首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
川青地块在地貌上为川西高原,亦是青藏高原东北边缘最重要的构造单元。新的GPS监测资料表明,在欧亚框架内,川青地块及其邻近的龙门山带和华南地块西缘的地壳运动水平速度,具有自西向东由25.66mm/a递变下降到6.99mm/a的总趋势。速度矢量表现出顺时针涡旋转动。川青地块内具有局部应变积累的非均一的区域剪切。横切鲜水河断裂带中段新的GPS测量结果揭示,两侧地块间的平均左旋滑动速率约8mm/a;由于局部应变积累,断裂系南西侧的主断裂的移动速率为9.3mm/a,其间为拉分盆地和小的横向伸展断裂。鲜水河断裂系的左旋断裂滑动作用,调节了川青地块与川滇地块之间的相对运动。  相似文献   

2.
川青地块在地貌上为川西高原,亦是青藏高原东北边缘最重要的构造单元.新的GPS监测资料表明,在欧亚框架内,川青地块及其邻近的龙门山带和华南地块西缘的地壳运动水平速度,具有自西向东由25.66 mm/a递变下降到6.99 mm/a的总趋势.速度矢量表现出顺时针涡旋转动.川青地块内具有局部应变积累的非均一的区域剪切.横切鲜水河断裂带中段新的GPS测量结果揭示,两侧地块间的平均左旋滑动速率约8mm/a;由于局部应变积累,断裂系南西侧的主断裂的移动速率为93mm/a,其间为拉分盆地和小的横向伸展断裂.鲜水河断裂系的左旋断裂滑动作用,调节了川青地块与川滇地块之间的相对运动.  相似文献   

3.
鲜水河断裂与龙门山断裂交会区具有特殊的构造性质。通过对交会区GPS观测,得到欧亚框架下运动速度场。利用所得的运动速度结果,采用刚性地块假设下的最小二乘法拟合方法,得到川滇、川青、扬子地块运动速度分别为(19.2±2.8)mm/a、(10.7±3.2)mm/a、(9.7±1.6)mm/a,地块运动方向由SE逐渐变成SEE,呈现出顺时针旋卷特征;鲜水河断裂运动速度为(9.3±2.8)mm/a,断裂性质为左旋走滑;龙门山断裂运动速度为(1.2±2.2)mm/a,断裂性质为右旋挤压。  相似文献   

4.
活动断裂几何学特征及滑动速率是研究断裂运动学、动力学机制及其评估区域强震危险性的重要依据。青藏高原东缘左行走滑的鲜水河断裂带是控制高原物质向南东挤出的重要边界,是中国陆内活动性最强的断裂之一。本文以鲜水河断裂带北西段为研究对象,通过高精度遥感影像解译、野外考察、OSL(光释光)和14C测年方法以及LiDAR(激光雷达)扫描获得乾宁段龙灯乡冲积阶地的位错量和废弃年龄。T4和T3′水平位错量分别为106±5 m和77±2 m,T4阶地垂直位错量为9. 6±0. 5 m。T4和T3′阶地的废弃年龄分别为11±1 ka和7±1 ka。结合对应的年龄和位错量,得到乾宁段晚第四纪走滑速率左行走滑速率为10. 5±1 mm/a,垂直滑动速率为0. 9±0. 1 mm/a,断层倾向北东,具有正断运动学特征。通过重新计算断裂两侧GPS矢量沿断裂方向分量,得到鲜水河断裂带炉霍段、炉霍—康定段、磨西段现今左行走滑速率分别约为8. 1 mm/a、8. 2 mm/a、9. 4 mm/a,整体表现为自北西向南东递增。综合乾宁段晚第四纪走滑速率和最新强震活动的离逝时间估算,认为鲜水河断裂带乾宁段目前应变累积达到了发生一次MW 6. 8(MS 7. 2)大地震的潜能,在区域防震减灾工作中应对此加以重视。  相似文献   

5.
通过对川滇地体、思茅地体白垩纪、古近纪地层古地磁数据以及新生代地壳构造特征的分析,结合青藏高原东南缘GPS监测研究结果,揭示了新生代时期青藏高原东南缘地壳块体的旋转变形特征.根据古地磁数据模拟计算得出~5Ma以来哀牢山-红河走滑断裂带(ARF)受川滇地体挤压而发生弯曲变形的南北向偏移速率至少为~13.05mm/a,奠边俯左旋走滑断裂带(DBPF)西侧思茅地体内部自~5Ma以来至少存在~2.08mm/a的东西向伸展分量,而DBPF 5Ma以来的南北向平均左旋走滑速度则至少为~1.66mm/a,与现今GPS监测结果基本一致.证明鲜水河-小江左旋走滑断裂带(XXF)的左旋走滑运动虽然没有切断ARF,但是川滇地体的南向顺时针旋转挤压作用导致了断裂带的南向弯曲变形,从而吸收了部分左旋走滑速率,造成左旋走滑运动在跨过ARF传递到DBPF后走滑速率发生了突变,由~10mm/a减小于2~3mm/a.缅泰地块和思茅地体在经历了渐新世-中新世时期以高黎贡山-实楷右旋走滑断裂带和ARF为边界的东南侧向顺时针旋转挤出运动之后,自5Ma开始,至少思茅地体与川滇地体一起,以XXF和DBPF为旋转边界发生了以东喜马拉雅构造节为近似中心的旋转挤出运动.  相似文献   

6.
1997年1月2日~1998年12月31日新疆伽师地震群的发生,使柯坪断裂的滑动速率和运动方向发生了改变。利用MD系列断层仪对柯坪断裂东段的运动特征进行了观测与研究。结果表明,柯坪断裂带东段在伽师地震群前后,垂直滑动速率由0.037 mm/a提高到0.069 mm/a,水平错动速度由左旋0.033 mm/a改变为右旋0.016 mm/a;水平运动方向发生了改变,垂直运动强度提高了近一倍;伽师震群发生前后,柯坪断裂东段附近的应力场发生了改变,最大和最小水平应变率的大小虽未变化,但主应变率轴绕顺时针方向旋转了16.7°。  相似文献   

7.
青藏高原东缘活动构造   总被引:74,自引:0,他引:74  
青藏高原东缘由岷山断块和龙门山构造带构成。以活动构造地貌学为主线,在解析该地区主干断裂晚第四纪以来活动的地质地貌表现的基础上,对一批断裂运动学和史前强震活动的定量数据进行分析研究,结果表明:在岷山断块中,虎牙断裂的平均左旋滑动速率为1.4 mm/a,垂直滑动速率为0.3 mm/a。岷江断裂的平均垂直滑动速率介于0.37 mm/a~0.53 mm/a之间,左旋位错量与垂直位错量大致相当;在龙门山构造带中,茂汶-汶川断裂、北川-映秀断裂和彭县-灌县断裂的平均垂直滑动速率均在1 mm/a左右,且几条主干断裂的右旋位错量与垂直位错量相当。结合震源机制解结果和GPS测量资料,建立晚新生代以来青藏高原东缘向南东方向逸出的构造变形模式。  相似文献   

8.
青藏高原现今构造变形特征与GPS速度场   总被引:105,自引:12,他引:105  
张培震  王琪  马宗晋 《地学前缘》2002,9(2):442-450
文章以青藏高原的GPS观测数据为基础 ,结合活动地质构造资料 ,研究了青藏高原的现今构造变形状态和机制 ,并探讨青藏高原现今构造变形所反映的大陆内部动力学过程。GPS观测的速度矢量揭示了青藏高原整体向北和向东运动的趋势 ,平行于印度和欧亚板块碰撞方向上的地壳缩短量约是 38mm/a ,而青藏高原周边主要断裂带的滑动速率均在 10mm/a以下。大约 90 %的印度与欧亚板块相对运动量被青藏高原的地壳缩短所吸收和调节。GPS速度矢量由南向北逐渐向东偏转 ,向东的分量也增加 ,形成了以羌塘地块北部 (或玛尼—玉树—鲜水河断裂 )和祁连山中部为中心的两个地壳物质向东流动带。青藏高原的向东挤出实际上是地壳物质在印度板块推挤下和周边刚性地块阻挡下围绕东构造结发生的顺时针旋转。  相似文献   

9.
为了探索GPS和跨断层地壳形变数据联合反演效果,本文以鲜水河断裂为研究对象,利用1999~2007期,2009~2013期和2013~2017期中国大陆GPS水平速度场数据,使用贝叶斯反演方法,以跨断层数据为先验条件,估算了川滇菱形块体东边界(主要为鲜水河断裂)的断层运动速率。发现增加跨断层数据后,反演图像的近场和远场速率区别更加显著,不同期次的断层活动速率表现出明显的差异。但是,本方法在震前效果并不明显,尤其是在汶川地震前部分跨断层场地的逆向走滑特征很难表现出来,对于地震预测预报也很难起到优势作用,但从反演效果上来看,可以更直观的反映断层在近场和远场上的速率差异以及地震后断层运动速率的分段特征。最终根据上述研究方法认为鲜水河断裂带在汶川地震后,经过多年的应力调整,目前左旋走滑速率已经基本恢复到震前状态,鲜水河断裂南段持续拉张趋势,川滇菱形块体的顺时针旋转作用持续加强,鲜水河断裂的道孚段和磨西段存均在一定的走滑速率亏损,应注意这两个地区的地震危险性,以及这两个地区地震危险的关联性。  相似文献   

10.
海原断裂带库仑应力积累   总被引:1,自引:0,他引:1  
用中国地壳运动观测网络区域站在海原断裂带附近的所有观测数据及跨断裂GPS剖面观测数据作为约束,用Smith3D体力模型反演了海原断裂带断层滑动速率和断层闭锁深度,计算了库仑应力积累率和地震矩积累率.采用遗传算法拟合GPS水平运动速度场,拟合的最后残差均方根为1.2mm/a.反演结果为:第一段毛毛山断裂左旋走滑运动速率为3.6mm/a,闭锁深度为22km;第二段老虎山断裂左旋走滑速率为10.5mm/a,闭锁深度为11.4km;第三、四、五段(海原断裂带西段、中段和东段)滑动速率依次为3.5mm/a、5.8mm/a、5.7mm/a,闭锁深度依次为8.5km、3.6km、4.3km.海原断裂带库仑应力积累率为0.48~1.59MPa/100a,毛毛山断裂地震矩积累率较大,但库仑应力积累率较小;老虎山断裂库仑应力积累率和地震矩积累率均比较大;海原断裂带(狭义)中西段库仑应力积累率最大.  相似文献   

11.
Abstract: This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10–14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2–4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7–9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and rheologically layered. The upper crust seems to be decoupled from the lower crust through a décollement zone at a depth of 15–20 km, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this décollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.  相似文献   

12.
The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.  相似文献   

13.
Little attention had been paid to the intracontinental strike-slip faults of the Tibetan Plateau. Since the discovery of the Longriba fault using re-measured GPS data in 2003, an increasing amount of attention has been paid to this neglected fault. The local relief and transverse swath profile show that the Longriba fault is the boundary line that separates the high and flat tomography of the Tibet plateau from the high and precipitous tomography of Orogen. In addition, GPS data shows that the Longriba fault is the boundary line where the migratory direction of the Bayan Har block changed from eastward to southeastward. The GPS data shows that the Longriba fault is the boundary fault of the sub-blocks of the eastern Bayan Har block. We built three-dimensional models containing the Longriba fault and the middle segment of the Longmenshan fault, across the Bayan Har block and the Sichuan Basin. A nonlinear finite element method was used to simulate the fault behavior and the block deformation of the Eastern Tibetan Plateau. The results show that the low resistivity and low velocity layer acts as a detachment layer, which causes the overlying blocks to move southeastward. The detachment layer also controls the vertical and horizontal deformation of the rigid Bayan Har block and leads to accumulation strain on the edge of the layer where the Longmenshan thrust is located. After a sufficient amount of strain has been accumulated on the Longmenshan fault, a large earthquake occurs, such as the 2008 Wenchuan earthquake. The strike slip activity of the Longriba fault, which is above the low resistivity and low velocity layer, partitions the lateral displacements of the Bayan Har block and adjusts the direction of motion of the Bayan Har block, from the eastward moving Ahba sub-block in the west to southeastward moving Longmenshan sub-block in the east.  相似文献   

14.
This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region.It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field,except for the west Qinling range where it parallels the striking of the major strike-slip...  相似文献   

15.
岷山隆起边界断裂构造活动初步研究   总被引:16,自引:0,他引:16       下载免费PDF全文
岷山隆起西以岷江断裂为界,东为虎牙断裂。该地区构造活动强烈,地震活动频繁,是重要活动区。岷山隆起是岷江断裂和虎牙断裂由西向东的推覆逆掩运动差异运动导致的。GPS及地质研究表明岷江断裂、虎牙断裂现今仍在活动。岷江断裂为左右旋走滑断裂,运动速度大于2mm/a;虎牙断裂整体速度2.55mm/a,断裂性质为右旋走滑断裂,而震源机制解为左旋走滑断裂。这一结果,可能与GPS观测时段、位置及断裂面结构、几何特征有关。  相似文献   

16.
全球定位系统测量与青藏高原东部流变构造   总被引:22,自引:3,他引:19       下载免费PDF全文
通过1991~1997年期间高精度全球定位系统测量,建立了青藏高原东部及其邻区的现代地壳运动速度场。相对成都,鲜水河-小江断裂以西的藏东-滇中地区的运动速度变动在1.57~17.49mm/a之间,总体为8mm/a以上。该断裂以东地区的运动速度小,约为0~7mm/a。在此基础上,通过对围绕东喜马拉雅构造结的涡旋和川西地区的涡旋的认定,以及它们在地壳变形中的作用的分析,阐述了青藏高原东部及其邻区深部物质流变的主要形式和地壳流变构造。  相似文献   

17.
研究区位于青藏高原的东北隅(96°~107°E,30°~35°N)。基于该地区长度大于2km的4 781条1∶20万数字化实测断裂、1900年以来的5 220条数字地震记录,以及野外地质观测数据,识别出993条不同属性的地震断层,构建了该地区百年地震构造格局。1970年以来十年期地震断层跃迁图像表明,自20世纪80年代中期白马—虎牙强烈震群爆发之后,地震活动在沿各主要走滑断层带自西(北西)向东(南东)迁移的同时,逐渐向中部贡玛—达曲断裂带和南部鲜水河断裂带的东南段集中。地震活动的断裂构造联系主要表现为挤压剪切转换机制和典型的楔顶效应。研究区165个GPS速度矢量展现了与3个地块和以鲜水河断裂带为主的速度域、速度梯度带和速度扰动区。跨研究区南缘鲜水河断裂带的位移速率因贡玛—达曲断裂带汇聚而达到了6.5~8.6mm/a,而跨北缘东昆仑断裂带的位移速度只有1.8~2.2mm/a。因鲜水河断裂走向在其中南段发生向南的急剧偏转,垂直断层面的位移矢量分量不断增强,形成了汶川8.0级地震成核及NE向单边破裂的动力学条件。  相似文献   

18.
Quantitative analysis of the kinematics of the active faults distributed around the Qinghai-Tibetan Plateau is critical to understand current tectonic processes of the plateau. Chronological analysis, based on the comparison among regional climate and geomorphology, digital photogrammetry, offset landforms, and the tectonics were adopted in this study on the Xianshuihe fault in the eastern Tibetan plateau. Two or more offset-age data were obtained for each segment of the Xianshuihe and the Yunongxi faults. The offset landforms, including river terrace, alluvial fan and glacial moraine, provide constraints for the late Quaternary slip rate of the Xianshuihe fault. The left-lateral strike slip rate of the Xianshuihe fault decreases from 17 mm/a on the northwest segment to 9.3 mm/a on the southeast segment. Regarding the Xianshuihe fault zone and its adjacent blocks as a regional tectonic system, vector analysis was used to quantitatively analyze the longitudinal kinematical transformation and transversal slip partitioning on the fault zone in terms of the kinematical parameters of the main faults within the zone. The results show that there is a distributed vertical uplift at a rate of 6.1 mm/yr caused by shortening across the Gongga Mountains region. Based on these results, we established a model of the slip partitioning for the southeastern segment of the Xianshuihe fault zone.  相似文献   

19.
The active kinematics of the eastern Tibetan Plateau are characterized by the southeastward movement of a major tectonic unit, the Chuan-Dian crustal fragment, bounded by the left-lateral Xianshuihe–Xiaojiang fault in the northeast and the right-lateral Red River–Ailao Shan shear zone in the southwest. Our field structural and geomorphic observations define two sets of young, active strike–slip faults within the northern part of the fragment that lie within the SE Tibetan Plateau. One set trends NE–SW with right-lateral displacement and includes the Jiulong, Batang, and Derong faults. The second set trends NW–SE with left-lateral displacement and includes the Xianshuihe, Litang, Xiangcheng, Zhongdian, and Xuebo faults. Strike–slip displacements along these faults were established by the deflection and offset of streams and various lithologic units; these offsets yield an average magnitude of right- and left-lateral displacements of ~15–35 km. Using 5.7–3.5 Ma as the time of onset of the late-stage evolution of the Xianshuihe fault and the regional stream incision within this part of the plateau as a proxy for the initiation age of conjugate strike–slip faulting, we have determined an average slip rate of ~2.6–9.4 mm/year. These two sets of strike–slip faults intersect at an obtuse angle that ranges from 100° to 140° facing east and west; the fault sets define a conjugate strike–slip pattern that expresses internal E–W shortening in the northern part of the Chuan-Dian crustal fragment. These conjugate faults are interpreted to have experienced clockwise and counterclockwise rotations of up to 20°. The presence of this conjugate fault system demonstrates that this part of the Tibetan Plateau is undergoing not only southward movement, but also E–W shortening and N–S lengthening due to convergence between the Sichuan Basin and the eastern Himalayan syntaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号