首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regional drought frequency analysis was carried out in the Poyang Lake basin (PLB) from 1960–2014 based on three standardized drought indices: the standardized precipitation index (SPI), the standardized precipitation evapotranspiration index (SPEI) and the standardized Palmer drought index (SPDI). Drought events and characteristics were extracted. A Gumbel–Hougaard (GH) copula was selected to construct the bivariate probability distribution of drought duration and severity, and the joint return periods (T a ) were calculated. Results showed that there were 50 (50 and 40) drought events in the past 55 years based on the SPI (SPEI and SPDI), and 9 (8 and 10) of them were severe with T a more than 10 years, occurred in the 1960s, the 1970s and the 2000s. Overall, the three drought indices could detect the onset of droughts and performed similarly with regard to drought identification. However, for the SPDI, moisture scarcity was less frequent, but it showed more severe droughts with substantially higher severity and longer duration droughts. The conditional return period (Ts|d) was calculated for the spring drought in 2011, and it was 66a and 54a, respectively, based on the SPI and SPDI, which was consistent with the record. Overall, the SPI, only considering the precipitation, can as effectively as the SPEI and SPDI identify the drought process over the PLB under the present changing climate. However, drought is affected by climate and land-cover changes; thus, it is necessary to integrate the results of drought frequency analysis based on different drought indices to improve the drought risk management.  相似文献   

2.
Drought is a natural phenomenon which occurs in different climate regimes. In the present study, hydrological drought of the Roud Zard basin has been investigated based on run theory. Daily runoff data of Mashin hydrometery station during 1970 to 2012 was assessed using 70 % of mean daily runoff as threshold level. Results showed that the maximum drought duration of 309 days occurred in 1998 and 1999 and max drought deficit of 117.217 million cubic meters per second in 1983 with 275 days duration. Time series of the annual maxima values of duration and volume deficit showed similar trend of increase and decreasing. Burr statistical distribution, as the most suitable one fitted to the drought duration data, forecasted 339 days duration for drought event with 20 years return period and generalized extreme value forecasted 37.9 million cubic meters of deficit volume for this return period. Severity-duration-frequency (SDF) curves were prepared, classifying drought durations to four intervals and fitting statistical distribution to each. Resulted SDF curves showed that, in each period, increase of duration resulted in increased value of the volume deficit with a non-linear trend, though predicted drought volume with 20 years return period was 2.1 million cubic meters for 1 to 10 days duration, 6.9 for 11 to 30 days, 34.5 for 31 to 120 days, and 79.1 for more than 120 days duration drought event. Drought deficit volume increasing rate was also different in each class of duration interval. Drought SDF curves derived in this study can be used to quantify water deficit for natural stream and reservoir. SDFs could also be extended to allow for drought regional frequency analysis to be used in ungauged sites.  相似文献   

3.
Under the current condition of climate change, droughts and floods occur more frequently, and events in which flooding occurs after a prolonged drought or a drought occurs after an extreme flood may have a more severe impact on natural systems and human lives. This challenges the traditional approach wherein droughts and floods are considered separately, which may largely underestimate the risk of the disasters. In our study, the sudden alternation of droughts and flood events (ADFEs) between adjacent seasons is studied using the multivariate L-moments theory and the bivariate copula functions in the Huai River Basin (HRB) of China with monthly streamflow data at 32 hydrological stations from 1956 to 2012. The dry and wet conditions are characterized by the standardized streamflow index (SSI) at a 3-month time scale. The results show that: (1) The summer streamflow makes the largest contribution to the annual streamflow, followed by the autumn streamflow and spring streamflow. (2) The entire study area can be divided into five homogeneous sub-regions using the multivariate regional homogeneity test. The generalized logistic distribution (GLO) and log-normal distribution (LN3) are acceptable to be the optimal marginal distributions under most conditions, and the Frank copula is more appropriate for spring-summer and summer-autumn SSI series. Continuous flood events dominate at most sites both in spring-summer and summer-autumn (with an average frequency of 13.78% and 17.06%, respectively), while continuous drought events come second (with an average frequency of 11.27% and 13.79%, respectively). Moreover, seasonal ADFEs most probably occurred near the mainstream of HRB, and drought and flood events are more likely to occur in summer-autumn than in spring-summer.  相似文献   

4.
Risk assessment to China’s agricultural drought disaster in county unit   总被引:14,自引:7,他引:7  
Hao  Lu  Zhang  Xiaoyu  Liu  Shoudong 《Natural Hazards》2012,61(2):785-801
China faces drought disaster risk under the changing climate. Risk analysis is a suitable approach in order to design ex-ante measure able to anticipate effects of drought on agricultural production. In this article, with the support of historic drought disaster data from 583 agro-meteorological observations (1991–2009), a risk analysis method based on information diffusion theory was applied to create a new drought risk analysis model, and the risk of China’s agriculture drought disaster was evaluated on higher spatial resolution of county unit. The results show that in more than three hundred counties of China, risk probability was biyearly or annually when Drought Affected Index (DAI) was over 5%. When DAI was up to 40%, more than one hundred counties were prone to drought disaster annually or once every 5 years. This showed that the impact of drought disaster on China’s agriculture, whether in frequency or intensity, was large. With the different level of DAI, China’s agricultural drought risk pattern showed variable pattern characteristics. When DAI was low, the distribution of county agricultural drought risk in China presented the East–West pattern of differentiation, and high risk mainly lied in the eastern, low risk mainly in the western. On the other hand, when DAI was high, the distribution of county risk appeared a pattern of high in center, and the north areas higher than the south, increased gradually from southwest to northeast. Drought risk presents a clear zonal differentiation that may be result from stepped topography, different precipitation and hazard-affected bodies. Spread of high value area of drought risk in northern may be related to the southeast monsoon and ecological degradation in northern Ecotone.  相似文献   

5.
干旱频率分析研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
从干旱定义与识别、点干旱频率分析和区域干旱频率分析3个方面系统阐述了干旱频率分析研究进展和存在问题,归纳了适用于干旱频率分析的干旱定义,干旱识别存在的主要问题以及区域干旱频率分析研究的3种途径。提出综合利用研究区域水文气象特性、干旱成因、旱情、旱灾,并结合前期的大气环流条件等信息来描述和识别干旱,重点开展对干旱特征变量的理论分布、干旱事件重现期公式和经验频率公式等基本理论的研究,关注区域干旱频率分析,注重对径流、土壤水、地下水和供水系统的干旱特性分析。  相似文献   

6.
Drought disaster management entails not only understanding meteorological drought as a natural hazard but also evaluating the adverse societal impacts related to the economy and human lives. For the purpose of quantifying the drought severity from the perspective of society drought, a drought index, namely “Society Drought Severity Index” (SDSI), was put forward to analyze the drought in Yunnan Province of China. In SDSI for Yunnan, the drought severity was represented by the weighted discrepancy between the “appropriate” water needs and the total available water resources, inspired by the established Palmer Drought Severity Index (PDSI). Technically, the trend in historical water consumption records in agricultural, industrial, and domestic sectors was applied to represent the appropriate water needs; an apparent “runoff” was used to represent the available water resource in Yunnan. The SDSI of Yunnan revealed a trend toward increasing drought severity, which resulted from a combination of meteorological changes and water needs escalation. Moreover, the spatial center of the 2010 drought in Yunnan based on SDSI was different from that identified by PDSI, which exactly reflected the influence of water needs on drought severity. The SDSI was deemed to be a beneficial tool for drought disaster management and drought risk governance.  相似文献   

7.
干旱灾害是制约中国西北地区社会经济发展、农业生产和生态文明建设的重要自然灾害,而且随着气候变暖西北地区极端干旱事件发生频率和强度均呈增加趋势,影响不断加重。"中国西北干旱气象灾害监测预警及减灾技术研究"成果是在数十个国家级科研项目的支持下,经过过去20年的理论研究和应用技术开发所取得的一系列创新性成果。该成果对西北干旱形成机理及重大干旱事件发生、发展的规律取得了新认识,尤其是发现了形成西北干旱环流模态的4种主要物理途径;研制了西北干旱预测的新指标、干旱监测的新指数及监测农田蒸散的新设备,明显提高了干旱监测准确性和针对性;提出了山地云物理气象学新理论,研发了水源涵养型国家重点生态功能区——祁连山空中云水资源开发利用技术;发现了干旱半干旱区陆面水分输送和循环的新规律,揭示了绿洲自我维持的物理机制;认识了干旱气候变化对农业生态系统影响的新特征,建立了旱作农业对干旱灾害的响应关系;开发了旱区覆膜保墒、集雨补灌、垄沟栽培、适宜播期等应对气候变化的减灾技术,为西北实施种植制度、农业布局及结构调整和农业气候资源高效利用提供了科学方案。该成果的完成提升了中国干旱防灾减灾技术水平,培养了中国干旱气象科技队伍,推进了西北地区干旱气象业务服务能力,对西北地区社会经济发展、农业现代化和生态文明建设等方面起到了重要的促进作用。在此基础上,展望了西北地区干旱气象科学研究中迫切需要、有可能突破的主要领域。  相似文献   

8.
This study presents a methodology for risk analysis, assessment, and combination of drought disasters under the different irrigational levels in Baicheng City, which is supported by run theory, copula functions, crop growth model, and technique of natural disaster risk assessment from the viewpoints of climatology, geography, hydrology, agricultural science, disaster science, environmental science, and so on. Along with the global warming, the occurrences of water-related disasters become more frequent and more serious. It is necessary to determine the laws of the relationship between irrigational ability and the loss caused by drought. Drought events were identified by using run theory; the drought frequency was calculated by using copula function; the loss of every drought event was simulated by using EPIC model; and the relationship curves under the different irrigational supply conditions between the drought frequency and the yield reduction rate of the drought event were fitted to assess the impact of irrigational supply rate on the loss caused by drought. The results show that in the range of crop water demand, the loss caused by drought decreases as the result of the increase in irrigational supply rate; however, their variations are not proportional. The loss caused by the certain frequency drought event under the certain irrigational supply condition could be calculated by the curve of drought disaster risk assessment constructed by this study. The results obtained from this study are specifically intended to support local and national governmental agencies on agricultural disaster management.  相似文献   

9.
殷建军  林玉石  唐伟 《中国岩溶》2014,33(4):387-395
在全球变暖、极端事件频发的背景下,利用地质载体重建过去2 000年来气候变化规律、研究极端事件发生机制是未来气候变化,特别是极端天气/气候事件预测的重要手段。文章综述了高U含量、能够高精度测定年龄的洞穴文石石笋在古气候环境重建的应用:用于研究气候变化与人类文明的关系、反演区域气候差异性、准确重建区域气候变化及极端事件的发生;并针对洞穴文石石笋古气候环境重建中存在的问题提出以下研究方向:综合87Sr/86Sr、δ26Mg、δ18O和δ13C等同位素技术追寻洞穴文石的物源、利用Mg/Ca、Sr/Ca和δ13C、△47综合分析洞穴文石形成的环境及水文过程,加强洞穴文石的结晶学、物理化学研究,查明其形成及转化为方解石的条件。   相似文献   

10.
Wang  Jielong  Chen  Yi 《Natural Hazards》2022,110(1):225-246
Natural Hazards - Drought and flood events are two extreme climate phenomena which usually bring enormous economic and social loss. For meeting the goal of flood and drought prevention, the...  相似文献   

11.
基于塔里木河流域39个气象站1961—2010年逐日观测数据和NCEP/NCAR再分析数据,采用标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI),分析了该流域近50年来干湿时空变化特征及典型干湿月份和突变前后的大气环流特征。对SPEI序列进行的趋势检验和突变分析表明,近50年来,塔里木河流域显著变湿并在1986年发生显著突变,SPEI上升趋势显著的站点较多的月份主要集中在暖季(5~10月)。对突变前后不同等级干湿事件频率变化的统计结果表明,突变后,极端干旱事件发生频率略有增加,但轻度和中度干旱事件发生频率有所减少,而不同等级的湿事件发生频率则一致地表现为增加。对典型干湿月份和突变前后对应的北半球500hPa位势高度场和风场变化的合成分析表明,暖季典型干湿月份环流系统配置存在明显差异,增加的水汽和弱不稳定大气层结构是该区域1986年后暖季变湿的原因之一。  相似文献   

12.

Drought and water scarcity can significantly impair the sustainable development of groundwater resources, a scenario commonly found in aquifers in the Mediterranean region. Water management measures to address these drivers of groundwater depletion are highly relevant, especially considering the increasing severity of droughts under climate change. This study evaluates the potential of managed aquifer recharge (MAR) to offset the adverse effects of drought and water scarcity on groundwater storage. Los Arenales aquifer (central Spain), which was unsustainably exploited for irrigation in the second half of the twentieth century, is employed as a case study. Two neighbouring zones within this aquifer are contrasted, namely, Los Arenales (LA) and Medina del Campo (MC). The primary difference between them in terms of water resources management is the wide-scale implementation of MAR systems in LA since the early 2000s. Several groundwater statistical methods are used. Groundwater-level trend analysis and average piezometric levels show in LA a faster recovery of aquifer storage and less susceptibility to drought compared to MC. On the other hand, standardised precipitation indexes and standardised groundwater level indexes of detrended groundwater-level time series, which do not include the effects of MAR, show that LA can be more negatively affected by drought and groundwater abstraction. The sharper recovery of piezometric levels in LA when considering MAR, and bigger drought impacts observed when the effects of this measure are removed, demonstrate that MAR can effectively alleviate the impacts of water scarcity and drought, providing an adaptation solution to climate change worldwide.

  相似文献   

13.
Drought risk assessment using remote sensing and GIS techniques   总被引:1,自引:0,他引:1  
Beginning with a discussion of drought definitions, this review paper attempts to provide a review of fundamental concepts of drought, classification of droughts, drought indices, and the role of remote sensing and geographic information systems for drought evaluation. Owing to the rise in water demand and looming climate change, recent years have witnessed much focus on global drought scenarios. As a natural hazard, drought is best characterized by multiple climatological and hydrological parameters. An understanding of the relationships between these two sets of parameters is necessary to develop measures for mitigating the impacts of droughts. Droughts are recognized as an environmental disaster and have attracted the attention of environmentalists, ecologists, hydrologists, meteorologists, geologists, and agricultural scientists. Temperatures; high winds; low relative humidity; and timing and characteristics of rains, including distribution of rainy days during crop growing seasons, intensity, and duration of rain, and onset and termination, play a significant role in the occurrence of droughts. In contrast to aridity, which is a permanent feature of climate and is restricted to low rainfall areas, a drought is a temporary aberration. Often, there is confusion between a heat wave and a drought, and the distinction is emphasized between heat wave and drought, noting that a typical time scale associated with a heat wave is on the order of a week, while a drought may persist for months or even years. The combination of a heat wave and a drought has dire socio-economic consequences. Drought risk is a product of a region’s exposure to the natural hazard and its vulnerability to extended periods of water shortage. If nations and regions are to make progress in reducing the serious consequences of drought, they must improve their understanding of the hazard and the factors that influence vulnerability. It is critical for drought-prone regions to better understand their drought climatology (i.e., the probability of drought at different levels of intensity and duration) and establish comprehensive and integrated drought information system that incorporates climate, soil, and water supply factors such as precipitation, temperature, soil moisture, snow pack, reservoir and lake levels, ground water levels, and stream flow. All drought-prone nations should develop national drought policies and preparedness plans that place emphasis on risk management rather than following the traditional approach of crisis management, where the emphasis is on reactive, emergency response measures. Crisis management decreases self-reliance and increases dependence on government and donors.  相似文献   

14.
Drought is one of the major disasters around the world which cause great social and economic hardship. Recent events of severe droughts have motivated comprehensive research on drought management in China like many other countries of Asia, Europe and Africa. In this paper, the mechanism of drought management has been analyzed in light of water supply and water demand management considering water shortage as an inductor of drought. Catastrophe theory has been proposed to explain transitions through discontinuities and unexpected changes in water system. The study indicates that supply management can increase water supply; however, in long term, it may not be sustainable for drought mitigation. Water demand management, on the other hand, improves water use efficiency with less investment. Therefore, the study emphasizes water demand managements for drought management under future changing scenarios.  相似文献   

15.
Drought is a serious climatic condition that affects nearly all climatic zones worldwide, with semi-arid regions being especially susceptible to drought conditions because of their low annual precipitation and sensitivity to climate changes. Drought indices such as the standardized precipitation index (SPI) using meteorological data and vegetation indices from satellite data were developed for quantifying drought conditions. Remote sensing of semi-arid vegetation can provide vegetation indices which can be used to link drought conditions when correlated with various meteorological data based drought indices. The present study was carried out for drought monitoring for three districts namely Bhilwara, Kota and Udaipur of Rajasthan state in India using SPI, normalized difference vegetation index (NDVI), water supply vegetation index (WSVI) and vegetation condition index (VCI) derived from the Advanced Very High resolution Radiometer (AVHRR). The SPI was computed at different time scales of 1, 2, 3, 6, 9 and 12 months using monthly rainfall data. The NDVI and WSVI were correlated to the SPI and it was observed that for the three stations, the correlation coefficient was high for different time scales. Bhilwara district having the best correlation for the 9-month time scale shows late response while Kota district having the best correlation for 1-month shows fast response. On the basis of the SPI analysis, it was found that the area was worst affected by drought in the year 2002. This was validated on the basis of NDVI, WSVI and VCI. The study clearly shows that integrated analysis of ground measured data and satellite data has a great potential in drought monitoring.  相似文献   

16.
Robust estimates of tropical cyclone risk can be made using large sets of storm events synthesized from historical data or from physics-based algorithms. While storm tracks can be synthesized very rapidly from statistical algorithms or simple dynamical models (such as the beta-and-advection model), estimation of storm intensity by using full-physics models is generally too expensive to be practical. Although purely statistical intensity algorithms are fast, they may not be general enough to encompass the effects of natural or anthropogenic climate change. Here we present a fast, physically motivated intensity algorithm consisting of two coupled ordinary differential equations predicting the evolution of a wind speed and an inner core moisture variable. The algorithm includes the effects of ocean coupling and environmental wind shear but does not explicitly simulate spatial structure, which must be handled parametrically. We evaluate this algorithm by using it to simulate several historical events and by comparing a risk analysis based on it to an existing method for assessing long-term tropical cyclone risk. For simulations based on the recent climate, the two techniques perform comparably well, though the new technique does better with interannual variability in the Atlantic. Compared to the existing method, the new method produces a smaller increase in global tropical cyclone frequency in response to global warming, but a comparable increase in power dissipation.  相似文献   

17.
中国西北地区的干旱与旱灾——变化趋势与对策   总被引:16,自引:1,他引:16  
干旱与水资源短缺是西北地区的基本环境特征。西北地区在气候变暖的背景下,区域降水量出现了明显的区域差异:西北西部的新疆地区,20世纪80年代以来降水量增加;西北东部大部分地区降水量持续减少,干旱、连旱趋势增加;黄河流域西北区域降水量减少,干旱化趋势最为显著。在气候干旱化增强的背景下,新疆地区总体上经过70年代的枯水期后,在80年代中期开始较大范围内径流量呈现增加趋势;河西东部、西北东部的黄河流域等地区,70年代以来径流持续减少,大部分河流枯水频率在78%以上,水文干旱化趋势显著。水资源的开发利用、水土保持以及土地利用等人类活动使得西北地区水文干旱进一步加剧。干旱是西北地区最为严重的自然灾害之一,受干旱化气候和水文变化趋势的影响,黄河流域和内陆流域干旱灾害不断加剧,近50a干旱灾害受灾面积急剧扩张,旱灾造成的农业粮食损失不断增加。从创新水资源开发利用途径与管理等角度,提出了提高气候变化的地区适应性和区域水-经济系统旱灾抵御能力的对策与建议。  相似文献   

18.
植被状况指数的改进及在西北干旱监测中的应用   总被引:8,自引:0,他引:8  
郭铌  管晓丹 《地球科学进展》2007,22(11):1160-1176
干旱是全球分布最广、发生频率最高、持续时间最长、影响范围最大、造成的经济损失最为严重的一种自然灾害,干旱也是所有自然灾害中影响因子最为复杂、人类了解最少、监测最为困难的一种自然灾害,干旱监测是世界性的难题。干旱可以发生在任何气候带上,但干旱、半干旱地区是全球干旱灾害发生最频繁的地区。干旱发生特征和规律因地区的不同会有很大的差异,不同地区对干旱监测方法不同。目前,世界各国干旱监测主要利用基于气象、水文、农业和卫星遥感等观测资料建立的各种干旱指数开展,已经有150多种干旱指数。植被状况指数VCI是应用最为广泛的一种卫星监测干旱的指数,研究和业务应用结果表明,VCI对全球各地的干旱均有较好的反映,已经应用在美国国家大气海洋局(NOAA)日常干旱监测业务中,中国国家卫星气象中心干旱卫星遥感监测服务产品也是以VCI为基础。 我国干旱半干旱地区主要分布在新疆、甘肃、青海、陕西、宁夏以及内蒙古自治区的中西部,这里降水少且不稳定,降水变率大,是中国干旱发生频率最高的地区。干旱严重制约着当地经济发展和人类生活质量的提高,使本身非常脆弱的生态环境趋于恶化。为了了解条件植被指数VCI对西北地区不同气候区干旱的监测能力,以上述6省(区)为研究区,利用1982—2003年22年NDVI数据,计算了研究区域22年来逐月的VCI,对比分析了不同气候区VCI与降水距平的关系。结果表明,VCI在空间和时间上较好地反映了西北大部分气候干旱发生、发展和空间分布,是干旱监测的较好指标,但在干旱和极端干旱地区,VCI经常出现异常偏高现象,不能反映干旱气候区常年干旱的基本特点。通过对西北不同生态系统之间NDVI特点和各生态系统间NDVI年变化及其年际变化规律的研究,设计了VCI改进方案,提出了改进的条件植被指数RVCI。通过对22年来逐月RVCI与VCI的对比,RVCI客观地反映了干旱气候区常年干旱特点,较VCI有显著改进。   相似文献   

19.
Climate change issues has been discussed and argued for decades. It has been widely recognized that climate change will bring more serious issues to environment vulnerable areas than other areas. Southern Australia is one of the typical examples of vulnerable areas where water deficiency is enhanced by climate change. Although, this area has been successfully adapted with drought environment for decades, those shortcomings of strategies are highlighted by climate change events. In the interests of sustainable water management, Southern Australia’s experiences on possible anticipatory adaptation approaches, especially on mitigation of risks and costs of drought could be expected to provide recommendations to planning and management actions in the future  相似文献   

20.
Palmer干旱指数在淮河流域的修正及应用   总被引:3,自引:0,他引:3  
Palmer指数是目前研究区域干旱时应用最广泛的指数之一,但由于其空间适用性比较强,所以在应用已修正的Palmer指数描述淮河流域干旱等级和持续时间时和实际情况有较大差异,因此有必要做进一步订正。利用淮河流域开封、信阳、巢湖站1961—2009年逐日降水和气温等常规观测资料,根据1965年Palmer指数原理,在200...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号