首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Salt marsh zonation patterns generate different abiotic and biotic conditions that can accentuate species inherent differences in primary production and biomass. In South West Atlantic marshes, there are two Spartina species: Spartina alterniflora in the low intertidal and Spartina densiflora in the high intertidal. These two species are generally found in all marshes but with different dominance: In some marshes, the S. densiflora zone occupies higher extents, and in others, the S. alterniflora zone is the one that prevails. We found through field sampling that, in six studied marshes, there is greater S. densiflora live and total (i.e., dead+live) aboveground biomass (g m?2) in the marshes dominated by S. densiflora than in the ones dominated by S. alterniflora. Spartina alterniflora had similar aboveground biomass in the six marshes, regardless of the dominance of each species. When comparing the two Spartina species within each marsh, S. densiflora had greater live and total biomass in the marshes it dominates. In the marshes dominated by S. alterniflora, both species had similar live and total biomass. In all marshes, there was greater dead S. densiflora biomass. A multivariate analysis using selected abiotic factors (i.e., salinity, latitude, and tidal amplitude) showed that S. alterniflora aboveground biomass patterns are mainly correlated with salinity, while S. densiflora live biomass is mainly correlated with salinity and latitude, dead biomass with salinity and tidal amplitude, and total biomass with salinity alone. We conclude that in S. densiflora dominated marshes, the main processes of that species zone (i.e., nutrient accumulation) will be accentuated because of its higher biomass. We also conclude that climatic conditions, in combination with specific Spartina biotic and ambient abiotic parameters, can affect marsh ecological functions.  相似文献   

2.
The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).  相似文献   

3.
Spartina alterniflora and Spartina densiflora are native salt marsh plants from the Atlantic coast; their habitats in Patos Lagoon estuary (southern Brazil) are characterized by a microtidal regime (<0.5 m) and, during El Niño events, high estuarine water levels and prolonged flooding due to elevated freshwater discharge from a 200,000-km2 watershed. During and between El Niño events, the vegetative propagation of these two Spartina species in the largest estuary of southern Brazil (Patos Lagoon) was evaluated by monitoring transplanted plants for 10 years (short-term study) and interpreting aerial photos of natural stands for 56 years (long-term study). During the short-term study, S. alterniflora quickly occupied mud flats (up to 208 cm year?1) by elongation of rhizomes, whereas S. densiflora showed a modest lateral spread (up to 13 cm year?1) and generated dense circular-shaped stands. However, moderate and strong El Niño events can promote excessive flooding and positive anomalies in the estuarine water level that reduce the lateral spread and competitive ability of S. densiflora. During the long-term study, natural stands of S. alterniflora and S. densiflora had steady lateral spread rates of 152 and 5.2 cm year?1, respectively, over mud flats. In the microtidal marshes of the southwest Atlantic, the continuous long-term lateral expansion of both Spartina species embodies periods of intense flooding stress (moderate and strong El Niños), when there is a decrease of vegetative propagation and less stressful low water periods of fast spread over mud flats (non-El Niño periods and weak intensity El Niños).  相似文献   

4.
The brown shrimp,Farfantepenaeus aztecus, is the major component of the Gulf of Mexico shrimp fishery, and it is critical that we understand its environmental requirements. Brown shrimp spend a large portion of their post-larval (PL) and juvenile life within estuaries distributed along salinity gradients and yet our understanding of the salinity tolerance of various age groups is limited. A series of 48-hr bioassays were conducted in which various ages ofF. aztecus (PL-10, PL-13, PL-15, PL-17, PL-20, and PL-23) were acclimated from a salinity of 26‰ to 1‰, 2‰, 4‰, 8‰, 12‰, and 26‰ in order to determine their tolerance to these salinities. Finally, PL-80.F. aztecus were transferred directly from 25‰ to 2‰, 4‰, and 8‰ waters to study the effects of rapid salinity reductions on juvenile survival. Survival of 10-and 13-day-old PLs was significantly, different from the control (26‰) for all salinities tested. Survival of PL-15 shrimp and older was significantly lower than survival of the controls at 1‰ and 2‰ but similar to the control at all other salinities tested. A 4-wk growth trial was conducted with juvenile shrimp at 2‰, 4‰, 8‰, and 12‰. There was no significant difference in survival among treatments, although shrimp maintained at 8‰ and 12‰ grew significantlymore than shrimp maintained at 2‰ and 4‰. There was no growth difference between shrimp at the two low salinities or between shrimp at the two high salinities. Survival of juveniles transferred directly from 25‰ to various salinities were 100% at 25‰, 94.2% at 8‰, 67.3% at 4‰, and 63.5% at 2‰. These results suggest that PL-13 and younger brown shrimp would have a better chance of survival by delaying entry into estuaries susceptible to rapid salinity declines. The brown shrimp juveniles would, be more densely distributed in areas with salinities greater than 4‰ than in salinities less than 4‰. Although food availability, and bottom type also affect shrimp distribution survival and growth, salinity may also greatly affect the shrimp and its fishery.  相似文献   

5.
In many southern California salt marshes, increased freshwater inflows have promoted the establishment of exotic plant species. A comparative study showed that a native, perennial, high marsh dominant,Salicornia subterminalis, and an invasive, exotic annual grass,Polypogon monspeliensis, responded differently to soil salinity and saturation.Salicornia subterminalis seeds and young plants were more salt tolerant, and the native grew best at high salinities (23 g 1?1 and 34 g 1?1) in greenhouse experiments. In contrast, the exotic had reduced growth at high salinities relative to nonsaline controls. The native,S. subterminalis, grew poorly as the duration of soil saturation increased from 2 wk to 32 wk, butP. monspeliensis grew equally well for all durations tested. The response ofS. subterminalis andP. monspeliensis to increased salinity indicated that salt applications might be used to protect native vegetation in salt marshes where salt-sensitive exotics are a problem. A field experiment verified that a salt application of 850 g m?2 mo?1 for 3 mo was sufficient to control the exotic, while not noticeably affecting the native. Thus, salt applications may be a practical method for controllingP. monspeliensis invasions in areas receiving urban runoff or other unwanted freshwater inflows.  相似文献   

6.
The tolerance of post yolk-sac American shad Alosa sapidissima larvae to salinities typically seen in estuaries was assessed experimentally. Sixteen-day-old Hudson River (experiment I) and 35-d-old Delaware River (experiment II) larvae were held for 8 d and 9 d respectively in low (0–1‰), medium (9–11‰), and highly (19–20‰) brackish water, and mortality and growth rates were measured. Growth rates did not vary significantly among salinity treatments. Mortality in experiment I did not vary significantly among salinity treatments however, in experiment II, mortality was zero at 10‰ but higher and statistically indistinguishable between 0‰ and 20‰ In experiment II relative condition increased with salinity. These results imply that estuarine salinities neither depress growth rates nor elevate mortality rates of larval American shad when compared with freshwater conditions. We conclude that ecological factors other than the physiological effects of salinity have played more important roles in the evolution of the upriver spawning and nursery preference shown by this species.  相似文献   

7.
The role of positive and indirect interactions is often crucial in communities with intense abiotic stress such as salt marshes. The burrowing crab, Neohelice (=Chasmagnathus) granulata, is the dominant benthic macroinvertebrate of southwest Atlantic marshes (southern Brazil to Northern Argentinean Patagonia), having strong direct and indirect effects on marsh soil and, in consequence, on marsh vegetation and primary consumers. In this work, we investigate if this crab indirectly modifies habitat use by the granivorous rodents, Akodon azarae and Oligoryzomys flavescens, by increasing nutrient availability and thus enhancing seed production by the marsh plant Spartina densiflora. The study was conducted at the Mar Chiquita Coastal Lagoon, Argentina (37°32′ S). Rodent frequencies in S. densiflora were positively correlated with crab densities throughout the low and middle marsh. Additionally, the highest quality of S. densiflora and inflorescence density was recorded at the highest crab densities. Experimental manipulation of crab densities shows that N. granulata indirectly enhances the performance of S. densiflora (e.g., decreased fiber content and C/N ratios) and increases density of seeds. Moreover, N. granulata also facilitates S. densiflora seed availability to rodents by concentrating them in sediment mound at their burrows entrances. Experimental rodent exclusions showed that rodent species used S. densiflora seeds, a variable positively related to crab burrow density. Thus, our results show that N. granulata drives the granivorous rodent distribution and the intensity of seeds–rodent interaction trough facilitative and indirect interactions in marsh community.  相似文献   

8.
The hypothesis thatTypha domingensis (cattail) can invade tidal marshes only after soil salinities are substantially reduced was tested experimentally by comparing the salt tolerance of seeds, seedlings, and plants reared from rhizomes. Germination rates for four southern California populations reached 100% in fresh water, decreasing to 2% at 20‰. The salt tolerance of seeds from three coastal populations was lower than that of the Salton Sea population. Salt tolerance of plants grown in the lab did not increase with age for seedlings up to 8 weeks old. Rhizome-bearing plants had greatly decreased growth at 10‰ and no growth at 25‰ However, rhizomes of about 5% of the plants survived 9 months at 45‰. The seeds and seedlings are salt sensitive, which explains why invasion into tidal marshes is restricted to prolonged periods of low soil salinity. The older, rhizome-bearing plants are salt tolerant, which explains how invading plants persist persist under hypersaline conditions.  相似文献   

9.
In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.  相似文献   

10.
The rhizocephalanLoxothylacus panopaei parasitizes the estuarine crabRhithropanopeus harrisii. Parasitized crabs are abundant during summers when salinities increase to around 15‰ in the crab–s habitat and scarce when salinities are lower. The two hypotheses that were proposed to explain this pattern were (1) that the parasite interferes with crab osmoregulation causing the host to die in low salinity water and (2) that salinity tolerance of the parasite larvae controls the incidence of parasitism. The first hypothesis was shown to be incorrect because (1) osmoregulation of infected crabs was, not altered by the parasite and (2) crab mortality did not increase in low salinity water down to 1‰. Unparasitized and parasitized crabs and the parasite itself were hypersomotic at low salinities (below 27‰ for the crabs). The parasite became slightly hyperosmotic at high salinities while the crabs were slightly hypoosmotic. The second hypothesis appears correct, becauseL. panopaei larvae survived poorly in salinities below 10‰ but well in salinities from 10 to 15‰. ThusR. harrisii, have a reproductive refuge at salinities below 10‰, because parasite larvae cannot survive and infect the mud crab at these low salinities.  相似文献   

11.
Over the last decades, human activities have strongly affected ecosystems, with pervasive increases in nutrient loadings, abiotic stress, and altered herbivore pressure. The evaluation of how those environmental factors interact to influence plant–pathogen interactions under natural conditions becomes essential to fully understand the ecology of diseases and anticipate the possible effects of global change on natural and agricultural systems. In a SW Atlantic salt marsh, we performed a field factorial experiment to evaluate the effect of herbivory, salinity, and nutrient availability, three main limiting factors for salt marsh plant growth, on the infection of the fungus Claviceps purpurea (ergot) upon the cordgrass Spartina densiflora. Results show that herbivory has no effect but both nutrients and salinity increase fungal infection. The combined effect of salinity and nutrients is not additive but interactive. Salinity stress increases infection at ambient nutrient levels but in combination with fertilizer it buffers the higher infection produced by increased nutrient availability. Since both, nitrogen availability and salinity are factors predicted to globally increase due to human impact on ecosystems, this interaction between environmental factors and ergot infection can have strong effects on natural and productive agricultural systems.  相似文献   

12.
The burrowing crab,Chasmagnathus granulatus, is the dominant benthic macroinvertebrate of southwest Atlantic salt marshes and tidal flats, having strong ecosystem engineering effects by direct and indirect effects on soil, vegetation, invertebrates, fishes, and birds. Vegetation structure is a main component for bird habitat selection, since greater habitat complexity generates higher niche diversity. This environmental complexity can be modified by species interactions or disturbance events (i.e., by crabs), in turn modifying the associated community. The bird species of salt marshes of the southwest Atlantic are highly dependent on these ecosystems. We assessed the effects of the burrowing crab on the structure of the cordgrass,Spartina densiflora, marshes, and how these changes affected the composition and diversity of birds. This study was conducted at the Mar Chiquita Coastal Lagoon, Argentina (37°40′S, 57°23′W).S. densiflora marshes were classified within three categories: marshes without burrowing crabs, marshes with low burrow densities, and marshes with high burrow densities. We made vegetation and bird surveys during spring beforeS. densiflora produce seeds and in summer when seeds are abundant. We also manipulated inflorescence (i.e., spike) density (a variable affected by crabs) to assess the effect on bird habitat use. The highest inflorescence density ofS. densiflora and highest bird diversity were recorded at low burrow densities. Cover and height ofS. densiflora were negatively correlated with burrow density. The number of bird species and the number of red-capped wren-spinetail,Spartonoica maluroides, were negatively related with cover and height ofS. densiflora. Experiments confirmed that granivorous species used areas with higher spike densities, a variable related to crab burrow density. Burrowing crabs directly and indirectly affect the cover, height, spike density, and morphologic characteristic of seeds ofS. densiflora marshes. These effects indirectly affect the bird community that uses these marshes, being negatively related toS. maluroides and total bird abundance, and positively related to bird diversity.  相似文献   

13.
The effect of salinity on the concentration of metals in Spartina alterniflora tissues and excreted salts and the distribution of metals between these compartments was tested in a greenhouse experiment. S. alterniflora stems were planted in pots of dredge sediment that was amended with a suite of six metals (Cd, Cr, Cu, Ni, Pb, and Zn). The overlying water of individual pots was maintained at treatment salinities of 0, 15, or 30 practical salinity units. The proportion of total metal distributed to the tissues and excreted salt of S. alterniflora was not significantly influenced by salinity for any of the metals. The concentration of Pb in root and leaf tissues and in excreted salt was influenced by salinity, as was the concentration of Zn in root tissue and excreted salt. Contrary to expectations, the concentration of Pb and Zn in excreted salts decreased as salinity increased. Although the influence of salinity on the concentration of Pb and Zn in S. alterniflora tissue has not been previously reported, the influence of salinity on the tissue concentrations of Pb agrees with previous research on dicots.  相似文献   

14.
Zoeae of three species of temperate zone fiddler crabs, Uca pugnax, U. minax, and U. pugilator, were reared in the laboratory. The zoeae of each species were placed individually in artificial salinity gradients and observed for specific salinity preferences. Each species of zoeae displayed a salinity preference that reflected the salinity patterns of the adult crabs of the same species. Zoeae of U. pugnax and U. pugilator, like the adult crabs, displayed a preference for higher salinities (i.e., 20.6‰±3.5 and 21.5‰±3.0, respectively). Zoeae of U. minax, like the adult crabs, displayed a preference for lower salinities (i.e., 9.8‰±2.9).  相似文献   

15.
A greenhouse experiment was conducted to examine the effects of salinity, nitrogen, and aeration on the growth of Spartina alterniflora Loisel. The experiment was conducted in a factorial arrangement of treatments with salt marsh substrate at three salinity levels (15, 30, 45‰), at two nitrogen levels (0 and 168 kg/ha) and at two aeration levels (zero and oxygen saturation). The maximum biomass was found in the low salinity, nitrogen enhanced, aerated treatment which had 11 times more biomass than the highest (45‰) salinity, nitrogen poor, unaerated treatment. the average effect of nitrogen over the three salinity levels was a 2.01, 1.47, 1.25, and 1.52 times increase in aerial biomass, density, height, and belowground biomass of the plants, respectively. The main effect of aeration was a 2.49, 2.01, 1.57, and 1.85 times increase in the same variables. The combination effect of aeration and nitrogen additions enhanced biomass by 453%. An increase in salinity from 15‰ to 45‰ decreased biomass, density, height and belowground biomass of S. alterniflora by 66, 53, 38, and 61%, respectively. The effect of salinity was more pronounced between 30 and 45‰ than it was between 15 and 30‰. N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and S concentrations in the aerial living biomass were also examined. There was no evidence to suggest that elemental concentrations (on a per gram basis) were consistently correlated with increased or decreased growth. In relation to salinity, correlations between growth and elemental concentrations were negative while for nitrogen enhanced and/or aerated systems, the correlations were positive.  相似文献   

16.
The objective of this study was to experimentally evaluate the effects of simulated herbivory on the ability of a freshwater marsh plant to recover from temporary saltwater intrusion such as can be caused by tropical storms. Sods containingSagittaria lancifolia, a dominant plant in interior coastal marshes, were manipulated in the field so as to subject plants to a pulse of 15‰ salt water for a duration of 1 wk. In addition to the exposure to salt water, some plants were also subjected to both short-term and long-term flooding treatments of 20 cm, and to simulated herbivory (clipping). Following exposure to salt water, plants were allowed to recover over the winter and were harvested the next June. Neither simulated herbivory, nor salinity, nor flooding caused any long-term effect either singly or in pairwise combinations. However, when plants were subjected to herbivory, salt water, and flooding simultaneously, reduced growth and plant death occurred. These results suggest that high levels of grazing by herbivores may increase the susceptibility of coastal marsh plants to damage from saltwater intrusion. *** DIRECT SUPPORT *** A01BY073 00002  相似文献   

17.
The salinity of interstitial water (i.e., the salinity of the free soil water) was examined at 11 equidistant stations along a transect on a Mississippi tidal marsh dominated byJuncus roemerianus andSpartina cynosuroides. Changes in the nearby surface water (e.g., bay water) were reflected in the changes in interstitial water salinity. The salinity of interstitial water was usually higher, varying between 2.5 and 15.8‰ from February 1975 through January 1976, than the salinity of the nearby surface water which ranged from 0.0 to 11.5‰. Following a long period of high salinity in the bay and sound (exceeding 14‰), the salinity of the interstitial water increased to a maximum of 16.8‰ in October. The salinity increased as the distance of the sampling station from the source of the flood water increased. Mean interstitial wate salinity across the marsh studied was within 10‰ which did not seem to influence the marsh plant zonation occurring on the marsh.  相似文献   

18.
From 1977 to 1980, samples of barnacles were collected (as opportunities arose) from 61 subtidal locations (mostly oyster beds) around Chesapeake Bay, Maryland. Three species were identified from the area.Balanus improvisus dominated, comprising 83% of the 8,231 barnacles identified, and was collected at all locations but one. It occurred over a collection salinity range of 0.8‰ to 17.9‰.Balanus subalbidus (14% of the barnacles identified) was collected over the same salinity range, but mainly in lower salinity waters.Balanus eburneus was scarce (2% of the barnacles identified) and was collected at higher salinities (8.5‰ to 17.1‰).  相似文献   

19.
Ombrogenic Atlantic salt marshes are defined as areas of halophytic, terrestrial vegetation which are periodically flooded by the tide and have a predominant underlying organic substrate comprising of wood and/or Sphagnum peat that formed under freshwater conditions. The objective of this study was to determine to what extent salt marsh plant ecology and, specifically, vegetation composition and zonation relate to this underlying substrate of organic matter (peat). A vegetation survey was carried out on nine salt marshes, three on peat substrate and two on sand, mud and sand/mud, respectively. In parallel, key edaphic variables were measured including pH, conductivity, organic content, moisture content and nutrients: ammonium, nitrate and phosphorus. Salt marshes on peat substrate are distinct. Ammonium content was twice the maximum reported in other salt marsh studies, while the vegetation composition of salt marshes on peat substrate was significantly different from that of other salt marshes. Salt marshes on peat substrate were found to be higher in species diversity and richness and characterised by a predominantly forb and rush community. However, some common salt marsh species, such as Atriplex portulacoides and Spartina anglica were absent from salt marshes on peat. Ordination analysis revealed that zonation was primarily associated with conductivity on peat substrates. In contrast, moisture plays a greater role in zonation within non-peat salt marshes. The findings confirm that the high organic matter content of ombrogenic Atlantic salt marshes is associated with distinct vegetation composition.  相似文献   

20.
Spartina alterniflora was first introduced into south San Francisco Bay in the 1970’s. Since that time it has spread to new areas within the south bay and is especially well established at four sites. The spread of this introduced species was evaluated by comparing its vegetative and reproductive characteristics to the native cordgrass, Spartina foliosa. The characters studied were intertidal distribution, phenology, aboveground and belowground biomass, growth rates, seed production, and germination rates. Spartina alterniflora has a wider intertidal distribution than S. foliosa and outproduced the native cordgrass in all aspects that were studied. These results indicate that the introduced species has a much better chance of becoming established in new areas than the native species, and once established, it spreads more rapidly vegetatively than the native species. Spartina alterniflora is likely to continue to spread to new areas in the bay and displace the native plant. In addition, this introduced species may effect sedimentation dynamics, available detritus, benthic algal production, wrack deposition and disturbance, habitat structure for native wetland animals, benthic invertebrate populations, and shorebird and wading bird foraging areas. *** DIRECT SUPPORT *** A01BY058 00013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号