首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The response of saturated porous medium is of significant interest in many fields ranging from geomechanics to biomechanics. Biot was the first to formulate the basic equations governing the process of coupled flow and deformation in porous media. Depending on the nature of loading vis‐à‐vis the characteristics of the media, different formulations (fully dynamic, partly dynamic, quasi‐static) are possible. In this study, analytical solutions are developed for the response of saturated and nearly saturated porous media under plane strain condition. The solutions for different formulations are developed in terms of non‐dimensional parameters. The response is studied for various conditions and the regions of validity for various formulations are identified in a parametric space. An assessment of the needed formulation for few important problems is also presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Breaking‐wave‐induced dynamic response and instability of seabed around a caisson breakwater are investigated. A seabed‐rubble‐breakwater system is modeled using finite elements. The impact response of the porous seabed and rubble foundation is assumed to be governed by the coupled Biot equations, and three possible formulations are considered with respect to the inclusion of inertial terms. The response is presented in terms of shear stress and pore pressure distributions at three locations underneath the breakwater. The effect of seabed and wave parameters and the inertial terms on the impact response is investigated through parametric studies. Analyses show that usually partly dynamic formulation yields the largest response amplitudes as compared to the fully dynamic formulation, which is the most complete form. The instability of seabed and rubble mound as a result of instantaneous liquefaction is also studied. Breaking wave‐induced pressures in some cases are found to cause liquefaction in the rubble and the seabed. The effect of some parameters on the instability is found to be significant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A finite element algorithm for frictionless contact problems in a two‐phase saturated porous medium, considering finite deformation and inertia effects, has been formulated and implemented in a finite element programme. The mechanical behaviour of the saturated porous medium is predicted using mixture theory, which models the dynamic advection of fluids through a fully saturated porous solid matrix. The resulting mixed formulation predicts all field variables including the solid displacement, pore fluid pressure and Darcy velocity of the pore fluid. The contact constraints arising from the requirement for continuity of the contact traction, as well as the fluid flow across the contact interface, are enforced using a penalty approach that is regularised with an augmented Lagrangian method. The contact formulation is based on a mortar segment‐to‐segment scheme that allows the interpolation functions of the contact elements to be of order N. The main thrust of this paper is therefore how to deal with contact interfaces in problems that involve both dynamics and consolidation and possibly large deformations of porous media. The numerical algorithm is first verified using several illustrative examples. This algorithm is then employed to solve a pipe‐seabed interaction problem, involving large deformations and dynamic effects, and the results of the analysis are also compared with those obtained using a node‐to‐segment contact algorithm. The results of this study indicate that the proposed method is able to solve the highly nonlinear problem of dynamic soil–structure interaction when coupled with pore water pressures and Darcy velocity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Based on the Biot theory, the exact solutions for one‐dimensional transient response of single layer of fluid‐saturated porous media and semi‐infinite media are developed, in which the fluid and solid particles are assumed to be compressible and the inertial, viscous and mechanical couplings are taken into account. First, the control equations in terms of the solid displacement u and a relative displacement w are expressed in matrix form. For problems of single layer under homogeneous boundary conditions, the eigen‐values and the eigen‐functions are obtained by means of the variable separation method, and the displacement vector u is put forward using the searching method. In the case of nonhomogeneous boundary conditions, the boundary conditions are first homogenized, and the displacement field is constructed basing upon the eigen‐functions. Making use of the orthogonality of eigen‐functions, a series of ordinary differential equations with respect to dimensionless time and their corresponding initial conditions are obtained. Those differential equations are solved by the state‐space method, and the series solutions for three typical nonhomogeneous boundary conditions are developed. For semi‐infinite media, the exact solutions in integral form for two kinds of nonhomogeneous boundary conditions are presented by applying the cosine and sine transforms to the basic equations. Finally, three examples are studied to illustrate the validity of the solutions, and to assess the influence of the dynamic permeability coefficient and the fluid inertia to the transient response of porous media. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a series of multimaterial benchmark problems in saturated and partially saturated two‐phase and three‐phase deforming porous media are addressed. To solve the process of fluid flow in partially saturated porous media, a fully coupled three‐phase formulation is developed on the basis of available experimental relations for updating saturation and permeabilities during the analysis. The well‐known element free Galerkin mesh‐free method is adopted. The partition of unity property of MLS shape functions allows for the field variables to be extrinsically enriched by appropriate functions that introduce existing discontinuities in the solution field. Enrichment of the main unknowns including solid displacement, water phase pressure, and gas phase pressure are accounted for, and a suitable enrichment strategy for different discontinuity types are discussed. In the case of weak discontinuity, the enrichment technique previously used by Krongauz and Belytschko [Int. J. Numer. Meth. Engng., 1998; 41:1215–1233] is selected. As these functions possess discontinuity in their first derivatives, they can be used for modeling material interfaces, generating only minor oscillations in derivative fields (strain and pressure gradients for multiphase porous media), as opposed to unenriched and constrained mesh‐free methods. Different problems of multimaterial poro‐elasticity including fully saturated, partially saturated one, and two‐phase flows under the assumption of fully coupled extended formulation of Biot are examined. As a further development, problems involved with both material interface and impermeable discontinuities, where no fluid exchange is permitted across the discontinuity, are considered and numerically discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Fully coupled, porous solid–fluid formulation, implementation and related modeling and simulation issues are presented in this work. To this end, coupled dynamic field equations with u?p?U formulation are used to simulate pore fluid and soil skeleton (elastic–plastic porous solid) responses. Present formulation allows, among other features, for water accelerations to be taken into account. This proves to be useful in modeling dynamic interaction of media of different stiffnesses (as in soil–foundation–structure interaction). Fluid compressibility is also explicitly taken into account, thus allowing excursions into modeling of limited cases of non‐saturated porous media. In addition to these features, present formulation and implementation models in a realistic way the physical damping, which dissipates energy. In particular, the velocity proportional damping is appropriately modeled and simulated by taking into account the interaction of pore fluid and solid skeleton. Similarly, the displacement proportional damping is physically modeled through elastic–plastic processes in soil skeleton. An advanced material model for sand is used in present work and is discussed at some length. Also explored in this paper are the verification and validation issues related to fully coupled modeling and simulations of porous media. Illustrative examples describing the dynamical behavior of porous media (saturated soils) are presented. The verified and validated methods and material models are used to predict the behavior of level and sloping grounds subjected to seismic shaking. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a three‐dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous media is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including the characterization of flow through permeable rock for both groundwater and petroleum reservoir research. SPH provides the means to model complex multi‐phase flows through such media; however, acceptance of the methodology has been hampered by the apparent lack of actual verification within the literature, particulary in the three‐dimensional case. In this paper, the accuracy of SPH is addressed via a comparison to the previously recognized benchmarks of authors such as Sangani and Acrivos (Int. J. Multiphase Flow 1982; 8 (4): 343–360), Zick and Homsy (J. Fluid Mech. 1982; 115 :13–26) and Larson and Higdon (Phys. Fluids A 1989; 1 (1):38–46) for the well‐defined classical problems of flow through idealized two‐ and three‐dimensional porous media. The accuracy of results for such low Reynolds number flows is highly dependent on the implementation of no‐slip boundary conditions. A new, robust and numerically efficient, method for implementing such boundaries in SPH is presented. Simulation results for friction coefficient and permeability are shown to agree well with the available benchmarks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Heterogeneities, such as fractures and cracks, are ubiquitous in porous rocks. Mesoscopic heterogeneities, that is, heterogeneities on length scales much larger than typical pore size but much smaller than the wavelength, are increasingly believed to be responsible for significant wave energy loss in the seismic frequency band. When a compressional wave stresses a material containing mesoscopic heterogeneities, the more compliant parts of the material (e.g., fractures and cracks) respond with a greater fluid pressure than the stiffer portions (e.g., matrix pores). The induced fluid flow, resulting from the pressure gradients developed on such scale, is called mesoscopic flow. In the present study, the double‐porosity dual‐permeability model is adopted to incorporate mesoscopic heterogeneities into rock models to account for the attenuation of wave energy. Based on the model, the damping effect due to mesoscopic flow in a one‐dimensional porous structure is investigated. Analytical solutions for several boundary‐value problems are obtained in the frequency domain. The dynamic responses of infinite and finite porous layer are examined. Numerical calculations show that the damping effect of mesoscopic flow is significant on the pore pressure response and the resulting effective stress. For the displacement, the effect is seen only at the very low frequency range or near the resonance frequencies. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Two formulations for calculating dynamic response of a cylindrical cavity in cross‐anisotropic porous media based on complex functions theory are presented. The basis of the method is the solution of Biot's consolidation equations in the complex plane. Employing two groups of potential functions for solid skeleton and pore fluid (each group includes three functions), the uw formulation of Biot's equations are solved. Difference of these two solutions refers to use of two various potential functions. Equations for calculating stress, displacement and pore pressure fields of the medium are mentioned based on each two formulations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
13.
A time‐domain viscous‐spring transmitting boundary is presented for transient dynamic analysis of saturated poroelastic media with linear elastic and isotropic properties. The u–U formulation of Biot equation in cylindrical coordinate is adopted in the derivation. By this general viscous‐spring boundary, the effective stress and pore fluid pressure on the truncated boundary of the computational area are replaced by a set of continuously distributed spring and dashpot elements, of which the parameters are defined assuming an infinite permeability and considering the two dilatational waves. Numerical examples demonstrate good absorption of both the two cylindrical dilatational waves by the proposed ‘drained’ boundary. For general two‐dimensional wave propagation problems, acceptable accuracy can still be achieved by setting the proposed boundary relatively far away from the scatter. Numerical comparison shows that the results obtained by using this boundary are more accurate for all permeability values than those by the traditional viscous‐spring or viscous boundaries established for u–U formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
It is well known that for a sufficiently high seepage velocity, the governing flow law of porous media is nonlinear (J. Computers & Fluids 2010; 39 : 2069–2077). However, this fact has not been considered in the studies of soil‐pore fluid interaction and in conventional soil mechanics. In the present paper, a fully explicit dynamic finite element method is developed for nonlinear Darcy law. The governing equations are expressed for saturated porous media based on the extension of the Biot (J. Appl. Phys. 1941; 12 : 155–164) formulation. The elastoplastic behavior of soil under earthquake loading is simulated using a generalized plasticity theory that is composed of a yield surface along with non‐associated flow rule. Numerical simulations of porous media subjected to horizontal and vertical components of ground motion excitations with different permeability coefficients are carried out; while computed maximum pore water pressure is specially taken into consideration to make the difference between Darcy and non‐Darcy flow regimes tangible. Finally, the effect of non‐Darcy flow on the evaluated liquefaction potential of sand in comparison to conventional Darcy law is examined. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A FEM model for analysis of fully coupled multiphase flow, thermal transport and stress/deformation in geological porous media was developed based on the momentum, mass and energy conservation laws of the continuum mechanics and the averaging approach of the mixture theory over a three phase (solid–liquid–gas) system. Six processes (i.e. stress–strain, water flow, gas flow, vapor flow, heat transport and porosity evolution processes) and their coupling effects are considered, which not only makes the problem well-defined, but renders the governing PDEs closed, complete, compact and compatible. Displacements, pore water pressure, pore gas pressure, pore vapor pressure, temperature and porosity are selected as basic unknowns. The physical phenomena such as phase transition, gas solubility in liquid, thermo-osmosis, moisture transfer and moisture swelling are modeled. As a result, the relative humidity and other related variables in porous media can be evaluated on a sounder physical basis. A three dimensional computer code, THYME3D, was developed, with eight degrees of freedom at each node. The laboratory CEA Mock-up test and the field scale FEBEX benchmark test on bentonite performance assessment for underground nuclear waste repositories were used to validate the numerical model and the software. The coupled THM behaviors of the bentonite barriers were satisfactorily simulated, and the effects and impacts of the governing equations, constitutive relations and property parameters on the coupled THM processes were understood in terms of more straightforward interpretation of physical processes at microscopic scale of the porous media. The work developed enables further in-depth research on fully coupled THM or THMC processes in porous media.  相似文献   

16.
Finite element procedures for numerical solution of various engineering problems are often based on variational formulations. In this paper, a parametric variational principle applicable to elastic-plastic coupled field problems in consolidation analysis of saturated porous media is presented. This principle can be used to solve problems where materials are inconsistent with Drucker's postulate of stability, such as in non-associated plasticity flow or softening problems. The finite element formulation was given, and it can be solved by either the conventional method or a parametric quadratic programming method.  相似文献   

17.
In this paper, a mathematical model is presented for the analysis of dynamic fracture propagation in the saturated porous media. The solid behavior incorporates a discrete cohesive fracture model, coupled with the flow in porous media through the fracture network. The double‐nodded zero‐thickness cohesive interface element is employed for the mixed mode fracture behavior in tension and contact behavior in compression. The crack is automatically detected and propagated perpendicular to the maximum effective stress. The spatial discretization is continuously updated during the crack propagation. Numerical examples from the hydraulic fracturing test and the concrete gravity dam show the capability of the model to simulate dynamic fracture propagation. The comparison is performed between the quasi‐static and fully dynamic solutions, and the performance of two analyses is investigated on the values of crack length and crack mouth opening. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Analytical solutions are presented for fluid‐saturated linear poroelastic beams under pure bending. The stress‐free boundary condition at the lateral surfaces is satisfied in the St Venant's sense and the Beltrami–Michell compatibility conditions are resolved rigorously, rendering the flexure of the beams analytically tractable. Two sets of formulations are derived based on the coupled and uncoupled diffusion equations respectively. The analytical solutions are compared with three‐dimensional finite element simulations. Both sets of analytical formulations are capable of capturing exactly both the initial (undrained) and the steady‐state (fully drained) deflection of the beams. However, the analytical solutions are found to be deficient during the transient phase. The cause for the deficiency of the transient analytical solutions is discussed. The accuracy of the analytical solutions improves as Poisson's ratio and the compressibility of the constituents of the porous beam increase, where the St Venant's edge effect at the lateral surfaces is mitigated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Conditions for localization of deformation into a planar (shear) band in the incremental response of elastic–plastic saturated porous media are derived in the case of small strains and rotations. The critical modulus for localization of both undrained and drained conditions are given in terms of the discontinuous bifurcation analysis of the problem. Loss of uniqueness of the response of coupled problems is investigated by means of positiveness of the second‐order work density. From the discussion of drained conditions, it is shown that there are two critical hardening moduli, i.e. lower and upper hardening moduli which, respectively, correspond to single phase material (large permeability) and to undrained conditions (small permeability). In analogy to one‐dimensional results, it is shown that there exists a domain of permeability values where we have loss of stability, but the waves can still propagate. In this domain finite element results do not show pathological mesh dependence, and permeability will play the role of an internal length parameter in dynamic models. The length scale prediction is thus given for multi‐dimensional problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
This paper deals with the theoretical aspects of nonaqueous phase liquid (NAPL)‐dissolution‐induced instability in two‐dimensional fluid‐saturated porous media including solute dispersion effects.After some weaknesses associated with the previous work are analyzed and overcome, a comprehensive dimensionless number, known as the Zhao number, is proposed to represent the main driving force and three controlling mechanisms of an NAPL‐dissolution system that has a finite domain. The linear stability analysis is carried out to derive the critical value of the comprehensive dimensionless number of the NAPL‐dissolution system in a limit case as the ratio of the equilibrium concentration to the density of the NAPL approaches zero. As a result, a theoretical criterion that can be used to assess the instability of planar NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media of finite domains has been established. Not only can the present theoretical results be used for the theoretical understanding of the effect of solute dispersion on the instability of an NAPL‐dissolution front in the fluid‐saturated porous medium of either a finite domain or an infinite domain, but also they can be used as benchmark solutions for verifying numerical methods employed to simulate detailed morphological evolution processes of NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号