首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bone remains and a trackway of Pantheraichnus bottropensis nov. ichg. ichnsp. of the Late Pleistocene lion Panthera leo spelaea (Goldfuss, 1810) have been recovered from Bottrop and other open air sites in northern Germany. Some of these bones are from open air hyena den sites. A relative high proportion of lion bones (20%) exhibit bite, chew or nibble marks, or bone crushing and nibbling caused by a large carnivore. Repeated patterns of similar bone damage have been compared to bone remains found at hyena dens in gypsum karst areas and cave sites in northern Germany. Ice Age spotted hyenas have been the main antagonists and the main scavengers on lion carcasses. The remains appear to have been imported often by hyenas into their communal dens, supporting the theory of strong hyena-lion antagonism, similar to the well documented antagonism between modern African lions and spotted hyenas. Most of the lion bones from the open air hyena den at Bottrop are probably a result of such antagonism, as are the rare remains of these carnivores found within large hyena prey bone accumulations along the Pleistocene rivers. The Emscher River terrace also has the largest quantity of hyena remains from open air river terrace sites in northern Germany. Their cub remains, and incomplete chewed prey bones from mammoths and woolly rhinoceroses, typical of hyena activity, underline the character of these sites as cub-raising and communal dens, where their prey was accumulated along the riverbanks in a similar manner to modern African hyenas.  相似文献   

2.
The South East Sayan area, W of the Lake Baikal is subjected to a very complex tectonic setting where the extensional stress field of the Baikal Rift System meets the compressional stress field generated by the India–Asia collision further south. Using satellite images, aerial photographs, SRTM DEM, field mapping of geomorphological structures, and published neotectonics and geological data we show that most of the relief in the SE Sayan initiated during Late Pliocene–Pleistocene through compressive reactivation of inherited structures. By Late Quaternary, clockwise rotation of the compressive field generated strike–slip faulting and local, secondary extension still within a general compressional stress field. We demonstrate that the formation of the small-scale extensional basins within the East Sayan range is not linked to general the extension in the Baikal Rift System nor to a possible asthenospheric plume acting at the base of the crust but rather to the rotation of small rigid tectonic blocks driven by the compression.  相似文献   

3.
We present results of study of Holocene and Late Pleistocene deposits recovered on the underwater Akademichesky Ridge in Lake Baikal. The change in mineral composition and grain size in the bottom sediment core is closely consistent with the change of major diatom complexes marking the Holocene–Late Pleistocene boundary. A high content of chloritoid (up to 14.6%) has been found among the heavy minerals of the sand fraction of Late Pleistocene clays. The concentration of chloritoid in Holocene mud is no higher than 1.2%. The source of chloritoid is chloritoid shales of the Anaya Formation (Upper Proterozoic), widespread in the watershed of the Primorsky Ridge in the upper reaches of the Lena and Anaya Rivers. Chloritoid was transported to the area of the Akademichesky Ridge by predominant western and northwestern winds, which is also evidenced from the absence of mechanical impacts on the surface of its grains. The high contents of chloritoid in the Late Pleistocene sediments are due to the more intense eolian transportation at that time as compared with the Holocene.  相似文献   

4.
The biostratigraphic study of a new Upper Cenozoic reference section in the Tunka rift valley (southwestern Baikal region) accompanied by radiocarbon measurements made it possible to date its lithological units. It is established that the section is largely composed of Upper Pleistocene fluvial sediments resting with distinct angular unconformity uapon Pliocene conglomerates. The revealed structural features of the section confirm the views that the directed development of the Tunka depressions was complicated by local inversions, when the sedimentation area became reduced. The main sedimentation features during the Late Cenozoic and its stages are reconstructed for the studied area.  相似文献   

5.
We used satellite imagery and field data to investigate the south‐westernmost Baikal rift zone. We focus our study in the Mondy and Ikhe Ukhgun valleys, site of an Mw = 6.9 seismic event in 1950. Surface deformations are observed along the E–W‐trending Mondy strike‐slip fault and along the Ikhe Ukhgun thrust. The Mondy fault system is 80 km long and is composed of four segments 10–15 km long. These segments are characterized by subvertical planes with left‐lateral movements. The Ikhe Ukhgun thrust is 20 km long, dips 40° to the south and shows reverse movement with a left‐lateral component. These observations are consistent with the present‐day regional NNE–SSW compression and with the focal mechanism of the 1950 Mondy earthquake that was recently re‐evaluated. These features, like those observed in the Tunka basin, demonstrate a recent change of regional strain regime from transtension to transpression that we place before the Late Pleistocene.  相似文献   

6.
 New high-resolution seismic reflection data from the central part of Lake Baikal provide new insight into the structure and stratigraphy of Academician Ridge, a large intra-rift accommodation zone separating the Central and North Baikal basins. Four seismic packages are distinguished above the basement: a thin top-of-basement unit; seismic-stratigraphic unit X; seismic-stratigraphic unit A; and seismic-stratigraphic unit B. Units A and B were cored on selected key locations. The four packages are correlated with a series of deposits exposed on the nearby western shores: the Ularyar Sequence (Oligocene); the Tagay Sequence (Lower to Middle Miocene); the Sasa Sequence (Upper Miocene to Lower Pliocene); the Kharantsy Sequence (Upper Pliocene); and the Nyurga Sequence (Lower Pleistocene). Based on stratal relationships, sedimentary geometries, distribution patterns and principal morphostructural elements – both onshore and offshore – we propose a new palaeogeographic evolution model for the area. In this model progressive tectonic subsidence of the Baikal basins and successive pulses of uplift of various segments of the rift margins lead to: (a) formation of the ridge as a structural and morphological feature separating the Central and North Baikal basins during the Middle to Late Miocene; (b) gradual flooding of the main parts of the ridge and establishment of a lacustrine connection between the two rift basins during the Late Miocene; and (c) total submergence of the top parts of the crest of the ridge during the latest Pleistocene. This new model helps to better constrain numerous phases in the structural evolution of the Baikal Rift, in which the Academician Ridge as an accommodation zone plays a crucial role. Received: 26 November 1999 / Accepted: 12 March 2000  相似文献   

7.
Although five genera of procyonids are currently present in South America, only two of the extant genera, Procyon and Nasua are represented in the South American fossil record. A recent discovery of a procyonid lower second molar in Late Pleistocene deposits of Aurora do Tocantins, northern Brazil, offers potential to further our understanding of the stratigraphic and temporal range of South American fossil procyonids. We use geometric morphometric analysis of two-dimensional landmarks and semilandmarks to explore morphological variation in the lower second molars of extant Procyon lotor and Procyon cancrivorus and multivariate methods to support the identification of the Pleistocene specimen as P. cancrivorus. This material represents the second fossil record of P. cancrivorus in South America Procyonids entered South America in two phases: the first comprising by Cyonasua and Chapadmalania during the Late Miocene, and the other recent genera, beginning in the Late Pleistocene. These Late Miocene procyonids were more carnivorous than Late Pleistocene-Recent omnivorous taxa and possible went extinct due to competition with other placental carnivorans that entered South America and diversified during the latest Pliocene-Early Pleistocene.  相似文献   

8.
As a result of careful interpretation of the data of recent seismo-acoustic surveys, two major seismic complexes were identified in the structure of the upper sedimentary section of the north-western slope of Kukuy Griva (ridge). They are composed of several inner seismo-facies, which are very characteristic and separated with well-expressed regional reflector. Seismic and acoustic data revealed evidences of numerous landslide processes which were different in age and peculiarities of manifestation. For the first time, detailed schemes of seismo-facies distribution are compiled for major seismic complexes at the area. The boundary between seismic complexes is dated as 150 thousands years. It is shown that sliding was more intensive during Late Pleistocene and Holocene, reflecting activation of tectonic movements in this part of Baikal rift system.  相似文献   

9.
太行山中段左权羊角镇发育新生代玄武岩, 记录了太行山新生代以来的构造隆升事件。在详细的野外调查和研究的基础上, 通过与玄武岩发育相关的地貌面及其上的地层特征分析, 初步确定该玄武岩是上新世末期到早更新世初期的喷发产物, 初步揭示了太行山中段区域上晚上新世以来地貌发育历史, 主要存在6次构造隆升与剥蚀期: 在唐县期宽谷面形成的基础上, 于上新世晚期存在一次隆升和一次稳定侵蚀期, 并侵蚀形成“U”形谷; 早更新世初, 玄武岩开始间歇性喷发, 同时发生以西武家坪为中心的地区上拱, “U”形谷为玄武岩充填, 之后经剥蚀堆积形成第四级阶地面; 早更新世末, 该区再次发生隆升, 并形成第四级阶地; 中更新世末, 该区发生隆升, 形成第三级阶地; 晚更新世以来, 太行山中段又连续发生两次抬升, 从而在玄武岩体上形成了4级阶地, 形成太行山现今地貌。研究同时表明, 太行山中段上新世晚期以来的隆升主要发生于上新世末到早更新世时期。这一认识为探讨太行山中段晚上新世以来的构造隆升提供了具体证据。  相似文献   

10.
Human subsistence systems in the Pampa and Patagonia regions evolved from generalists during the Late Pleistocene/Early Holocene to specialists during the Middle Holocene, according to diversity and relative taxonomic richness counts. The general hypothesis is summarized as follows: 1) at the end of the Pleistocene and beginning of the Holocene (interval between 13.0 and 8.5 ka), the Pampean and Patagonian landscape was different from the present one, with a mammal biodiversity larger than in the Middle Holocene; 2) during the Middle Holocene, the highest mammal taxonomic richness corresponds to one species, Lama guanicoe. Although available biomass was the same for the hunter-gatherers, it was due to the larger abundance of individuals of that single species; 3) the emerged continental surface during the Late Pleistocene/Early Holocene was more extensive than during the Middle Holocene. In ecological terms, this greater land mass is reflected in an equally larger biodiversity, even assuming that populations of Pleistocenic megafauna were diminishing in number since ca. 13,500 years BP.Based on the analysis of our own information and published data, we state that the human groups which colonized the Pampean and Patagonian regions towards the end of the Pleistocene and beginning of the Holocene used generalist strategies encompassing a wide range of faunal resources (birds and mammals, especially of terrestrial habitats). Plasticity of hunter-gatherer societies, plus a complex technology, a higher social mobility and unfilled territories, allowed them to rapidly replace one resource for another in conditions of environmental stress. This lifestyle resulted in the occupation of different ecological zones (niches) and the evolution to specialized systems, based on one or a few mammal species, once the colonization and support in the different environments were successful and the resources of the Late Pleistocene/Early Holocene disappeared.  相似文献   

11.
Cold-adapted large mammal populations spread southward during the coldest and driest phases of the Late Pleistocene reaching the Iberian Peninsula. Presence of woolly rhinoceros (Coelodonta antiquitatis) can be identified from 23 Iberian sites, which is compiled and analyzed herein, and the fossil specimens from seven of these sites are described here for first time.Morphological and biometrical analyses demonstrate that the Iberian woolly rhinoceros did not significantly differ from individuals of other European populations, but represent the westernmost part of a continuous Eurasian belt of distribution.The first presence of woolly rhino in the Iberian Peninsula has been identified during the late Middle Pleistocene and early Late Pleistocene. However, the highest abundance of this species is recorded during MIS 3 and 2. The latest Iberian occurrences can be dated around 20 ka BP. The presence of woolly rhinoceros in the Iberian Peninsula correlates with periods of extreme dry and cold climatic conditions documented in Iberian terrestrial and marine sediment sequences.From a palaeobiogeographic point of view, the maximum southern spread of C. antiquitatis on the Iberian Peninsula was registered during the late Middle Pleistocene or early Late Pleistocene, reaching the latitude of Madrid (about 40°N). Subsequently, during MIS 3 and 2, all Iberian finds were restricted to the Northern regions of Iberia (Cantabrian area and Catalonia). The southern expansion of C. antiquitatis during the Late Pleistocene in the Iberian Peninsula reached similar latitudes to other Eurasian regions.The ecological composition of fossil assemblages with presence of woolly rhinoceros was statistically analyzed. Results show that temperate ungulate species are predominant at Iberian assemblages, resulting in a particular mixture of temperate and cold elements different of the typical Eurasian cold-adapted faunal associations. This particular situation suggests two possible explanations: a) Eventual migrations during the coldest time spans, resulting in a mixing of cold and temperate faunas, instead a faunal replacing; b) Persistence of woolly rhinoceros populations in the Iberian Peninsula during interglacial episodes confined at cryptic southern refugia.  相似文献   

12.
A new composite BDP-96 biogenic silica record over the entire Pleistocene was generated by splicing BDP-96-1 and BDP-96-2 drill cores from Lake Baikal, crosschecked against a similar record from a nearby BDP-98 drill core. A new astronomically tuned age model is proposed based on correlating peak biogenic silica responses with the timing of September perihelia. This target is derived from analysis of regional climate proxy responses during the Holocene, the last interglacial and around paleomagnetic reversals. By resolving virtually every precessional cycle during the Pleistocene, the new age model represents a major improvement compared with previously reported Lake Baikal timescales. The astronomically tuned ages of the Pleistocene paleomagnetic reversals are consistent with published dates. The minimal tuning approach we used (precession only) has also aligned high signal power in a narrow obliquity band, confirming the strong presence of orbital forcing. There are also strong ca 100-ka scale cycles, but these are not aligned with the orbital eccentricity.Despite the location of Lake Baikal in a continental interior that is highly sensitive to insolation forcing, the tuned biogenic silica record reveals a consistent phase difference of −32° (ca 4 ka) relative to insolation in the obliquity band. An inherent lag embedded in a continental proxy record, not driven by global ice volume, is an intriguing finding. Another new observation is that long-term changes in sedimentation rates in Lake Baikal appear to be related to the amplitude of orbital forcing; both amplitudes and sedimentation rates undergo significant changes during MIS 24-MIS 19 interval corresponding to the Middle Pleistocene Transition. With potential for linking continental and marine climato-stratigraphies, the new Baikal record serves a new benchmark correlation target in continental Eurasia, as an alternative to June 65°N insolation and ODP-correlated timescales.  相似文献   

13.
The study of bottom sediments of Lake Baikal recovered by submarine drilling at the Selenga–Buguldeika saddle (core VER93-2 st. 24GC) allowed us to reconstruct the climatic events in the Baikal region in the last 20–25 k.y. On the basis of the data on distribution of chemical elements in the core section, the mineral composition of sediments was calculated by the physicochemical modeling method. A study of how ratios of clay minerals changed in the section allowed us to identify the Pleistocene–Holocene boundary, Bølling–Allerød postglacial warming, and Late Dryas cooling. The calculated data on mineral composition of bottom sediments from the core VER93-2 demonstrate a good fit to the X-ray diffraction analysis results. The proposed approach can be used in calculation of mineral compositions of other sedimentary sequences with known chemical composition.  相似文献   

14.
Zazo  C.  Dabrio  C.J.  Borja  F.  Goy  J.L.  Lezine  A.M.  Lario  J.  Polo  M.D.  Hoyos  M.  Boersma  J.R. 《Geologie en Mijnbouw》1998,77(3-4):209-224
The stratigraphic relationships, genesis and chronology, including radiocarbon dating, of the Quaternary sandy deposits forming the El Asperillo cliffs (Huelva) were studied with special emphasis on the influence of neotectonic activity, sea-level changes and climate upon the evolution of the coastal zone. The E-W trending normal fault of Torre del Loro separates two tectonic blocks. The oldest deposits occur in the upthrown block. They are Early to Middle Pleistocene fluviatile deposits, probably Late Pleistocene shallow-marine deposits along an E-W trending shoreline, and Late Pleistocene and Holocene aeolian sands deposited under prevailing southerly winds. Three Pleistocene and Holocene aeolian units accumulated in the downthrown block. Of these, Unit 1, is separated from the overlying Unit 2 by a supersurface that represents the end of the Last Interglacial. Accumulation of Unit 2 took place during the Last Glacial under more arid conditions than Unit 1. The supersurface separating Units 2 and 3 was formed between the Last Glacial maximum at 18 000 14C yr BP and ca. 14 000 14C yr BP, the latter age corresponding to an acceleration of the rise of sea level. Unit 3 records wet conditions. The supersurface separating Units 3 and 4 fossilised the fault and the two fault blocks. Units 4 (deposited before the 4th millennium BC), 5 (> 2700 14C yr BP to 16th century) and 6 (16th century to present) record relatively arid conditions. Prevailing wind directions changed with time from W (Units 2–4) to WSW (Unit 5) and SW (Unit 6).  相似文献   

15.
洞庭盆地两护村孔孢粉组合及其气候与地层意义   总被引:6,自引:0,他引:6       下载免费PDF全文
两护村ZKC1孔位于洞庭盆地安乡凹陷的东南部,孔内第四系(底部跨上新世)厚达294 m,为河流和湖泊沉积,自下而上依次为上新世—早更新世华田组、早更新世汨罗组、中更新世洞庭湖组、晚更新世坡头组以及全新统等。对ZKC1孔第四系进行了详细的孢粉分析,自下而上划分出16个孢粉组合带。ESR年龄和孢粉组合及其反映的气候特征指示华田组下段形成于上新世末。根据孢粉组合特征,结合构造—沉积演化和区域气候背景,重塑洞庭盆地上新世末以来的气候演化过程:上新世末期由孢粉带Ⅰ和Ⅱ指示具暖干气候。早更新世经历了凉干(孢粉带Ⅲ、Ⅳ)→暖湿间凉干(孢粉带Ⅴ~Ⅶ)→冷干间温湿(孢粉带Ⅷ~Ⅹ)→暖较湿(孢粉带Ⅺ,Ⅻ)的气候演变过程。中更新世早期无孢粉样品(洞庭湖组下部砾石层),其沉积环境暗示冷干气候条件;中期由孢粉带ⅩⅢ反映出暖稍湿的气候特征;晚期因构造抬升缺失沉积,同期湿热化事件指示暖湿气候。晚更新世早期缺乏沉积,据区域对比应为寒冷气候;中期由孢粉带ⅩⅣ指示温较湿的气候特征;晚期缺失沉积,系寒冷气候下区域海平面下降所致。全新世经历了暖稍湿(孢粉带ⅩⅤ)→暖稍干(孢粉带ⅩⅥ)的演变。上述气候演变过程与ZKC1孔化学蚀变指数曲线反映的气候演变过程以及中国东部第四纪气候演化基本吻合。以孔深140 m为界,上部孢粉数量显著高于下部,种属也更为丰富。这一变化很可能对应于一次重要的地质事件,其成因有待今后深入研究。  相似文献   

16.
The aim of this contribution is to describe a femur (MCRS 199) assigned to Nothrotheriops sp. from the Late Pleistocene of Santa Fe Province (Argentina), and discuss the implications of this find in the context of the dispersal of ground sloths during the Great American Biotic Interchange. The specimen MCRS 199 is smaller than the femora referred to the North American species Nothrotheriops texanus and Nothrotheriops shastensis but shares several features with these species: (i) shape and position of the greater trochanter, (ii) development of the lesser trochanter, (iii) presence of connection between the third trochanter and the ectepicondyle, (iv) distal third of the femur wider, with ML/DW index of 1.93, and (v) location and relationship of the distal condyles. These similarities allow us to assign MCRS 199 to Nothrotheriops sp. The record of Nothrotheriops sp. from Santa Fe Province chronologically coincides with the earliest records of Nothrotheriops shastensis suggesting a broad geographical distribution of Nothrotheriops during the Late Pleistocene, ranging from 33–36°N (e.g. states of California and Arizona, USA) to 31°S (northern Salado River, Santa Fe Province, Argentina). Thus, Nothrotheriops have dispersed from North America (where Nothrotheriops has early records, Calabrian–Middle Pleistocene) to South America where localities bearing Nothrotheriops are Late Pleistocene in age. In addition, once in South America and probably during the Middle Pleistocene, Nothrotheriops probably gave rise to its sister taxon, Nothrotherium, with records from the Middle Pleistocene (e.g. 223 ka BP, northeastern Brazil) to the Late Pleistocene (e.g. 15 ka BP).  相似文献   

17.
An isotopic investigation of upper Pleistocene mammal bones and teeth from Scladina cave (Sclayn, Belgium) demonstrated the very good quality of collagen preservation. A preliminary screening of the samples used the amount of nitrogen in whole bone and dentine in order to estimate the preserved amount of collagen before starting the extraction process. The isotopic abundances of fossil specimens from still-extant species are consistent with their trophic position. Moreover, the15N isotopic abundance is higher in dentine than in bone in bears and hyenas, a phenomenon already observed in modern specimens. These results demonstrate that the isotopic compositions of samples from Scladina cave can be interpreted in ecological terms. Mammoths exhibit a high15N isotopic abundance relative to other herbivores, as was the case in Siberian and Alaskan samples. These results suggest distinctive dietary adaptations in herbivores living in the mammoth steppe. Cave bears are clearly isotopically different from coeval brown bears, suggesting an ecological separation between species, with a pure vegetarian diet for cave bear and an omnivorous diet for brown bear.  相似文献   

18.
This article describes the fluidogenic breccias that are located in Darial Gorge in the North Caucasus Region. Fluidogenic breccias are related to the Late Pleistocene explosive eruptions caused by decompressive explosions of highly fluidized magma at small depths.  相似文献   

19.
六盘山构造带夹持于青藏高原与鄂尔多斯地块之间,记录了青藏高原抬升向东北方向推挤的远程效应。关于六盘山抬升过程的研究主要集中在白垩纪及新生代早期,而与人类活动密切相关的晚更新世的研究很少涉及。以盆山响应关系理论为指导,立足于与六盘山相邻的清水河盆地,开展系统的沉积学研究,查明清水河盆地晚更新世的地层序列、沉积充填过程,演绎了六盘山盆地晚更新世以来抬升的过程及其产生的环境效应。研究认为,清水河盆地晚更新世早中期发育2期古湖,以温暖湿润的气候环境为主,晚期由于相邻六盘山的快速抬升,湖水彻底退出了清水河流域,环境逐步开始恶化。晚更新世—全新世清水河流域发育了巨大的六盘山山前冲积扇,该扇体不断沿清水河河谷向东推移,有进一步阻隔清水河形成巨大堰塞湖的趋势。研究成果将为六盘山晚更新世抬升过程研究提供重要依据,为清水河流域的综合治理提供基础地质参考。移动阅读   相似文献   

20.
The Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U-Th dated 2.46 ± 0.10 to 2.10 ± 0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46-2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号