首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
A detailed in situ isotopic (U–Pb, Lu–Hf) and geochemicalstudy of zircon populations in a composite sequence of foliatedto massive Cambro-Ordovician intrusions in the Deep Freeze Range(North Victoria Land, Antarctica), has highlighted great complexityin zircon systematics. Zircons in deformed granitoids and tonalitesdisplay complex internal textures, a wide spread of concordantU–Pb ages (between 522 and 435 Ma) and unusual trace-elementcompositions (anomalous enrichment of light rare earth elements,U, Th and Y) within single zircon grains. In contrast, zirconsfrom undeformed samples display a limited range of U–Pbages and trace-element compositions. Zircons from all age andtextural populations in most of the deformed and undeformedsamples show a relatively narrow range of Hf values, suggestingthat the Lu–Hf system remained undisturbed. Inferred emplacementages cover a time interval of about 30 Myr: from 508 to 493Ma for the oldest strongly foliated synkinematic Howard Peaksmegacrystic monzogranites and high-K calc-alkaline mafic tointermediate rocks of the ‘Corner Tonalite’ unit;from about 489 to 481 Ma for the younger massive shoshoniticmafic dyke suite and the high-K calc-alkaline Keinath granite.The observed isotopic and chemical variations in zircon areattributed to a sub-solidus recrystallization under hydrousconditions and varying temperature, in a setting characterizedby a transpressional to extensional stress regime. KEY WORDS: Antarctica; Cambro-Ordovician intrusives; Ross Orogen; zircon U–Pb geochronology  相似文献   

2.
S- and I-type granites from the Lachlan Fold Belt, southeastern Australia, have been investigated to assess the role of disequilibrium melting in their petrogenesis. Differences between the median initial εHf compositions of magmatic zircon populations and the host bulk-rock (ΔεHfblk-zrc) range from −0.6 to +2.5 ε units, providing evidence for intra-sample (and hence inter-phase) Hf-isotopic heterogeneity. Linear variations on Harker diagrams and O and Hf isotope compositions of magmatic zircon preserved in many I- and S-type granites are inconsistent with assimilation or simple mixing hypotheses. In contrast, isotopic disequilibrium between the melt and a restite assemblage can explain the bulk-rock versus zircon differences observed in these samples.Assuming that magmatic zircon records the melt composition, differences between the bulk-rock εHf and εHf of magmatic zircon (ΔεHfblk-zrc values) measured for I-type granites (0.4–2.5) can largely be explained by disequilibrium amphibole dehydration melting of meta-igneous protoliths that were either isotopically heterogenous at the time they were formed, or perfectly homogeneous before being aged in the crust for 0.4–1.0 billion years prior to partial melting. The Currowong Suite exhibits petrographic features and preserves geochemical and isotopic compositions that do not lend themselves to simple restite model or magma mixing explanations; however, these observations could be explained by the restite unmixing of magma batches generated from a single source rock if, as modelling has suggested, separate batches contain different melt compositions.By investigating the application of disequilibrium melting to granite genesis, this study demonstrates that isotopic heterogeneity at various sampling scales should actually be expected for the production of granites from a single source, rather than necessitating the involvement of multiple sources and mixing processes. As a result great care should be taken in the interpretation of isotope data from granitic bulk-rocks or their zircons.  相似文献   

3.
The Yanshan Fold and Thrust Belt in eastern China has been intrudedby a series of alkalic igneous rocks, ranging in compositionfrom granite and rhyolite to syenite and trachyte. Laser ablationinductively coupled plasma mass spectrometry U–Pb analysesof zircon from three alkaline suites yield Early Cretaceousages of 130–117 Ma. Three groups of rocks have been identifiedbased on their mineralogical, geochemical and Sr–Nd–Hfisotope characteristics. The alkali granites and rhyolites areferroan and have low Al2O3, MgO, CaO, Sr, Ba and Eu concentrationsand high SiO2, total Fe2O3, K2O, Nb, Ga, Ta, Th and heavy rareearth element abundances and Ga/Al ratios. Geochemical dataand Sr-, Nd- and zircon Hf-isotopic compositions [(87Sr/86Sr)i= 0·7050–0·7164, Nd(t) = –8·4to –13·6 and Hf(t) = –5·7 to –16·8]indicate that they were probably generated by shallow dehydrationmelting of biotite- or hornblende-bearing granitoid crustalsource rocks and then mixed with contemporaneous magma froma mantle and/or lower crustal source. Ferroan syenites havedistinct geochemical features from those of the alkaline granitesand rhyolites, suggesting that they were produced by clinopyroxeneand plagioclase fractionation of melt derived from an enrichedmantle source, mixed with lower and upper crustal-derived magmas.The magnesian syenites and trachytes have Sr-, Nd- and zirconHf-isotopic compositions that are distinct from those of theferroan syenites. They were mainly derived from partial meltingof lower crustal materials, mixed with enriched mantle-derivedalkali basaltic magma. The emplacement of an alkali syenite–granite–rhyolitesuite, coeval with the formation of metamorphic core complexesand pull-apart basins in eastern China, indicates they formedin an extensional setting, possibly as a result of lithosphericthinning. KEY WORDS: alkaline rocks; zircon U–Pb dating; petrogenesis; crustal extension; Yanshan Fold and Thrust Belt; North China Craton  相似文献   

4.
The Spanish Central System (SCS) batholith, located in the Central Iberian Zone, is one of the largest masses of granite in the European Variscan Belt. This batholith is a composite unit of late- and post-kinematic granitoids dominated by S- and I-type series granite, with subordinate leucogranite and granodiorite. Zircon trace element contents, from two representative S-type and three I-type granitoids from the eastern portion of the SCS batholith, indicate a heterogeneous composition due to magma differentiation and co-crystallisation of other trace element-rich accessory phases. In situ, U–Pb dating of these zircons by SHRIMP and LA-ICP-MS shows 479–462-Ma inherited zircon ages in the I-type intrusions, indicating the involvement of an Ordovician metaigneous protolith, while the S-type intrusions exclusively contain Cadomian and older zircon ages. The zircon crystallisation ages show that these granites have been emplaced at ca. 300?Ma with a time span between 303?±?3?Ma and 298?±?3?Ma. Precise dating by CA-ID-TIMS reveals a pulse at 305.7?±?0.4?Ma and confirms the major pulse at 300.7?±?0.6?Ma. These ages match the Permo-Carboniferous age for granulite-facies metamorphism of the lower crust under the SCS batholith and coincide with a widespread granitic event throughout the Southern Variscides. Ti-in zircon thermometry indicates temperatures between 844 and 784°C for both the S- and I-type granites, reinforcing the hypothesis that these granites are derived from deep crustal sources.  相似文献   

5.
滇西三江地区发育古近纪花岗岩,记录了印度-欧亚大陆碰撞的岩浆活动信息。对贡山地块福贡花岗岩开展岩石地球化学及锆石U Pb Hf系统研究,结果表明,该花岗岩为钙碱性、过铝质特征的I S型花岗岩。锆石U Pb同位素分析表明,福贡马吉花岗岩侵位于55 Ma,并含有252~77 Ma的继承锆石。锆石Hf同位素分析表明,该区岩浆锆石具有与青藏高原及东其南缘同时代长英质侵入体相似的Hf同位素组成,暗示其相似的岩浆起源。微量元素和同位素组成模拟计算结果表明,马吉花岗岩的原生岩浆是由53%的新生地壳组分和47%古老地壳基底物质混合而成的原岩经 5%~15%(F=005~015)的部分熔融而成。贡山地块福贡马吉花岗岩与冈底斯地块和腾冲地块早始新世岩浆岩(约55 Ma)具相似的年龄及地球化学特征,暗示它们之间可能存在类似的成因机制,均为新特提斯洋俯冲板片断离引起的壳内减压熔融的产物。  相似文献   

6.
In contrast to I-type granites, which commonly comprise infracrustal and supracrustal sources, S-type granites typically incorporate predominantly supracrustal sources. The initial aim of this study was to identify the sources of three Scottish Caledonian (~460 Ma) S-type granites (Kemnay, Cove and Nigg Bay) by conducting oxygen, U–Pb and Hf isotope analyses in zircon in order to characterise one potential end-member magma involved in the genesis of the voluminous late Caledonian (~430–400 Ma) I-type granites. Field, whole-rock geochemical and isotopic data are consistent with the generation of the S-type granites by melting their Dalradian Supergroup country rocks. While Hf isotope compositions of magmatic zircon, U–Pb data of inherited zircons, and high mean zircon δ18O values of 9.0 ± 2.7‰ (2SD) and 9.8 ± 2.0‰ for the Kemnay and Cove granites support this model, the Nigg Bay Granite contains zircons with much lower δ18O values (6.8 ± 2.1‰), similar to those found in Scottish I-type granites. This suggests that the Nigg Bay Granite contains low-δ18O material representing either altered supracrustal material, or more likely, an infracrustal source component with mantle-like δ18O. Mixing trends in plots of δ18O vs. εHf for S-type granite zircons indicate involvement of at least two sources in all three granites. This pilot study of Scottish Caledonian S-type granites demonstrates that, while field and whole-rock geochemical data are consistent with local melting of only supracrustal sources, the oxygen isotopic record stored in zircon reveals a much more complex petrogenetic evolution involving two or more magma sources.  相似文献   

7.
Early Palaeozoic granitoids in the South Qilian Belt, central China, record details of the tectonic evolution and crustal growth of the Qilian orogenic belt. Five representative granitoids from the western South Qilian Belt were sampled for zircon LA-ICPMS U–Pb dating, Lu–Hf isotopes, and whole-rock geochemical analyses. Zircon U–Pb dating of two porphyritic granodiorites and a porphyritic monzogranite yielded ages of 442.7 ± 3.5, 441.8 ± 4.3, and 435.4 ± 3.5 Ma, respectively. These granitoids exhibit a geochemical affinity to I-type granite, are metaluminous with a low aluminium saturation index (A/CNK = 0.75–1.15), have moderate Al2O3 and low MgO contents, high La/Yb and low Sr/Y ratios, and are depleted in Nb, Ta, P, and Ti, which suggests a subduction zone magmatic arc affinity, with mixing between a primary mantle-derived magma with lesser continental crustal material. The syenogranite and monzogranite from the South Qilian Belt, which yield U–Pb zircon ages of 440.4 ± 9.0 and 442.3 ± 1.2 Ma, respectively, have pronounced S-type geochemical affinities, are peraluminous with A/CNK values of 1.07–1.16, have relatively high SiO2, Al2O3, K2O, and Rb contents, low Y and Yb, low Sr/Y and La/Yb ratios, positive Th, U, and light Rare Earth Element (REE) anomalies, and depletions in Nb, Ta, Sr, and Ti. Their geochemical signature suggests derivation from partial melting of continental crust in a syn-collisional setting. The Hf isotopic data of zircons from the granitoids show a significant input of Paleoproterozoic crust in the crustal formation of the western South Qilian Belt in Palaeozoic. Compare the εHf(t) value of S-type granite with that of I-type granite, the former may have a comparatively homogeneous source. Together with regional evidence, it is proposed that a collisional event occurred between the South Qilian Belt and the Central Qilian Belt at ca. 442–435 Ma.  相似文献   

8.
A combined set of U–Pb and Lu–Hf in situ laser ablationICP-(MC)-MS zircon analyses were obtained from orthogneissesand granitoids in the Central Zone of the Limpopo Belt, whichcomprises the Beit Bridge and Mahalapye complexes. The resultsindicate that by combining the two isotope systems primary magmaticzircon domains can be distinguished from those formed duringlater metamorphic events, even if the distinct zircon domainsunderwent multiple Pb loss and the texture–age relationships,as obtained by cathodoluminescence images and U–Pb analyses,are ambiguous. Furthermore, the applied technique allows distinctionof zircon grains formed in juvenile magmas from those generatedby melting of older continental crust or affected by substantialcrustal contamination. The combined U–Pb and Lu–Hfdata reveal that the Sand River gneiss suite of the Beit BridgeComplex was emplaced at 3283 ± 8 Ma and formed from meltingof an older Archaean crust, which was derived from a depletedmantle source at around 3·65 Ga. The hafnium model age(TDMHf) is significantly older than those obtained from zirconsfrom numerous Neoarchaean granitoids of the Beit Bridge Complex,comprising the Singelele gneiss (2647 ± 12 Ma), the Bulaigranite (2612 ± 7 Ma), the Regina gneiss (2649 ±9 Ma) and two samples of the Zanzibar gneiss (2613 ±6 Ma). These granitoids show initial Hf(t) values between +0·5 and –7·1, which correspond to initialTDMHf between 3·46 and 3·01 Ga. These variableTDMHfinitial and Hf(t)initial values are interpreted to be theresult of different mixtures of reworked 3·65 Ga Palaeoarchaeancrust with juvenile magmas extracted from the depleted mantleduring the Neoarchaean at 2·65 Ga. This conclusion issupported by results obtained from the Mahalapye Complex, whichwas affected by migmatization and granite intrusions duringthe Palaeoproterozoic at 2·02–2·06 Ga. TheMokgware granite (2019 ± 9 Ma) contains zircon xenocrystswith Pb–Pb ages of 2·52–2·65 Ga and2·93 Ga and hafnium model ages of 3·0–3·4Ga, indicating that this granite is derived from remelting ofArchaean crust. In contrast, uniform TDMHfinitial ages of 2·61–2·67Ga obtained from a diorite gneiss (2061 ± 6 Ma) of theMahalapye Complex indicate that its protolith may have beenformed from remelting of a Neoarchaean juvenile crust. VariableHf(t)initial values from –3·7 to +6·3 ofzircon cores (2711 ± 11 Ma) in an adjacent leucosomealso support a model of mixing of juvenile mantle derived matterwith older crust in the Neoarchaean. KEY WORDS: Archaean; Palaeoproterozoic; Limpopo Belt; zircon, U–Pb dating; Lu–Hf isotopes; LA-ICP-MS  相似文献   

9.
We use 369 individual U–Pb zircon ages from 14 granitoid samples collected on five islands in the Cyclades in the Aegean Sea, Greece, for constraining the crystallisation history of I- and S-type plutons above the retreating Hellenic subduction zone. Miocene magmatism in the Cyclades extended over a time span from 17 to 11 Ma. The ages for S-type granites are systematically ~2 million years older than those for I-type granites. Considering plutons individually, the zircon data define age spectra ranging from simple and unimodal to complex and multimodal. Seven of the 14 investigated samples yield more than one distinct zircon crystallisation age, with one I-type granodiorite sample from Mykonos Island representing the most complex case with three resolvable age peaks. Two samples from S-type granites on Ikaria appear to have crystallised zircon over 2–3 million years, whereas for the majority of individual samples with multiple zircon age populations the calculated ages deviate by 1–1.5 million years. We interpret our age data to reflect a protracted history involving initial partial melting at deeper lithospheric levels, followed by crystallisation and cooling at shallower crustal levels. Our study corroborates published research arguing that pluton construction is due to incremental emplacement of multiple magma pulses over a few million years. Assuming that multiple age peaks of our 14 samples can indeed serve to quantify time spans for magmatic emplacement, our data suggest that Aegean plutons were constructed over a few million years. Our tectonic interpretation of the U–Pb ages is that the S-type granites resulted from partial melting and migmatisation of the lower crust, possibly starting at ~23 Ma. The I-type granites and associated mafic melts are interpreted to reflect the magmatic arc stage in the Cyclades starting at ~15 Ma.  相似文献   

10.
目前对西藏冈底斯带早白垩世大规模岩浆作用的岩石成因以及冈底斯带不同构造单元的东延仍存在不同看法。为探讨这些问题,文中对冈底斯带东部地区然乌岩体中的闪长岩脉进行了锆石SHRIM PU-Pb定年和锆石Hf同位素分析。结果表明:然乌岩体中闪长岩脉的锆石SHRIM PU-Pb年龄为(114.2±0.9)Ma,与二长花岗岩为同期侵位。然乌闪长岩脉具有不均一的锆石Hf同位素组成,其εHf(t)值介于-4.2~+4.9,对应的Hf同位素地壳模式年龄为0.85~1.44Ga。闪长岩脉的全岩εNd(t)值为-4.7,Nd同位素两阶段模式年龄(TDM2)为1.29Ga,与锆石Hf同位素模式年龄一致。然乌地区同期发生的闪长质岩浆和花岗质岩浆侵位以及不均一的锆石Hf同位素组成,很可能表明然乌地区大约在115Ma发生了重要的岩浆混合作用。结合锆石Hf同位素地壳模式年龄的区域性对比,我们认为,与北冈底斯带相比,然乌地区同中冈底斯带之间具有更好的可对比性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号