首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
Nitrogen and phosphorus are the major nutrients to cause eutrophication to degrade water quality of the Miyun Reservoir,a very important drinking water source of Bijing,China,and they are mainly from non-point sources.The watershed in Miyun County was selected as the study region with a totoal area of 1400km^2.Four typical monitoring catchments and two experimental units were used to monitor the precipitation,runoff,sediment yield and pollutant loading related to various land uses in the meantime.The results show that the total nutrient loss amounts of TN and TP are 898.07t/a,and 40.70t/a,respectively,in which nutrients N and P carried by runoff are 91.3% and 77.3%,respectively.There is relatively heavier soil eroson in the northern mountain area whereas the main nutrient loss occurs near the northeast edge of the reservoir.Different land uses would influence the loss amounts of non-point source pollutants.The amount of nutrient loss from the agricultural land per unit is highest,that from forestry comes next that from grassland is lowest.However,due to the variability of land use areas,agricultural land contributes a lot to TP and forestry lands to TN.  相似文献   

2.
Surface runoff in the Wujiang River watershed was simulated by a GIS-based method using precipitation, hydrology data, and land-use data. The volume of surface runoff is chiefly controlled by climates, topographical characteristics and types of land use at the watershed. Five subwatersheds that can represent the whole watershed were chosen and their average annual precipitation, average annual surface runoff and current land use were calculated respectively in the grid model of the Wujiang River watershed based on the climate and hydrology data from 1965 to 2000 and the land-use data acquired in the year of 2000. Surface runoff is assumed to be a function of precipitation and land use and the multiple regression tool is used to determine the relationship between surface runoff, precipitation and present land use. Thus, the rainfall-runoff model for each land-use type has been established. When calibrating these models, the results show that the percent errors are all below 7%, which indicates that the accuracy of this simulation is high.  相似文献   

3.
Conservation of Urban Forest Site in Jiufeng is constructed as an ecotourism function urban forest conservation combining mountain and vegetation resource around. According to fieldwork, the conservation is located in the outskirts of the city where non-point pollution is dominant. In order to master the source intensity and its distribution, data from Quickbird remote sensing in 2004 and field collection are adopted to establish the environment database including data layers of districts, land use, map, soil map, DEM, water and road systems, soil property and economy. Traditional quantitative analysis of non-point pollution intensity has encountered with the following difficulties: (1) Large area of vegetation landscape reconstruction will create tremendous ecological benefits, but calculation of pollution decrease brought by reconstruction is difficult to achieve. (2) In conservation reconstruction will be implemented in the residential are step by step, i.e., of moving, repairing and centralization, which is a complex project with wide time span, leading to inaccurate prediction. (3) Construction of the conservation will speed up the development of local tourism, thus if a single society index is chosen to predict the pollution intensity, the development trend of the region could not be figured out completely. Consequently acreage of different planning land use is counted and models of urban and rural areas respectively help to compute unit pollution load. In the urban area, the pollution load of the same land use is regarded as the function of population density, clean frequency and precipitation, while in the rural area, SCS model, universal soil loss equation (USLE) and pollution transfer model are applied to compute unit pollution load of TN and TP. The results of total pollution load are TN 179.706 kg/a and TP 33.814 kg/a. For impracticability of routine planning measures, the project applies measures of distribution controlling against water erosion and soil loss and concentrated-dispersive controlling to lighten non-point pollution brought by living sewage.  相似文献   

4.
The karst area accounts for 61.9% of the total area in Guizhou Province, which gives rise to a fragile environment and backward economy. Comparative studies on the element contents of rock and soil and agriculture production in both carbonate area and non-carbonate area have been made to establish factors leading to low output and poor quality of agricultural products in the karst area. The result shows that there is an apparent lack of nutrient elements in carbonate rocks. The trace element contents of carbonate rocks are only 3532.27×10-6, but those of non-carbonate rocks are 10894.21×10-6. The available element contents in culti-vated soil delivered from carbonate rocks are merely 101.4×10-6, but those from non-carbonate rocks are 326.05×10-6. The available element contents and total element contents in cultivated soil delivered from non-carbonate rocks are 3 times higher than those from carbonate rocks. Besides, high-quality agricultural products such as rice, potato and tea are mainly produced in the non-carbonate area. It is indicated that the low output and quality of agricultural products are caused by the above-mentioned low trace element contents and poor agricultural environment. Therefore, a new method of mineral nutrients compensation has been put forward, which is very effective to raise the load-bearing capacity of agricultural environment, agricultural output and quality of agricultural products.  相似文献   

5.
Diffuse pollution from livestock production in China   总被引:2,自引:0,他引:2  
With economic development and living standard improvement, livestock and poultry production has grown up rapidly, also has become the leading source of pollution in vast rural areas in China.The estimated annual loss amount of COD, BOD, NH3-N from manure in 2001 is 7.28 million ton, 4.99 million ton and 1.32 million ton, respectively. The COD loss amount from manure is close to the sum of COD from industrial and domestic wastewater. Because animal waste and wastewater can enter water bodies from spills or breaks of waste storage structures ( due to accidents or excessive rain) , and non-agricultural application of manure to cropland, this contamination has resulted in quality degradation of surface and underground drinking water supplies. Areas with concentrated livestock operations are showing elevated nutrients and organic pollutant contents in surface waters. This widespread contamination of water has prompted governments at various levels to adopt regulations and measures to control the spreading of livestock pollution.  相似文献   

6.
The distribution of nutrients (N, P, Si, C) in the Wujiang River surface water was studied during the high-flow and low-flow periods in 2002. The results showed that nitrate nitrogen (NO3-N) is the main form of dissolved inorganic nitrogen (DIN) in the Wujiang River Basin. It accounts for about 90% of DIN. The average NO3-N concentrations in the mainstream are 147.5 μM in the high-flow period and 158.0 μM in the low-flow period, respectively. The average concentrations of total phosphorus (TP) are 6.43 μM in the high-flow period and 4.18 μM in the low-flow period, respectively. Of the various forms of phosphorus, particulate phosphorus (PP) has the highest percentage ( 62.9%) of TP in the high-flow period. In the low-flow period, however, phosphate is the main form of phosphorus, which accounts for 49% of TP. With the Wujiangdu Reservoir as the boundary, the concentrations of DIN and phosphorus in the upper reaches are different from those in the lower reaches of the Wujiang River. As a whole, the concentrations of DIN and phosphorus are both higher in the low-flow period than in the high-flow period. The spatial and temporal variations of DIN and phosphorus concentrations suggested that DIN and phosphorus come from agricultural and domestic wastewaters and groundwaters and that the Wujiangdu Reservoir has an important impact on the concentrations and distribution of DIN and phosphorus in the Wujiang River. The distribution patterns of dissolved silica (DSi) and dissolved organic carbon (DOC) are similar. Both of them maintain no change in the whole course of the river and their concentrations (with the exception of the reservoir itself) are higher in the high-flow period than in the low-flow period. The average DSi and DOC concentrations in the mainstream are 85.4, 84.6 μM in the high-flow period and 60.8, 53.9 μM in the low-flow period, respectively. The concentrations of nutrients in most of the major tributaries are lower than in the mainstream. This suggested that the contributions of most tributaries are relatively small but importance should be attached to the influence of some individual tributaries such as the Qingshuijiang River and the Weng'an River on the mainstream.  相似文献   

7.
This study evaluates the on use of crushed rocks(remineralizers)to increase soil fertility levels and which contributed to increase agricultural productivity,recovery of degraded areas,decontamination of water,and carbon sequestration.The use of these geological materials is part of the assumptions of rock technology and,indirectly,facilitates the achievement of sustainable development goals related to soil management,climate change,and the preservation of water resources.Research over the past 50 years on silicate rocks focused on soil fertility management and agricultural productivity.More recently,the combined use with microorganisms and organic correctives have shown positive results to mitigate soil degradation;to expand carbon sequestration and storage;and to contribute to the adsorption of contaminants from water and soil.In this article we show results obtained in several countries and we show that this technology can contribute to the sustainability of agriculture,as well as to reverse global warming.Although mineral nutrients are released more slowly from these types of inputs,they remain in the soil for a longer time,stimulating the soil biota.In addition,they are a technology to soluble synthetic fertilizers replace,since the few nutrients derived from such inputs not consumed by plants are lost by leaching,contaminating groundwater and water resources.In addition,conventional methods rely heavily on chemical pesticides which cause damage to soil’s microfauna(responsible for the decomposition of organic matter and nutrient cycling)and the loss of organic carbon(in the form of dioxide),which is quickly dispersed in the atmosphere.Silicate rock powders are applied in natura,have long-lasting residual effects and reduce greenhouse gas emissions.  相似文献   

8.
In this paper, the relationship between sulfate reduction potential and mercury methylation potential was studied in the Aha, Baihua and Hongfeng reservoirs from Guiyang City. The methylmercury (MeHg) concentrations of lake water in the Aha Reservoir were greatly elevated as compared to those of the Hongfeng and Baihua reservoirs, which was correlated with its distinctly high SRB abundance, SO42-, and S2- concentrations. Among the three reservoirs, however, the highest MeHg was observed in in the top several centimenters of pore water profile in the Hongfeng Reservoir where the lowest S2- in pore water occurred. The distributions of MeHg in lake water and pore water showed the highest methylation potential occurred at water-sediment surface for the Aha Reservoir and the in the top several centimenters of sediments for the Hongfeng Reservoir. It is guessed that the highest mercury methylation only occurs at the sites with certain sulfide concentrations.  相似文献   

9.
In southern Rocky Mountains, catchments characterized by acidic, metalliferous waters that are relatively unaffected by human activity usually occur within areas that have active or historical mining activity. The US Geological Survey has utilized these mineralized but unmined catchments to constrain geochemical processes that control the surface- and ground-water chemistry associated with near surface acid weathering as well as to estimate premining conditions. Study areas include the upper Animas River watershed, Lake City, Mt. Emmons, and Montezuma in Colorado and Questa in New Mexico. Although host-rock lithologies range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous. Variability of metal concentrations in water is caused by two main factors: mineralogy and hydrology. Parameters that potentially affect water chemistry include: host-rock lithology, intensity of hydrothermal alteration, sulfide mineralogy and chemistry, gangue mineralogy, length of flow path, precipitation, evaporation, and redox conditions. Springs and headwater streams have pH values as low as 2.5, sulfate up to 3700 mg/L and high dissolved metal concentrations (for example: Al up to 170 mg/L; Fe up to 250 mg/L; Cu up to 3.5 mg/L and Zn up to 14 mg/L). With the exception of evaporative waters, the lowest pH values and highest Fe and Al concentrations occur in water draining the most intense hydrothermally altered areas consisting of the mineral assemblage quartz-sericite-pyrite. Stream beds tend to be coated with iron floc, and some reaches are underlain by ferricrete. When iron-rich ground water interacts with oxygenated waters in the stream or hyporheic zone, ferrous iron is oxidized to ferric iron, which is less soluble, leading to the precipitation of iron oxyhydroxides.  相似文献   

10.
A total of 63 soil samples from 3 different soil profiles (urban, suburban and industrial areas) in major towns in the east coast of Peninsular Malaysia were analyzed for the total concentrations of Cu, Zn, Pb, Ni and Cr. The soil samples were subjected to acid digestion and the concentrations of total metals extracted were measured or flame atomic absorption spectrometry and inductively coupled plasma - atomic emission spectrometry. According to the result of this study, Pb and Zn concentrations in urban soils are much higher than those of industrial and suburban soils. Total concentrations of Cu and Cr in industrial soil samples are high compared to other two soil profiles and Ni concentrations in the suburban area are slightly higher those of urban and industrial soils. Since Malaysia has not yet to come up with her own soil maximum allowable limit, the heavy metal concentrations were compared with the Dutch maximum allowable limit. The results indicated that the median of heavy metals values in the three different soil profiles is still below the Dutch system limit. From the maximum allowable value obtained from the Dutch system, a contamination/pollution (C/p) index for each site was calculated for the set of these five heavy metals. An advantage of using this method is to make a differentiation between pollution (C/p〉1) and contamination (C/p〈1) status in soils as well as being able to characterize each status into 5 different categories (slight, moderate, severe, very severe and excessive).  相似文献   

11.
Based on the characteristics of land use and drainage network of the upper watershed of the Miyun Res-ervoir, Beijing, 26 monitoring and sampling sites were selected in different sub-catchments. Temporal and spatial variations in nutrient loss were dealt with in this paper in terms of the monitoring data on the water quality of the main tributaries flowing into the Miyun Reservoir. In combination with the monitoring data on water quality, the impacts of watershed characteristics including land-use type, landscape pattern, and drainage density were assessed, The concentrations of nutrients in the rainy season are higher than those in other seasons, and the concentrations of NO3--N are linearly related to those of total N which is the main form of nitrogen present in the fiver water. The concentrations of nitrogen become higher toward the reservoir along the main rivers. The seasonal variation of ni-trogen in the watershed affected by intensive human activities is very obvious; in the watershed with steady or low water flow, the seasonal variation of nitrogen is less obvious. Forest land and grassland can trap and filter nitrogen effectively. Land-use pattern also has important impacts on the loss of nitrogen. The concentrations of nitrogen and phosphorus in the water bodies show great temporal and spatial variations. On a temporal scale, the concentrations of TN and TP in the rainy reason are higher than those in other seasons. On a spatial scale, the concentrations of TN and NO3--N in the Qingshui River and Chaohe River are highest all the time. The spatial variation of TP is distinct, being obvious at sampling sites near villages. The form of nitrogen and phosphorus loss varies in different hydrological seasons. Dissolved nitrogen and phosphorus are the main forms in streams in non-rainy seasons, the dissolved nitro-gen and total nitrogen decrease in percentage in the rainy season. Particulate nitrogen and phosphorus are the main forms in some rivers. The concentrations of TN and NO3--N from orchards and villages are high whereas those from forest land are lowest. Land-use pattern has impacts on TN and NO3--N losses, at the sampling sites near the source landscape, the concentrations are higher than those at the sampling sites near the sink landscape. Water quality of the rivers which flow into the Miyuan Reservior is influenced by the composition of adjacent soils.  相似文献   

12.
太湖流域营养盐产量演变和趋势的数值模拟研究   总被引:4,自引:4,他引:0       下载免费PDF全文
于革  沈华东 《第四纪研究》2008,28(4):667-673
认识流域湖泊水体富营养化的演变和趋势是湖泊污染控制和治理中的重要研究课题。本文将在分析和论证太湖流域营养盐自然本底、人类活动作用急剧增加的近50年来太湖流域营养盐的变化情况、以及全球气候变化和流域经济发展未来30年太湖流域营养盐变化趋势等三方面的基础上,对太湖流域营养盐产量变化做出评估和预测。研究表明,在未来气候变化概率分析和区域经济发展规划基础上,太湖流域未来30年营养盐流域产量将比现代(2000s)增加25%~33%,这将增大太湖水体污染的压力。  相似文献   

13.
洪湖流域传统农业条件下营养盐输移模拟研究*   总被引:1,自引:0,他引:1       下载免费PDF全文
桂峰  于革 《第四纪研究》2006,26(5):849-856
文章选择位于长江中游的洪湖流域作为研究对象,应用流域分布式水文模型SWAT,探讨传统农业条件下流域营养盐输移的规律。模拟时段选择为建国初期的1951~1960年,模拟的边界条件设置为自然地形、土壤、传统农业生产和土地利用方式,其中土壤资料包括营养盐(N和P)、有机质含量、粒径等理化参数等。根据流域汇水范围的变化,模拟分汛期与非汛期两个时间段进行。通过对模型参数率定和调试,水文模拟结果与实测值有较好的吻合程度,由此进行营养盐输出模拟。模拟结果显示,传统农业条件下流域营养盐输出,TN和TP浓度变化有明显的季节特征,体现了耕作制度对营养盐浓度的影响; 同时,该时段营养盐浓度相比较自然条件下有了很大的改变,体现了人类活动对流域营养盐输移的影响,主要是土地利用类型变化和湖泊水域面积的缩小。  相似文献   

14.
We synthesize and update the science supporting the Action Plan for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico (Mississippi River/Gulf of Mexico Watershed Nutrient Task Force 2001) with a focus on the spatial and temporal discharge and patterns of nutrient and organic carbon delivery to the northern Gulf of Mexico, including data through 2006. The discharge of the Mississippi River watershed over 200 years varies but is not demonstrably increasing or decreasing. About 30% of the Mississippi River was shunted westward to form the Atchafalaya River, which redistributed water and nutrient loads on the shelf. Data on nitrogen concentrations from the early 1900s demonstrate that the seasonal and annual concentrations in the lower river have increased considerably since then, including a higher spring loading, following the increase in fertilizer applications after World WarII. The loading of total nitrogen (TN) fell from 1990 to 2006, but the loading of total phosphorus (TP) has risen slightly, resulting in a decline in the TN:TP ratios. The present TN:TP ratios hover around an average indicative of potential nitrogen limitation on phytoplankton growth, or balanced growth limitation, but not phosphorus limitation. The dissolved nitrogen:dissolved silicate ratios are near the Redfield ratio indicative of growth limitations on diatoms. Although nutrient concentrations are relatively high compared to those in many other large rivers, the water quality in the Mississippi River is not unique in that nutrient loads can be described by a variety of land-use models. There is no net removal of nitrogen from water flowing through the Atchafalaya basin, but the concentrations of TP and suspended sediments are lower at the exit point (Morgan City, Louisiana) than in the water entering the Atchafalaya basin. The removal of nutrients entering offshore waters through diversion of river water into wetlands is presently less than 1% of the total loadings going directly offshore, and would be less than 8% if the 10,093 km2 of coastal wetlands were successfully engineered for that purpose. Wetland loss is an insignificant contribution to the carbon loading offshore, compared to in situ marine production. The science-based conclusions in the Action Plan about nutrient loads and sources to the hypoxic zone off Louisiana are sustained by research and monitoring occurring in the subsequent 10 years.  相似文献   

15.
The amount of pollution from non-point sources flowing in the streams of the Wujiang River watershed in Guizhou Province, SW China, is estimated by a GIS-based method using rainfall, surface runoff and land use data. A grid of cells, 100 m in size, is laid over the landscape. For each cell, mean annual surface runoff is estimated from rainfall and percent land use, and expected pollutant concentration is estimated from land use. The product of surface runoff and concentration gives expected pollutant loading from that cell. These loadings are accumulated going downstream to give expected annual pollutant loadings in streams and rivers. By dividing these accumulated loadings by the similarly accumulated mean annual surface runoff, the expected pollutant concentration from non-point sources is determined for each location in a stream or river. Observed pollutant concentrations in the watershed are averaged at each sample point and compared to the expected concentrations at the same locations determined from the grid cell model. In general, annual non-point source nutrient loadings in the Wujiang River watershed are seen to be predominantly from the agricultural and meadow areas.  相似文献   

16.
Topsoil samples (0–20 cm) (n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.  相似文献   

17.
We developed an empirical model integrating nonpoint source (NPS) runoff, point sources (PS), and reservoir management to predict watershed discharges of water, sediment, organic carbon, silicate, nitrogen, and phosphorus to the Patuxent River in Maryland. We estimated NPS discharges with linear models fit to measurements of weekly flow and 10 material concentrations from 22 study watersheds. The independent variables were the proportions of cropland and developed land, physiographic province (Coastal Plain or Piedmont), and time (week). All but one of the NPS models explained between 62% and 83% of the variability among concentration or flow measurements. Geographic factors (land cover and physiographic province) accounted for the explained variability in largely dissolved material concentrations (nitrate [NO3], silicate [Si], and total nitrogen [TN]), but the explained variability in flow and particulates (sediment and forms of phosphorus) was more strongly related to temporal variability or its interactions with land cover and province. Average concentrations of all materials increased with cropland proportion and also with developed land (except Si), but changes in cropland produced larger concentration shifts than equivalent changes in developed land proportion. Among land cover transitions, conversions between cropland and forest-grassland cause the greatest changes in material discharges, cropland and developed land conversions are intermediate, and developed land and forest-grassland conversions have the weakest effects. Changing land cover has stronger effects on NO3 and TN in the Piedmont than in the coastal Plain, but for all other materials, the effects of land-use change are greater in the Coastal Plain. We predicted the changes in nutrient load to the estuary under several alternate land cover configurations, including a state planning scenario that extrapolates current patterns of population growth and land development to the year 2020. In that scenario, declines in NPS discharges from reducing cropland are balanced by NPS discharge increases from developing an area almost six times larger than the lost cropland. When PS discharges are included, there are net increases in total water, total phosphorus, and TN discharges.  相似文献   

18.
Urban soil nitrogen and phosphorus have significant implications for the soil and water quality in urban areas. The concentrations of total nitrogen (TN) and total phosphorus (TP) of soil samples collected from six types of land use, which included residential area (RA), business area (BA), classical garden (CG), culture and education area (CEA), public green space (PGS) and roadside area (RSA) of Beijing urban area, were investigated. Results showed that the geometric mean of TP (857 mg/kg) in urban soils was slightly higher than that (745 mg/kg) in rural soils of Beijing. The concentration of soil TP was higher in the center of the city, and showed an increasing trend with the age of the urban area. The TP concentrations in the six types of land use followed the sequence of CG > BA > RSA > RA > CEA > PGS, which were affected by the use and disposal of phosphorus-containing materials in each type of land use. However, the geometric mean of TN (753.8 mg/kg) in urban soils was much lower than that (1,933.3 mg/kg) in rural soils. TN level in urban soils of Beijing had no correlation with the city’s urbanization history, and was influenced by the coverage of natural vegetation and human activities in each type of land use. This study suggested that the city’s urbanization history and land use were the main factors affecting the distribution of nitrogen and phosphorus in urban soils.  相似文献   

19.
为了全面加强河南南阳西南耕区土地资源的利用、开发和管理工作,充分了解当地土壤的养分状况,通过实地调研、样品采集、实验分析等手段对研究区内各乡镇耕地土壤的pH值及养分(TN、TP和K)的空间分布特征进行研究,讨论不同土地利用方式下pH值及养分数据之间的差异及其各自的影响因素。半方差分析结果表明,TP最佳拟合模型为指数模型,TN、pH值、K含量以及有机质为球状模型。研究区pH、养分均表现出较弱的空间相关性,反映其受到人类活动的影响较为强烈。研究区土壤pH平均值为5.44,偏酸性,总体上呈现南高北低的空间分布特征。养分等级评价显示:TN、TP、K含量较为丰富,而有机质较为缺乏,分别为分级标准中的Ⅲ级、Ⅲ级、Ⅱ级和Ⅳ级。土壤养分地球化学综合等级评价显示,全区养分等级总体上以中等为主,占总点位的69.1%,全区广泛分布。Pearson相关性分析发现研究区内土壤pH与有机质、TN弱负相关,与K显著正相关;有机质与TN表现为显著正相关,与K为负相关。不同土地利用方式下土壤各因子差异显著,旱地土壤pH值、TN、有机质以及K含量的平均值均小于灌木林地,而TP则相反。此外,区内作物调查显示玉米种植区平均pH值低于花生种植区。施肥方式、用量及种类、作物类型、土地管理、种植结构和土壤背景是造成全区养分及pH值分布差异的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号