahua, a two-step model can be developed as follows: 1) Framboidal pyrite growth, with very low δ34S, formed by bacterial sulfate reduction in an open system, and with diagenetic degradation of oil-related brines, leaving pyrobitumen. 2) Cu-bearing stage, replacing of framboidal pyrite, inheriting depleted sulfur as low as − 50.4‰, together with sulfides directly precipitated from a hydrothermal fluid with δ34S close to 0‰. For La Serena, a single step model fits best, without framboidal pyrite generation. Cu-bearing sulfides were precipitated mainly in veins where Cu plus base metal-bearing hydrothermal fluids mixed with H2S generated by bacterial sulfate reduction in the host rocks. Isotopic evidence clearly illustrates that bacterial activity, perhaps enhanced by hydrothermal activity, was fed by hydrocarbon brines and sulfate remobilized from continental evaporites. It is possible that variable ecological conditions led to different extents of isotopic fractionation, adding to the typical sulfur isotopic heterogeneity of such bacterial systems. For both areas, the Cu-bearing stage occurred during the peak to waning stages of the very low-grade metamorphism that affected the Lower Cretaceous sequence.  相似文献   

6.
Syngenetic, diagenetic and epigenetic models have been proposed for the Cu?CZn?CPb Kupferschiefer mineralization at Sangerhausen, Germany. Paleomagnetic and rock magnetic measurements have been made on 205 specimens from mine workings on the margin of the Sangerhausen Syncline. The mineralization is richest in the ??0.5-m-thick Upper Permian (258?±?2?Ma) Kupferschiefer black marly shale (nine sites) and dies out over ??0.2?m in the underlying Weisliegend sandstones (three sites) and overlying Zechstein carbonates (two sites). Except for one site of fault zone gypsum, characteristic remanent magnetization directions were isolated for all 14 sites using alternating field and thermal step demagnetization. These directions provide a negative fold test, indicating that the remanence postdates Jurassic fault block tilting. Rock magnetic measurements show that the Kupferschiefer shale marks a redox front between the oxidized Weissliegend sandstones and non-oxidized Zechstein carbonates. The 14 site directions give a Late Jurassic paleopole at 149?±?3?Ma. It is significantly different from the paleopole reported by E.C. Jowett and others for primary or early diagenetic Rote F?ule alteration that gives an age of 254?±?6?Ma on the current apparent polar wander path and is associated with Kupferschiefer mineralization. We suggest that the Late Jurassic extensional tectonic event that formed the nearby North German Basin also reactivated Variscan basement faults and extended them up through the overlying strata, thereby allowing hydrothermal basement fluids to ascend and epigenetically mineralize the Kupferschiefer shale. The possibility of a 53?±?3?Ma mineralization age is also considered.  相似文献   

7.
The Kupferschiefer is an approximately 0.5 m thick black marly shale of Lower Zechstein age in Germany. If one includes some of its footwall and hanging wall, it contains 300 Mt Cu, 800 Mt Zn and 300 Mt Pb. The regional pattern of metal distribution demonstrates its relationship to Variscan and Permian tectonic structures. Faults and the topographic relief of the basement apparently controlled the uprise and lateral migration of reducing and slightly acid hot brines from deeper crustal levels to supply the metals for the mineralization of the Proto-Kupferschiefer. Deep fluids are mainly richer in Zn than Pb and richer in Pb than Cu. Mixing of such slightly acid fluids with slightly alkaline formation waters (seawater) caused a gradient in pH from about three to eight and in sulfide concentration. Most of the sulfide came from dissolved pyrite which was very light in sulfur isotopes. This gradient controlled the sequential precipitation of bornite, chalcopyrite, (chalcocite), galena and sphalerite, which is observed in a lateral and vertical zoning of these sulfides. The fluids experienced a fractionation of the metals during migration over meter to kilometer distances from the tectonically controlled vents within the unconsolidated Proto-Kupferschiefer. Close to the vents the sulfide deposits attained concentrations up to 2% Zn + Pb + Cu. The migration of the metals over large distances took place in unconsolidated sediment. Thus the major mineralization of the Kupferschiefer has to be classed as an early diagenetic process.  相似文献   

8.
《Applied Geochemistry》2001,16(3):375-386
The concentrations of the lanthanide rare earth elements (REE) and Pt group elements (PGE) were measured in the Kupferschiefer from the Polish Zechstein Basin at, and in proximity to, the Rote Fäule near the Lubin Mining District. The Rote Fäule is a zone of post-depositional oxidation characterized by the presence of extensive amounts of Fe(III) oxides replacing syn-sedimentary framboidal pyrite. Outward from the Rote Fäule, the remainder of the Kupferschiefer is composed of Cu- and Pb/Zn-mineralized shale surrounding the Rote Fäule and a non-mineralized pyritic black shale in the central basin.The leading hypothesis explaining the high concentrations of PGE, and REE in the Kupferschiefer states that PGE, REE and the associated base metals were mobilized by oxidizing Cl brines which migrated outward from the Rote Fäule into the reduced Kupferschiefer. According to available thermodynamic data, PGE were in all likelihood present as chloro-complexes in these oxidizing brines, as geologically realistic concentrations of Pt, Pd and Au could be transported as chloro-complexes. The Eh of these brines decreased as they migrated further from the Rote Fäule and into the Kupferschiefer. Base metals and PGE were precipitated in the order of their decreased solubility in these brines. As a result, the concentrations of least soluble PGE (Pt) are highest in the Rote Fäule and in the transition zone adjacent to the Rote Fäule (e.g. [Pt]=202–537 ppb) while the concentrations of the more soluble metals in these brines (Ag, Cu, Pb, and Re) are highest in the reduced-mineralized Kupferschiefer. The sources of the PGE and REE are enigmatic. It is likely that the metals were derived either from the underlying Rotliegendes sandstones and volcanics, the Variscan basement rocks, or the Kupferschiefer shale whose metals were mobilized by saline, oxidizing fluids released during intra-continental rifting in the Triassic period.  相似文献   

9.
Detailed studies of a new, complete Marl Slate core in South Yorkshire have provided information on isotopic (δ13C, δ18O, δ34S) and geochemical variations (trace elements and C/S ratio) which enable the formulation of a model for carbonate and sulphide precipitation in the Late Permian Zechstein Sea. Calcite and dolomite are intimately associated; the fine lamination, organic character and absence of benthos in the sediments are indicative of anoxic conditions. Lithologically the core can be divided into a lower, predominantly sapropelic Marl Slate (2 m) and an upper Transition Zone (0·65 m) of alternating sapropel and calcite-rich and dolomite-rich carbonates. C/S ratios are 2·22 for the Marl Slate and 1·72 for the Transition Zone respectively, both characteristic of anoxic environments. δ18O in the carbonates shows a large and systematic variation closely mirrored by variations in calcite/dolomite ratio. The results suggest a fractionation factor equivalent to a depletion of 3·8% for 18O and 1·5% for 13C in calcite. The δ34S values of pyrite are isotopically light (mean value = - 32·7%) suggesting a fractionation factor for the Marl Slate of almost 44%, typical of anoxic basins. The results are related to stratification in the early Zechstein Sea. Calcite was precipitated in oxic upper layers above the halocline. Below the oxic/anoxic boundary framboidal pyrite was precipitated, resulting in lower sulphate concentration and elevated Mg/Ca ratio (due to calcite precipitation). As a result of this, dolomite formation occurred below the oxic/anoxic interface, within the anoxic water column and in bottom sediments. Variations in calcite/dolomite ratios, and isotopic variations, are thus explained by fluctuations in the relative level of the oxic/anoxic boundary in the Zechstein Sea.  相似文献   

10.
Stable and radiogenic isotope composition of stratiform Cu–Co–Zn mineralization and associated sedimentary rocks within the Boléo district of the Miocene Santa Rosalía basin, Baja California Sur, constrains the evolution of seawater and hydrothermal fluids and the mechanisms responsible for sulfide and oxide deposition. Stable isotope geochemistry of limestone and evaporite units indicates a strong paleogeographic influence on the chemistry of the water column. Near-shore limestone at the base of the Boléo Formation is characterized by modified marine carbon (δ 13CPDB=−6.0 to +4.4‰) and oxygen (δ 18OSMOW=+19.5 to +26.2‰) isotope composition due to the influx of 13C- and 18O-depleted fluvial water. Sulfate sulfur isotope composition (δ 34SCDT=+17.21 to +22.3‰ and δ 18OSMOW=+10.7 to +13.1‰) for basal evaporite and claystone facies are similar to Miocene seawater. Strontium isotopes are less radiogenic than expected for Miocene seawater due to interaction with volcanic rocks. Low S/C ratios, high Mn contents and sedimentological evidence indicate the basin water column was oxidizing. The oxygenated basin restricted sulfide precipitation to within the sedimentary pile by replacement of early diagenetic framboidal pyrite and pore-space filling by Cu–Co–Zn sulfides to produce disseminated sulfides. Quartz–Mn oxide oxygen isotope geothermometry constrains mineralization temperature between 18 and 118°C. Sulfur isotopes indicate the following sources of sulfide: (1) bacterial sulfate reduction within the sedimentary pile produced negative δ 34S values (<−20‰) in framboidal pyrite; and (2) bacterial sulfate reduction at high temperature (80–118°C) within the sedimentary pile during the infiltration of the metal-bearing brines produced Cu–Co–Zn sulfides with negative, but close to 0‰, δ 34S values. Isotope modeling of fluid-rock reaction and fluid mixing indicates: (1) sedimentary and marine carbonates (δ 13C=−11.6 to −3.2‰ and δ 18O=+19.0 to +21.8‰) precipitated from basin seawater/pore water that variably mixed with isotopically depleted meteoric waters; and (2) hydrothermal calcite (δ 13C=−7.9 to +4.3‰ and δ 18O=+22.1 to +25.8‰) formed by dissolution and replacement of authigenic marine calcite by downward-infiltrating metalliferous brine and brine-sediment exchange, that prior to reaction with calcite, had mixed with isotopically depleted pore water. The downward infiltration of metalliferous brine is inferred from lateral and stratigraphic metal distributions and from the concentration of Cu sulfides along the upper contact of pyrite-bearing laminae. The co-existence and textural relationships among framboidal pyrite, base metal sulfides, carbonate and Mn–Fe oxides (including magnetite) within mineralized units are consistent with carbonate replacement and high-temperature bacterial reduction within the sedimentary pile occurring simultaneously below a seawater column under predominantly oxygenated conditions.  相似文献   

11.
Six epizonal gold deposits in the 30-km-long Yangshan gold belt, Gansu Province are estimated to contain more than 300 t of gold at an average grade of 4.76 g/t and thus define one of China's largest gold resources. Detailed paragenetic studies have recognized five stages of sulfide mineral precipitation in the deposits of the belt. Syngenetic/diagenetic pyrite (Py0) has a framboidal or colloform texture and is disseminated in the metasedimentary host rocks. Early hydrothermal pyrite (Py1) in quartz veins is disseminated in metasedimentary rocks and dikes and also occurs as semi-massive pyrite aggregates or bedding-parallel pyrite bands in phyllite. The main ore stage pyrite (Py2) commonly overgrows Py1 and is typically associated with main ore stage arsenopyrite (Apy2). Late ore stage pyrite (Py3), arsenopyrite (Apy3), and stibnite occur in quartz ± calcite veins or are disseminated in country rocks. Post-ore stage pyrite (Py4) occurs in quartz ± calcite veins that cut all earlier formed mineralization. Electron probe microanalyses and laser ablation-inductively coupled plasma mass spectrometry analyses reveal that different generations of sulfides have characteristic of major and trace element patterns, which can be used as a proxy for the distinct hydrothermal events. Syngenetic/diagenetic pyrite has high concentrations of As, Au, Bi, Co, Cu, Mn, Ni, Pb, Sb, and Zn. The Py0 also retains a sedimentary Co/Ni ratio, which is distinct from hydrothermal ore-related pyrite. Early hydrothermal Py1 has high contents of Ag, As, Au, Bi, Cu, Fe, Sb, and V, and it reflects elevated levels of these elements in the earliest mineralizing metamorphic fluids. The main ore stage Py2 has a very high content of As (median value of 2.96 wt%) and Au (median value of 47.5 ppm) and slightly elevated Cu, but relatively low values for other trace elements. Arsenic in the main ore stage Py2 occurs in solid solution. Late ore stage Py3, formed coevally with stibnite, contains relatively high As (median value of 1.44 wt%), Au, Fe, Mn, Mo, Sb, and Zn and low Bi, Co, Ni, and Pb. The main ore stage Apy2, compared to late ore stage arsenopyrite, is relatively enriched in As, whereas the later Apy3 has high concentrations of S, Fe, and Sb, which is consistent with element patterns in associated main and late ore stage pyrite generations. Compared with pyrite from other stages, the post-ore stage Py4 has relatively low concentrations of Fe and S, whereas As remains elevated (2.05~3.20 wt%), which could be interpreted by the substitution of As? for S in the pyrite structure. These results suggest that syngenetic/diagenetic pyrite is the main metal source for the Yangshan gold deposits where such pyrite was metamorphosed at depth below presently exposed levels. The ore-forming elements were concentrated into the hydrothermal fluids during metamorphic devolatilization, and subsequently, during extensive fluid–rock interaction at shallower levels, these elements were precipitated via widespread sulfidation during the main ore stage.  相似文献   

12.
The Tono sandstone-type uranium mine area, middle Honsyu, Japan is composed of Miocene lacustrine sedimentary rocks in the lower part (18–22 Ma) and marine facies in the upper part (15–16 Ma). Calcite and pyrite occur as dominant diagenetic alteration products in these Neogene sedimentary rocks. The characteristics of calcite and pyrite differ significantly between lacustrine and marine facies. Abundant pyrite, calcite, organic matter, and small amounts of marcasite or pyrrhotite occur in the lacustrine facies, whereas small amounts of calcite and framboidal pyrite, organic matter and no marcasite or pyrrhotite are found within the marine units. The δ13C values of calcite in the lacustrine deposits are low (−19 to −6‰ PDB) but those in marine formation are high (−11 to +3‰). This implies that the contribution of marine carbonate is larger in upper marine sedimentary rocks, and carbon in calcite in the lower lacustrine formation was derived both from oxidation of organic matter and from dissolved marine inorganic carbon. The δ34S values of framboidal pyrite in the upper marine formation are low (−14 to −8‰ CDT), indicating a small extent of bacterial seawater sulfate reduction, whereas those of euhedral-subhedral pyrite in the lower lignite-bearing arkose sandstone are high (+10 to +43‰), implying a large extent of closed-system bacterial seawater sulfate reduction. The δ34S and δ13C data which deviate from a negative correlation line toward higher δ13C values suggest methanogenic CO2 production. During diagenesis of the lacustrine unit, large amounts of euhedral-subhedral pyrite were formed, facilitated by extensive bacterial reduction of seawater sulfate with concomitant oxidation of organic matter, and by hydrolysis reactions of organic matter, producing CH4 and CO2. Uranium minerals (coffinite and uraninite) were also formed at this stage by the reduction of U6+ to U4+. The conditions of diagenetic alteration within the lacustrine deposits and uranium mineralization is characterized by low Eh in which nearly equal concentrations of CH4 and HCO3 existed and reduced sulfur species (H2S, HS) are predominant among aqueous sulfur species, whereas diagenetic alteration of the marine formations was characterized by a predominance of SO4 2− among dissolved sulfur species. Modern groundwater in the lacustrine formation has a low Eh value (−335 mV). Estimated and measured low Eh values of modern and ancient interstitial waters in lacustrine environments indicate that a reducing environment in which U4+ is stable has been maintained since precipitation of uranium minerals. Received: 9 February 1996 / Accepted: 11 April 1997  相似文献   

13.
The Hoshbulak Zn–Pb deposit is located in South Tianshan, Xinjiang, China. The Zn–Pb orebody is tabular and stratoid in form and it is hosted in calcareous rocks of the Upper Devonian Tan'gaitaer Formation which were thrust over the Carboniferous system. The ores are mineralogically simple and composed mainly of sphalerite, galena, pyrite, calcite, dolomite and exhibit massive, banded, veinlets, colloidal, metasomatic, eutectic, concentric ring and microbial-like fabrics. The Co/Ni ratios of pyrite in the ores range from 0.46 to 0.90 by electron microprobe, which suggested that the Hoshbulak Zn–Pb mineralization was formed in a sedimentary environment. The REE patterns of the hydrothermal calcite coincide well with those of recrystallized micritic limestones, suggesting that the Hoshbulak Pb–Zn mineralization was closely genetically related to limestones of the Tan'gaitaer Formation. The C-, H- and O-isotopic compositions of hydrothermal calcite and dolomite in the ores yield δ13C(VPDB) values ranging from − 1.9‰ to + 2.6‰ (mean 0.79‰), δ18O(VSMOW) values from 22.41‰ to 24.67‰ (mean 23.04‰) and δD values from − 77‰ to − 102‰ for fluid inclusions. It is suggested that the ore-forming fluids, including CO2, were derived from the calcareous strata of the Tan'gaitaer Formation in association with hydrocarbon brines. The δ34S(VCDT) ranges from − 22.3‰ to − 8.5‰ for early ore-stage sulfides and from 5.9‰ to 24.2‰ with a cluster between 14.4‰ and 24.2‰ for the sulfides (pyrite, sphalerite, galena) in the main ore-stage. The ore sulfur may have been derived from evaporite rocks by thermochemical sulfate reduction (TSR) as the predominant mechanism for H2S generation. The Pb-isotopic compositions of the sulfide minerals from the Hoshbulak ores yield 206Pb/204Pb ratios from 17.847 to 18.173, 207Pb/204Pb ratios from 15.586 to 15.873 and 208Pb/204Pb ratios from 37.997 to 38.905, which indicate that the metals were sourced mainly from the Tan'gaitaer Formation. We conclude that the genesis of the Hoshbulak Mississippi Valley-type deposit was closely related to thrust faulting in the South Tianshan orogen of China.  相似文献   

14.
The Himalayan mineral field includes over 50 quartz-vein type Sb-Au deposits, and placer Au deposits. The poorly documented Laqiong deposit is a typical example of quartz-vein type Sb-Au mineralisation in Tethys Himalayan sequence. The orebody are controlled by shallow north-dipping normal faults and north–south trending faults. Magmatic zircons extracted from muscovitic leucocratic granite from the southern part of the Laqiong mine area yield a Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry U-Pb age of 14 ± 1 Ma (n = 12, MSWD = 0.9) that is similar to the 40Ar/39Ar age of ca. 14 Ma from hydrothermal sericite in auriferous sulphide-quartz veins. The εHf(t) values for the magmatic zircon rims range from −5.4 to −1.9, corresponding to two-stage Hf model ages of 1403–1214 Ma. Quartz from the mineralised veins has δ18OH2O-SMOW values varying from +4.97 to +9.59‰ and δDH2O-SMOW values ranging from −119.7 to −108.1‰. The δ13CV-PDB values for calcite from the ore Stage III range from −6.9 to −5.3‰, and calcite from Stage IV are −3.5 to −1.7‰. The δ18OV-SMOW values for calcite from Stage III are +20.3 to +20.6‰ and for Stage IV are −6.3 to −4.9‰. The stibnite and pyrite samples have 208Pb/204Pb ratios of 38.158 to 39.02, 207Pb/204Pb ratios of 15.554 to 15.698, and 206Pb/204Pb ratios of 17.819 to 18.681, and bulk and in-situ δ34SV-CDT values for stibnite, arsenopyrite and pyrite range from −1.1 to +2.3‰. The calcite from the orebodies are enriched in MREE and depleted in LREE and HREE. Fieldwork, petrological, and geochemical data collected during our study leads to the following salient findings: the mineralising fluid is a mix of magmatic and meteoric fluids; and the deposit is closely related to the emplacement of Miocene granites originating from a thickened continental crust.  相似文献   

15.
The Yinjiagou Mo–Cu–pyrite deposit of Henan Province is located in the Huaxiong block on the southern margin of the North China craton. It differs from other Mo deposits in the East Qingling area because of its large pyrite resource and complex associated elements. The deposit’s mineralization process can be divided into skarn, sulfide, and supergene episodes with five stages, marking formation of magnetite in the skarn episode, quartz–molybdenite, quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite, and calcite–galena–sphalerite in the sulfide episode, and chalcedony–limonite in the supergene episode. Re–Os and 40Ar–39Ar dating indicates that both the skarn-type and porphyry-type orebodies of the Yinjiagou deposit formed approximately 143 Ma ago during the Early Cretaceous. Four types of fluid inclusions (FIs) have been distinguished in quartz phenocryst, various quartz veins, and calcite vein. Based on petrographic observations and microthermometric criteria the FIs include liquid-rich, gas-rich, H2O–CO2, and daughter mineral-bearing inclusions. The homogenization temperature of FIs in quartz phenocrysts of K-feldspar granite porphyry ranges from 341 °C to >550 °C, and the salinity is 0.4–44.0 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite veins is 382–416 °C, and the salinity is 3.6–40.8 wt% NaCl eqv. The homogenization temperature of FIs in quartz–calcite–pyrite–chalcopyrite–bornite–sphalerite ranges from 318 °C to 436 °C, and the salinity is 5.6–42.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–molybdenite stockworks is in a range of 321–411 °C, and the salinity is 6.3–16.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz–sericite–pyrite is in a range of 326–419 °C, and the salinity is 4.7–49.4 wt% NaCl eqv. The ore-forming fluids of the Yinjiagou deposit are mainly high-temperature, high-salinity fluids, generally with affinities to an H2O–NaCl–KCl ± CO2 system. The δ18OH2O values of ore-forming hydrothermal fluids are 4.0–8.6‰, and the δDV-SMOW values are between −64‰ and −52‰, indicating that the ore-forming fluids were primarily magmatic. The δ34SV-CDT values of sulfides range between −0.2‰ and 6.3‰ with a mean of 1.6‰, sharing similar features with deeply sourced sulfur, implying that the sulfur mainly came from the lower crust composed of poorly differentiated igneous materials, but part of the heavy sulfur came from the Guandaokou Group dolostone. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of sulfides are in the range of 17.331–18.043, 15.444–15.575, and 37.783–38.236, respectively, which is generally consistent with the Pb isotopic signature of the Yinjiagou intrusion, suggesting that the Pb chiefly originated from the felsic–intermediate intrusive rocks in the mine area, with a small amount of lead from strata. The Yinjiagou deposit is a porphyry–skarn deposit formed during the Mesozoic transition of a tectonic regime that is EW-trending to NNE-trending, and the multiepisode boiling of ore-forming fluids was the primary mechanism for mineral deposition.  相似文献   

16.
The Marl Slate, the English equivalent of the Kupferschiefer, has been studied with particular reference to the relationships between dolomitization and the origin of the metal sulphides. Dolomite occurs as: 1) discontinuous lenses of ferroan dolomicrite, 2) micronodules of finely crystalline dolospar in association with length-slow chalcedony and 3) discrete laminae of ferroan or non-ferroan dolospar. The ferroan dolomicrite has excess CaCO3, and is more abundant in the lower, sapropelic facies of the Marl Slate. It is considered to have formed by the penecontemporaneous alteration of calcium carbonate under hypersaline conditions. Small micronodules (typically about 0.3 mm in diameter) are also more abundant in the sapropelic Marl Slate. These frequently contain cores of length-slow chalcedony (quartzine) fibres and sometimes quartz megacrysts. Textural observations clearly indicate that this silica is of authigenic origin and the dolomite/chalcedony micronodules are interpreted as diagenetic replacements of a calcium sulphate mineral such as anhydrite. The discrete laminae of finely crystalline dolospar are often inter-laminated with calcite in the upper part of the Marl Slate. This dolomite is also calcium rich and represents a replacement, possibly of anhydrite, during a later phase of diagenesis. Metal sulphides occur in two distinct forms: as disseminated framboidal pyrite and as discrete lenses of pyrite, chalcopyrite, galena, sphalerite and rarer sulphides. The framboidal pyrite originated during early diagenesis by reaction of sulphide, produced by reduction of sulphate by organic material and micro-organisms, with iron also released in the reducing environment. The sulphide lenses are often in intimate association with dolospar, length-slow chalcedony and authigenic quartz megacrysts. This indicates that the lenses were produced during diagenesis by the reduction and replacement of calcium sulphate (anhydrite). Various sources, such as co-precipitation with dolomite precursors and the underlying Yellow Sands, may have supplied metals which were mobilized and transported by connate brines as diagenesis progressed.  相似文献   

17.
A significant proportion of the copper in the Ca?ariaco Norte porphyry copper deposit in northern Peru occurs in chalcocite and covellite-rich veins and disseminations that exist from the surface to depths greater than 1?km. The overall range of Cu isotopic ratios of 42 mineral separates from Ca?ariaco varies from ?8.42 to 0.61?‰, with near-surface chalcocite and Fe oxides having isotopically depleted values compared to chalcocite, covellite, and chalcopyrite from deeper levels. The majority (34 of 36) of measured Cu sulfides have a typical hypogene copper isotope composition of δ65Cu?=?0.18?±?0.38?‰, with no enriched isotopic signature existing in the Ca?ariaco Norte sulfide data. Thus, the copper isotope data indicate that most of the chalcocite and covellite formed from high-temperature hypogene mineralization processes and that only a minor portion of the deposit is enriched by supergene processes. The nonexistence of an enriched δ65Cu reservoir suggest the presence of an undiscovered lateral/exotic Cu occurrence that enriched 65Cu that remained in solution during weathering. Regardless of the cause, the comparative analysis of the Cu isotope dataset reveals that little exploration potential for an extensive supergene enrichment blanket exists because the weathering history at Ca?ariaco Norte was not conducive to preservation of enriched Cu at depth beneath the leach cap.  相似文献   

18.
The Zimudang gold deposit is a large Carlin‐type gold deposit in the Southwest Guizhou Province, China, with an average Au content of 6.2 g/t. Gold is mainly hosted in the fault zone and surrounding strata of the F1 fault and Permian Longtan Formation, and the ore bodies are strictly controlled by both the faults and strata. Detailed mineralogy and geochemistry studies are conducted to help judge the nature of ore‐forming fluids. The results indicate that the Au is generally rich in the sulfides of both ores and wall rocks in the deposit, and the arsenian pyrite and arsenopyrite are the main gold‐bearing sulfides. Four subtypes of arsenian pyrite are found in the deposit, including the euhedral and subhedral pyrite, framboidal pyrite, pyrite aggregates and pyrite veins. The euhedral and subhedral pyrite, which can take up about 80% of total pyrite grains, is the dominant type. Au distributed unevenly in the euhedral and subhedral pyrite, and the content of the Au in the rim is relatively higher than in the core. Au in the pyrite veins and pyrite aggregates is lower than the euhedral and subhedral pyrite. No Au has been detected in the points of framboidal pyrites in this study. An obvious highly enriched As rim exists in the X‐ray images of euhedral pyrites, implying the ore‐forming fluids may be rich in As. The relationship between Au and As reveals that the Au may host as a solid solution (Au+) and nanoparticles of native gold (Au0) in the sulfides. The high Co/Ni ratio (>1) of sulfides and the enrichment of W in the ores all reflect that the gold‐bearing minerals and ore‐forming process were mainly related to the hydrothermal fluids, but the magmatic and volcanic activities cannot be neglected. The general existence of Au and As in the sulfides of both ores and wall rocks and the REE results suggest that the ore‐forming fluids may mainly be derived from the basin itself. The enrichment of Tl suggests that the ore‐forming fluids may be enriched in Cl. The Ce and Eu show slightly or apparently negative anomalies, which means the ore fluids were probably formed under reducing environment. The Y/Ho ratios of ore samples fluctuate around 28, implying the bicarbonate complexation and fluorine were both involved in the ore‐forming process. Combined with the previous studies and our results, we infer that the ore‐forming fluids enriched Au, As, HS? and halogen (F, Cl) were derived from the mixture of reducing basinal fluids and magmatic or volcanic hydrothermal fluids.  相似文献   

19.
The western Qinling orogen (WQO) is one of the most important prospective gold provinces in China. The Maanqiao gold deposit, located on the southern margin of the Shangdan suture, is a representative gold deposit in the WQO. The Maanqiao deposit is hosted by the metasedimentary rocks of the Upper Devonian Tongyusi Formation. The EW-trending brittle-ductile shear zone controls the orebodies; they occur as disseminated, and auriferous quartz–sulfide vein. The ore-related hydrothermal alteration comprises silicification, sulfidation, sericitization, chloritization, and carbonatization. Native gold is visible and mainly associated with pyrite and pyrrhotite. Mineralization can be classified into the following three stages: bedding-parallel barren quartz–pyrite–(pyrrhotite) (early-stage), auriferous quartz–polymetallic (middle-stage), and carbonate–(quartz)–sulfide (late-stage).Detailed fluid inclusion (FI) studies revealed three types of inclusions in quartz and calcite: aqueous (W-type), CO2–H2O (C-type), and pure carbonic (PC-type) FIs. The primary FIs in the early-stage quartz are C- and PC-type, in the middle-stage quartz are mainly W- and C-type, and in the late-stage calcite are only W-type. During gold mineralization, the total FI homogeneous temperatures evolved from 189–375 °C (mostly 260–300 °C) to 132–295 °C (mostly 180–240 °C) to 123–231 °C (mostly 130–150 °C), and the salinities varied among 2.2–9.1 wt.% NaCl equiv. (mostly 5–8 wt.%) to 0.2–9.0 wt.% NaCl equiv. (mostly 3–6 wt.%) to 0.3–3.6 wt.% NaCl equiv. (mostly 2–4 wt.%). The ore-forming fluid was characterized as an H2O–NaCl−CO2−CH4–(N2) system with medium-low temperature and low salinity. The fluid immiscibility and fluid-rock interaction may be responsible for the precipitation of the sulfides and gold at the Maanqiao gold deposit. Three types of pyrite corresponding to the three mineralization stages, as well as pyrrhotite and arsenopyrite in the middle stage, are micro-analyzed for in-situ sulfur isotopic composition by LA-ICP-MS. Py1 yield near-zero δ34S values of −2.5‰ to 3.0‰, which are somewhat lower than that of the granite hosted pyrites (Py-g, 4.8‰ to 6.6‰). The result suggests a mixed sulfur source from magmatic-hydrothermal fluids and the metamorphism of diagenetic pyrite. Pyrite + pyrrhotite + arsenopyrite assemblages in the middle-stage have relatively higher δ34S values (6.6‰ to 12.3‰) and are mainly developed due to the metamorphism of the ore-host and underlying Devonian sedimentary sequences. The low δ34S values of the late-stage fracture-filled Py3 (−21.9‰ to −17.0‰) resulted from an increasing oxygen fugacity, which was caused by the inflow of oxidized meteoric waters.Based on our studies, the Maanqiao gold deposit is considered to be an orogenic type and closely related to the Indosinian Qinling orogeny.  相似文献   

20.
The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ13CDIC) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO3-rich, SO42−-rich and Cl-rich. The HCO3-rich groundwater is undergoing closed system carbonate evolution from soil CO2(g) and weathering of aquifer carbonates. The SO42−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ13CDIC of the HCO3-rich groundwater was controlled by nearly equal contribution of carbon from soil CO2(g) and the aquifer carbonates, such that the δ13C of carbon added to the groundwater was −11.6‰. In the SO42−-rich groundwater, gypsum induced dedolomitization increased the 13C such that the δ13C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl-rich groundwater, common ion induced precipitation of calcite depleted the 13C such that the δ13C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号