首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Geochemical characteristics of Cretaceous carbonatites from Angola   总被引:1,自引:0,他引:1  
The Early Cretaceous (138–130 Ma) carbonatites and associated alkaline rocks of Angola belong to the Paraná-Angola-Etendeka Province and occur as ring complexes and other central-type intrusions along northeast trending tectonic lineaments, parallel to the trend of coeval Namibian alkaline complexes. Most of the Angolan carbonatite-alkaline bodies are located along the apical part of the Moçamedes Arch, a structure representing the African counterpart of the Ponta Grossa Arch in southern Brazil, where several alkaline-carbonatite complexes were also emplaced in the Early Cretaceous. Geochemical and isotopic (C, 0, Sr and Nd) characteristics determined for five carbonatitic occurrences indicate that: (1) the overall geochemical composition, including the O---C isotopes, is within the range of the Early and Late Cretaceous Brazilian occurrences from the Paraná Basin; (2) the La versus relationships are consistent with the exsolution of COi2-rich melts from trachyphonolitic magmas; and (3) the and initial ratios are similar to the initial isotopic ratios (129 Ma) of alkaline complexes in northwest Namibia. In contrast, the Lupongola carbonatites have a distinctly different initial ratio, suggesting a different source.The Angolan carbonatites have Sr---Nd isotopic compositions ranging from bulk earth to time-integrated depleted sources. Since those from eastern Paraguay (at the western fringe of the Paraná-Angola-Etendeka Province) and Brazil appear to be related to mantle-derived melts with time-integrated enriched or B.E. isotopic characteristics, it is concluded that the carbonatites of the Paraná-Angola-Etendeka Province have compositionally distinct mantle sources. Such mantle heterogeneity is attributed to ‘metasomatic processes’, which would have occurred at ca 0.6–0.7 Ga (Angola, northwest Namibia and Brazil) and ca 1.8 Ga (eastern Paraguay), as suggested by Nd-model ages.  相似文献   

2.
The Mesozoic Anemzi intrusion belongs to the peri-Atlantic Mesozoic alkali magmatism. It is composed of gabbros (with or without olivine), monzodiorites and quartz-bearing syenites. Dolerite dykes of alcaline affinity occur nearby. The alkaline rocks are intrusive into mid-Jurassic limestones. Liquidus phases crystallised following the characteristic order of alkali magmas, i.e. olivine + spinel, plagioclase, clinopyroxene and amphibole. Clinopyroxene and amphibole compositions are governed by Ti-tschermakite substitutions. Clinopyroxene and amphibole in syenites are enriched in aegirine and richterite components, respectively. The mineralogical and chemical evolution in the Anemzi intrusion is consistent with low-pressure fractional crystallisation from an alkali lava under low to moderate fO2 (MW + [1 − 2 log units]). However, the parental liquid shows some geochemical characteristics of transitional magma, such as a high SiO2 content (48 wt%) and low La/YbN ratio (5). Silica activity decreased from the parental magma (0.56) to 0.08 after fractionation of the gabbros and then increased to 1.0 at the end of the magmatic differentiation. Compared with rocks of similar ages, belonging to the peri-Atlantic Cretaceous alkaline magmatism, the Anemzi intrusion is distinguished by low REE contents ([La/Yb]N = 6) and transitional basalt(s) as parental magma. This magma was emplaced through reactivation of Palæozoic fault systems.  相似文献   

3.
The Precambrian massif of Ourika is crosscut by two systems of basic dykes, striking N40°E and N90–120°E. Using incompatible trace elements, the two systems form two distinct chemical groups, displaying a continental tholeiitic affinity. The composition variations between the two defined groups can be due to heterogeneities of mantle sources and to contamination, during the magma ascent, by the continental crust. The emplacement of these basic dykes, before the late-PIII formations, can be related to the Neoproterozoic distension generalised to the Anti-Atlas chain. To cite this article: A. Barakat et al., C. R. Geoscience 334 (2002) 827–833.  相似文献   

4.
Before the Pan-African Orogeny, the Palæoproterozoic basement and its Neoproterozoic cover (limestones and quartzites) of the Zenaga Inlier were cross-cut by a swarm of doleritic dykes. They are more or less altered. The primary mineral assemblage consists of plagioclase, clinopyroxene, very rare orthopyroxene, ilmenite, apatite, micropegmatite and sometimes hornblende and biotite. Mineralogical and geochemical studies indicate that the dolerites are continental tholeiites. Two groups of dykes have been distinguished. Accordingly, rare earth elements, P2O5, Zr, Th, Ba and Sr contents are higher in group I than in group II, which is richer in V. Group I comprises the north-south and northwest-southeast swarms, while group II corresponds to northeast-southwest and east-west swarms, which were emplaced later. These geochemical variations may be explained by a higher degree of melting of the mantle source for the later group II. Doleritic dykes of Zenaga had been emplaced during an extensional episode, prior to Pan-African folding.  相似文献   

5.
Crystalline rocks from the western Ethiopian Precambrian terrain comprise two major rock groups: (1) the often migmatised eastern and western high-grade gneisses; and (2) the central low-grade metavolcanosedimentary rocks. Granitoid bodies of different ages and compositions intrude these rocks. Field observations, petrographic investigations, and geochemical features support a two-fold classification of the granitoid rocks. The volcanic arc granitoids (VAG) are most common and include the Ujjukka granite and granodiorite, and the Dhagaa Booqa and Guttin K-feldspar megacrystic granites. The second and geographically more restricted group represents within-plate or anorogenic (A-type) granitoids, typified by the Tullu Kapii syenite. Geochemically, the Tullu Kapii syenite is characterised by moderate to high contents of SiO2, total alkalis, Y, Nb, Ta, Hf, Zn, Zr, Ga, ΣREE, higher ratios of Fe2O3(total)/MgO, , , and lower contents of CaO, MgO, Sr, and Ba, compared to the other granitoids. The VAG group shows chondrite-normalised REE patterns with slightly enriched LREE and flat HREE patterns without significant Eu anomalies. In contrast, the Tullu Kapii A-type granitoid is characterised by a nearly horizontal REE pattern with variable negative Eu anomalies. The Ujjukka granite and granodiorite; and the Dhagaa Booqa and Guttin K-feldspar megacrystic granites originated in a two-step process, which involves batch equilibrium melting of basaltic or andesitic material producing tonalitic magma, followed by fractional crystallisation. The Tullu Kapii syenite was the product of partial melting of source rocks enriched in high field strength elements.  相似文献   

6.
The ophiolites of Northern Pindos have been studied in a section close to the village of Perivoli (Grevena District). The section comprises cumulus rocks ranging from ultramafics to gabbros, overlain by dolerites (non-cumulus microgabbro) capped by thick frequently pillowed lava flows. The sequence is cut by basaltic dykes. While the cumulus rocks and the dolerites are mostly fresh, the lavas and dykes are strongly transformed.Major and trace element (Ni, Cr, Sc, Y, Zr, Nb, Sr, Ba, Zn, Cu, V, Li) data are presented for selected samples from the sequence. For some elements, the volcanic/subvolcanic rocks (flows, dykes, dolerites) exhibit wide chemical characteristics which are considered to mainly reflect variations within the parent magmas. Some lavas appear to be closely comparable with the present-day ocean-floor basalts, while other flows and most of the dykes are strongly depleted in some incompatible elements and are similar to some rocks from immature island arcs. The dolerites have transitional chemical features. The Pindos lavas differ from Western Mediterranean ophiolites in that the former have lower Ti,P,Zr,Y, higher Fe tot. and normally higher Ti/Zr ratio.The volcanic/subvolcanic rocks from Pindos have been derived from separate magmas. Some lavas were possibly produced by variable partial melting of an already depleted mantle source, while the lavas exhibiting ocean-floor affinity were probably generated by partial melting of a less depleted source. The wide chemical variations of the Pindos lavas cannot be easily explained by an ocean-ridge system. An island arc-marginal basin system could better account for the observed chemical features.  相似文献   

7.
The mafic dykes in Wadi Mandar-Wadi Um Adawi area are as follows: (1) calc-alkaline lamprophyre (i.e., kersantite and spessartite), (2) diabase, and (3) alkaline lamprophyre (i.e., camptonite). The field relations reveal that the emplacement of calc-alkaline lamprophyres preceded the diabase dykes, while alkaline lamprophyres emplaced later than the diabase dykes. Calc-alkaline are basaltic andesite, basaltic trachyandesite to basalt, while the diabase dykes and alkaline lamprophyres are basaltic in composition. These dykes are characterized by metaluminous character. Calc-alkaline lamprophyres and diabase dykes show transitional affinity from calc-alkaline to alkaline, while the alkaline lamprophyres exhibit more strong alkaline character. The mafic dykes were crystallized under temperature 1100–1150 °C and pressure 3–5 kbars in a high oxygen fugacity conditions. Fe-Ti oxides in the dykes are represented by ilmenite and Ti-magnetite. The chemistry of the sulfides hosted in those mafic dykes suggests a magmatic-hydrothermal origin for these minerals. The geochemical behavior of high field strength elements and large ion lithophile elements in these dykes excludes the derivation of diabase or alkaline lamprophyre either by partial melting or fractional crystallization from calc-alkaline lamprophyre. The parental magmatic sources of the studied dykes were generated from crustal material with addition of mantle-derived melt during the post-collisional stage. The mafic dykes in Wadi Mandar-Wadi Um Adawi area were generated from different magmatic sources by partial melting and subsequent fractional crystallization. In addition, the crustal contamination/assimilation process has a prominent role in the magmatic evolution of diabase and alkaline lamprophyre dykes.  相似文献   

8.
9.
Massive sulphide deposits in the Neoproterozoic Arabian-Nubian Shield are exposed at the surface as Fe-rich crusts termed gossans. Gossans are typically a few tens of metres across but are surrounded by wider clay- and Fe-rich alteration zones. Although Fe-rich gossans have characteristic reflectance spectra and surface roughness, they are often too small to be directly detected by Landsat TM or SIR-C images, both of which have about 30 m spatial resolution. In this paper, a procedure is described whereby gossans and the surrounding alteration zones can be identified and mapped by Landsat TM and SIR-C data using the Beddaho Alteration Zone and the Tebih Gossan in northern Eritrea as an example. Clay and Fe alteration index maps were generated by density slicing for Landsat TM band-ratios and , respectively. Landsat 5/7-4/5-3/1 TM images characteristically depict small (tens of pixels) gossans in blue and the more extensive alteration zones in pinkish purple. Chh-LhhLhh/Chh SIR-C images succeeded in identifying the gossan due to enhanced back-scattering of the radar shorter wavelength (6 cm) C-band by the rough gossan surfaces. This enhanced back-scattering might also be partially due to the characteristic dielectric property of the Fe-rich minerals forming the gossans. Choosing known gossans from both 5/7-4/5-3/1 Landsat TM and Chh-Lhh-Lhh/Chh SIR-C images as training sites for supervised classification helped to outline areas with reflectance spectra and radar back-scattering properties similar to those of the training sites. These results show significant correlation between supervised classifications based on the two data sets, suggesting a way to use combined visible and near infrared (VNIR) and radar imagery to explore for mineral deposits in arid regions.  相似文献   

10.
This study focuses on the origin of magma heterogeneity andthe genesis of refractory, boninite-type magmas along an arc–ridgeintersection, exposed in the Lewis Hills (Bay of Islands Ophiolite).The Lewis Hills contain the fossil fracture zone contact betweena split island arc and its related marginal oceanic basin. Threetypes of intrusions, which are closely related to this narrowtectonic boundary, have been investigated. Parental melts inequilibrium with the ultramafic cumulates of the PyroxeniteSuite are inferred to have high MgO contents and low Al2O3,Na2O and TiO2 contents. The trace element signatures of thesePyroxenite Suite parental melts indicate a re-enriched, highlydepleted source with 0·1 x mid-ocean ridge basalt (MORB)abundances of the heavy rare earth elements (HREE). InitialNd values of the Pyroxenite Suite range from -1·5 to+0·6, which overlap those observed for the island arc.Furthermore, the Pyroxenite Suite parental melts bear strongsimilarities to boninite-type equilibrium melts from islandarc-related pyroxenitic dykes and harzburgites. Basaltic dykessplit into two groups. Group I dykes have 0·6 x MORBabundances of the HREE, and initial Nd values ranging from +5·4to +7·5. Thus, they have a strong geochemical affinitywith basalts derived from the marginal basin spreading ridge.Group II dykes have comparatively lower trace element abundances(0·3 x MORB abundances of HREE), and slightly lower initialNd values (+5·4 to +5·9). The geochemical characteristicsof the Group II dykes are transitional between those of GroupI dykes and the Pyroxenite Suite parental melts. Cumulates fromthe Late Intrusion Suite are similarly transitional, with Ndvalues ranging from +2·9 to +4·6. We suggest thatthe magma heterogeneity observed in the Lewis Hills is due tothe involvement of two compositionally distinct mantle sources,which are the sub-island lithospheric mantle and the asthenosphericmarginal basin mantle. It is likely that the refractory, boninite-typeparental melts of the Pyroxenite Suite result from remeltingof the sub-arc lithospheric mantle at an arc–ridge intersection.Furthermore, it is suggested that the thermal-dynamic conditionsof the transtensional transform fault have provided the prerequisitefor generating magma heterogeneity, as a result of mixing relationshipsbetween arc-related and marginal basin-related magmas. KEY WORDS: Bay of Islands ophiolite; transform (arc)–ridge intersection; boninites; rare earth elements, Nd isotopes  相似文献   

11.
Middle Miocene (17-9 Ma) volcanism in northeast Israel migrated from eastern Lower Galilee (Poria, west of the Sea of Galilee) to the southwest (Yizre'el Valley) in association with the development of an extensional basin in that area. The Yizre'el Valley magmas are highly undersaturated in silica (basanites and nephelinites), while those of Poria are alkali-basaltic. Scarce Middle Miocene basalts from the Golan, further to the east, are also alkali-basaltic. Magmas from Kaukab (southeastern Lower Galilee) show a range of compositions from alkali-basalts to basanites. The patterns defined by ratios versus concentrations of incompatible elements in Kaukab basalts (e.g. versus La), as well as the scatter observed in Sr isotope ratios, are interpreted in terms of binary mixing. It is suggested that the Kaukab magmas were derived from veined lithospheric peridotites, melts of the veins and of the peridotites being the two end-members. Accordingly, alkali-basaltic- and basanite-dominated areas are underlain by vein-poor and vein-rich lithosphere, respectively. It is also suggested that melting during the Middle Miocene mainly occurred in response to extension, and that it followed the propagation of the Yizre'el-Galilee Basin from northeast to southwest.  相似文献   

12.
The petrographic and palynologic compositions of coal seams of the acler formation (Upper Carboniferous, Westphalian A) from northwestern and southeastern part of the Lower Silesian Coal Basin (LSCB) were examined. Coals studied are highly volatile bituminous coal, where Ro ranges from 0.91% to 1.09%. Seam 430 from the northwestern part of the basin contains high vitrinite percentage with rather low inertinite and liptinite contents, while percentage of mineral matter is variable. This petrographic composition is associated either with a predominance of Lycospora in miospore assemblage, or with a miospore assemblage of mixed character. The abundance of Lycospora reflects vegetation composed of the arborescent lycopsids while the mixed miospore assemblage is connected with diverse palaeoplant communities, namely, arborescent lycopsids, calamites and ferns. Seams 409 and 412/413 from the southeastern part of the LSCB are rich in inertinite and liptinite, while the vitrinite content is moderate. Their characteristic feature is the occurrence of a diagnostic crassisporinite (densosporinite). Amount of the mineral components in these coals is very low. Densosporites and related crassicingulate genera are main components of these miospore assemblages and were produced by herbaceous and/or sub-arborescent lycopsids. These petrographic and palynologic features were the basis for distinguishing three maceral–miospore associations: an arborescent lycopsid and mixed associations, occurring in the seam 430 and a herbaceous and/or sub-arborescent lycopsid association which was recorded in seams 409 and 412/413. The first two assemblages are interpreted as having been deposited in a planar rheotrophic mire, whereas the herbaceous and/or sub-arborescent lycopsid association is thought to have developed in an ombrotrophic, domed mire.  相似文献   

13.
The Adoudounian Basal Series within the western part of the Moroccan Anti-Atlas Mountains was deposited in a varying palæogeographical setting. The first deposits of volcaniclastic and carbonate sediments accumulated in small shallow basins under tectonic control. Then, sedimentation became siliciclastic and volcano-detrital with coastal and deltaic sedimentation in the western area and lagoon-lacustrine in the eastern area. Synsedimentary alkaline volcanism, associated with normal faulting, indicates a within-plate extensional tectonic regime related to rifting, which affected the northern margin of the West African Craton, during Late Neoproterozoic-Early Cambrian times.  相似文献   

14.
To place constraints on the formation and deformation history of the major Variscan shear zone in the Bavarian Forest, Bavarian Pfahl zone, SW Bohemian Massif, granitic dykes and their feldspar-phyric massive host rock (so-called palite), zircons were dated by the U–Pb isotope dilution and Pb-evaporation methods. The dated samples comprise two host rocks and four dykes from a K-rich calc-alkaline complex adjoining the SW part of the Bavarian Pfahl shear zone. The palites, which appear to be the oldest magmatic rocks emplaced in the shear zone, yield ages of 334±3, 334.5±1.1 Ma (average 207Pb/206Pb-evaporation zircon ages) and 327–342 Ma (range of U/Pb zircon ages) suggesting a Lower Carboniferous age for the initiation of the Pfahl zone. Absence of inherited older cores in all investigated zircons indicates that incorporation of crustal zircon material has played virtually no role or that the melting temperature was very high. Determination of the dyke emplacement age is complicated by partial Pb-loss in most of the fractions analysed. This Pb-loss can be ascribed to higher U content of the dyke zircons compared to those from host rock. Upper discordia intercept ages of the different dykes range from 322±5 to 331±9 Ma. The dykes are pre- to synkinematic with respect to penetrative regional mylonitisation along the Pfahl zone, and the upper intercept ages provide a maximum age for this tectonic event.  相似文献   

15.
The Karacadağ (Kulu-Konya) area is one of the main volcanic provinces in Central Anatolia. The Karacadağ volcanites are composed of large volumes of andesitic-dacitic lavas associated with pyroclastics and small volumes of alkali basalt, trachybasalt and trachyandesite lavas. Two groups of volcanic rocks can be distinguished: (1) calcalkaline rocks including andesites and dacites, and (2) alkaline rocks including basalts, trachybasalts and trachyandesites. 40Ar/39Ar ages show that the Karacadağ volcanites were erupted during Early Miocene (ca.18–19 Ma) and suggest that alkaline volcanites succeed shortly afterwards calcalkaline volcanites. Major oxides and trace elements plotted versus SiO2 suggest fractionation of hornblende, Fe–Ti oxide and apatite for calcalkaline volcanic rocks and olivine, clinopyroxene and Fe–Ti oxide for alkaline volcanic rocks in the magmatic evolution. The incompatible trace element patterns of the calcalkaline volcanites show enrichment of LILEs (Sr, K, Rb, Ba and Th) and negative HFSEs (Nb, Ta) anomalies suggesting an enriched lithospheric source by a subduction-related process. On the other hand, alkaline volcanites show enrichment of both LILEs and HFSEs suggesting an enriched lithospheric source by small volume melts from the asthenosphere. The rocks also have moderately fractionated REE patterns with (La/Lu)N ratios of 7–24 for calcalkaline and 6–17 for alkaline volcanites. Moreover, the volcanites have relatively low 87Sr/86Sr(t) ratios for between 0.703782 and 0.705129, and high εNd(t) values between +2.25 and +4.49. Generally, the Sr–Nd isotopic compositions of the rocks range from the mantle array to bulk earth. All of these observations and findings suggest that the calcalkaline volcanites were formed in a subduction modified orogenic setting, and the alkaline volcanites in a within-plate setting.  相似文献   

16.
Circa 1.78 Ga mafic dyke swarms and some coeval volcanic associations constitute a Large Igneous Province in the central North China craton. The 1st generation of dykes intruded at ca. 1780 Ma and is chemically delineated into 3 groups: the LT Group is gabbroic and has low-Fe–Ti contents, acting as parental magma; the NW Group is high in Fe–Ti-contents and doleritic with an iron-enriched trend; whereas the EW Group is doleritic to andesitic and crystallized from relict siliceous liquids with a silica-enriched trend. They have an EM-I type source and record integral magmatic processes. These include contamination of lithospheric material and assimilation of crustal melts with in-situ crystallization in a magma chamber (the LT Group) and fractional crystallization in magma channels (the NW Group) and even with additional alteration (the EW Group). The 2nd generation is slightly younger (ca. 1760 Ma) and scarcely distributed. It has high-Fe–Ti contents, originated from a mixing source of DM and EM-I types. The dykes could be associated with a palaeo-plume: the 1st generation represents lower mantle melts generated from the plume head, whereas the 2nd generation records extra melts from asthenosphere entrained by the plume tail.  相似文献   

17.
Zusammenfassung Die Basalte des Pauliberges und von Stoob-Oberpullendorf im nördlichen Burgenland sind dem Finalvulkanismus der alpinen Orogenese zuzuordnen. Es handelt sich hierbei um Alkaliolivinbasalte.Die Basalte des Pauliberges sind an einer NW—SE verlaufenden Spalte aufgedrungen und lagern dem Kristallin direkt auf, die von Stoob-Oberpullendorf liegen auf Sanden und Tegeln und werden zum Unterschied von den Pauliberger Basalten wieder mit tertiären und quartären Sedimenten bedeckt. Den Pauliberger Basalten wird ein dazisch-levantines Alter zugeschrieben, die Stoob-Oberpullendorfer Basalte dürften schon etwas früher an der Grenze Sarmat-Pannon entstanden sein.Innerhalb der Basalte des Pauliberges sind vier verschiedene Basalttypen festzustellen: ein dunkler und heller Alkaliolivinbasalt, ein Sonnenbrenner und ein doleritischer Trachybasalt, die drei aufeinanderfolgenden Eruptionsphasen, ausgehend vom dunklen Alkaliolivinbasalt über hellen Alkaliolivinbasalt und Sonnenbrenner zum doleritischen Trachybasalt, zuzuschreiben sind. Die Entstehung dieser einzelnen Basalttypen, die in einer Differentiationsreihe vom Alkaliolivinbasalt über Trachybasalt zum Trachyt hin liegen, kann durch fraktionierte Kristallisationsdifferentiation erklärt werden.Der doleritische Trachybasalt als letztes Eruptionsprodukt ist in bereits abgekühlte Basaltmassen eingedrungen und hat die Oberfläche nicht mehr ganz erreicht, wobei er hypabyssisch erstarrt ist. Der Sonnenbrenner weist einen beträchtlichen Gehalt an Analzim, der primär aus der Restschmelze gebildet wurde, auf; der fleckenhaften Verteilung dieses Minerals hat dieses Gestein seine Sonnenbrennerstruktur zu verdanken.An den Basalten von Stoob-Oberpullendorf sind keine Differentiationserscheinungen festzustellen gewesen, wenn auch übereinanderlagernde Basaltdecken auf mehrere Eruptionen hinweisen.
Composition and genesis of the basalts from the Pauliberg and from Stoob-Oberpullendorf (Burgenland, Austria)
Summary The basalts comprising the Pauliberg and from the Stoob-Oberpullendorf region in nothern Burgenland are a part of the final vulcanic activity of the Alpine orogenesis. They consist chiefly of alkaline olivine basalts.The Pauliberg basalts were extruded along a fracture trending NW—SE and overlie the cristalline basement while those from Stoob-Oberpullendorf flowed onto sands and green marls and were, in contrast to the Pauliberg basalts, subsequently covered with Tertiary and Quartary sediments. The Pauliberg basalts are Dazic-Levantinic in age whereas those of Stoob-Oberpullendorf were probably extruded somewhat earlier: possibly near the Pannon boundary.The Pauliberg basalts are divided into four different types: dark alkaline olivine basalt, light alkaline olivine basalt, bunch light basalt, and doleritic trachybasalt. These four types crystallized in three successive erruptive phases. In the first phase the dark alkaline olivine basalt was extruded. The light alkaline olivine basalt comprises the second phase along with the bunch light basalt. During the third phase the doleritic trachybasalt crystallized. The origin of these individual flows, whose compositions lie along the differentiation line from alkaline olivine basalt through trachybasalt to trachyte, can best be explained by differentiation through fractional crystallization. The last phase, the doleritic trachybasalt, intruded the earlier cooled basaltic rocks, and is only found as hypabyssal bodies. The bunch light basalt contains considerable analcime, formed primarily from the residual melt, and gives rise to the bunch light structure due to the spotty distribution of the analcime.Features of differentiation are not found in the Stoob-Oberpullendorf basalts, although superposed basalt flows indicate several periods of eruption.


Mit 10 Abbildungen  相似文献   

18.
Summary Rift-related, late Eocene ( 60 Ma) alkaline-carbonatitec intrusions cover 1200 km2 south of the town of Chhota Udaipur, and form a subprovince within the alkaline magmatism that accompanies the tholeiitic Deccan Traps. They were emplaced temporally between late Deccan Trap flows and late dykes of basalt and picritic basalt. The subprovince comprises five main geographic occurrences (sectors): (1)Amba Dongar: a ring-complex of Ca-Mg-Fe-carbonatites, nephelinites to tephriphonolites, and fluorite deposits; (2)Siriwasan-Dugdha: an intrusive complex of Ca—carbonatites, nephelinites and trachytic rocks; (3)Phenai Mata: a nepheline syenite plug and dykes, plus dykes of tephrites to phonolites and lamprophyres (intimately associated with a layered tholeiitic gabbro—granophyre intrusion); (4)Panwad-Kawant: dykes and plugs of lamprophyres and tephrites to phonolites; (5)Bakhatgarh-Phulmahal: late basic-ultrabasic dykes only. The alkaline rocks range from ultrasodic to ultrapotassic, but are mostly nonperalkaline. Silica-undersaturated examples show higher incompatible and LIL element contents (Rb, K, Nb, Zr, Sr, Ba, LREE, etc.) than the associated tholeiites. However, the late basic-ultrabasic dykes display an continuum of alkaline-tholeiitic compositions. Possible parent magmas are represented among the primitive undersaturated basic dykes (including lamprophyres). The trachytic rocks are subalkaline, and may be genetically related to a tholeiitic rather than alkaline parent magma.
Alkaligesteine und Karbonatite von Amba Dongar und Umgebung, Dekkan-Provinz, Gujarat, Indien: 1. Geologie, Petrographie und Gesteinschemie
Zusammenfassung Alkalisch-karbonatitische Intrusionen aus dem Obereozän (60 Ma) erstrecken sich über 1200 km2 südlich der indischen Stadt Chhota Udaipur und bilden einen Teil des alkalischen Komplexes, der die tholeiitischen Deccan Traps begleitet. Die Gesteine wurden während eines Rifting Prozesses intrudiert und lagern stratigraphisch zwischen Deccan Trap Tholeiiten und basaltischen bzw. pikritischen Ganggesteinen. Das Gebiet läßt sich in fünf geographische Regionen unterteilen: (1) Amba Dongar: ein ringförmiger Komplex aus Ca-Mg-Fe-reichen Karbonatiten, Nepheliniten und Tephriphonoliten mit Fluorit-Lagerstätten; (2) Siriwasan-Dugdha: eine Ca-reiche Karbonatit-Intrusion mit Nepheliniten und Trachyten; (3) Phenai Mata: Eine Nephelin-syenitische Intrusion und begleitende Ganggesteine aus Tephriten, Phonoliten und Lamprophyren, die mit einer magmatisch geschichteten tholeiitischen Gabbro Intrusion vergesellschaftet sind; (4) Panwad-Kawant: Lamprophyrische Ganggesteine neben Tephriten und Phonoliten; (5) Bakhatgarh-Phulmahal: späte basisch bis ultrabasische Ganggesteine. Die alkalischen Gesteine besitzen eine ultrapotassische bis extrem Na-reiche Zusammensetzung, nur vereinzelte Proben weisen jedoch peralkalischen Charakter auf. Silizium-untersättigte (alkalische) Proben besitzen in der Regel höhere Konzentrationen an Mantel-inkompatiblen Elementen (z.B. LREE, Nb und Zr) und LILE (z.B. Rb, Sr und Ba) als die benachbarten Tholeiite. Die späten basisch bis ultrabasischen Ganggesteine stellen ein Kontinuum von alkalischer bis tholeiitischer Geochemie dar. Die primitiven Silizium-untersättigten Ganggesteine (und Lamprophyre) repräsentieren vermutlich die Ausgangssehmelzen; die subalkalischen Trachyte dürften in genetischem Zusammenhang mit den Tholeiiten stehen.


With 8 Figures  相似文献   

19.
20.
对塔尔气地区中酸性脉岩的地质特征、锆石U-Pb年龄及地球化学特征进行了研究,并讨论了该地区中酸性脉岩的形成时代、成因及构造环境。锆石U-Pb测年结果表明,这些中酸性脉岩形成于早白垩世141.4~136.0 Ma和136.5~126.4 Ma两个阶段。其中中性脉岩具有中硅、富碱、准铝质(A/CNK=0.80~0.92)的特点,属于高钾钙碱性准铝质岩石,无Eu负异常;而酸性脉岩则表现出高硅、富碱、弱过铝质(A/CNK=1.03~1.24)的特点,属于高钾钙碱性系列,大多具有明显的Eu负异常。综合区域地质资料分析,塔尔气地区中性脉岩与酸性脉岩可能为两次岩浆事件的产物,形成于伸展构造环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号