首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-eight samples of peat, peaty lignites and lignites (of both matrix and xylite-rich lithotypes) and subbituminous coals have been physically activated by pyrolysis. The results show that the surface area of the activated coal samples increases substantially and the higher the carbon content of the samples the higher the surface area.The adsorption capacity of the activated coals for NO, SO2, C3H6 and a mixture of light hydrocarbons (CH4, C2H6, C3H8 and C4H10) at various temperatures was measured on selected samples. The result shows a positive correlation between the surface area and the gas adsorption. In contrast, the gas adsorption is inversely correlated with the temperature. The maximum recorded adsorption values are: NO = 8.22 × 10− 5 mol/g at 35 °C; SO2 = 38.65 × 10− 5 mol/g at 60 °C; C3H6 = 38.9 × 10− 5 mol/g at 35 °C; and light hydrocarbons = 19.24 × 10− 5 mol/g at 35 °C. Adsorption of C3H6 cannot be correlated with either NO or SO2. However, there is a significant positive correlation between NO and SO2 adsorptions. The long chain hydrocarbons are preferentially adsorbed on activated lignites as compared to the short chain hydrocarbons.The results also suggest a positive correlation between surface area and the content of telohuminite maceral sub-group above the level of 45%.  相似文献   

2.
The Late Miocene Muaraenim Formation in southern Sumatra contains thick coal sequences, mostly of low rank ranging from lignite to sub-bituminous, and it is believed that these thick low rank coals are the most prospective for the production of coal seam gas (CSG), otherwise known as coalbed methane (CBM), in Indonesia.As part of a major CSG exploration project, gas exploration drilling operations are being undertaken in Rambutan Gasfields in the Muaraenim Formation to characterize the CSG potential of the coals. The first stage of the project, which is described here, was designed to examine the gas reservoir properties with a focus on coal gas storage capacity and compositional properties. Some five CSG exploration boreholes were drilled in the Rambutan Gasfield, south of Palembang. The exploration boreholes were drilled to depths of ~ 1000 m into the Muaraenim Formation. Five major coal seams were intersected by these holes between the depths of 450 and 1000 m. The petrography of coal samples collected from these seams showed that they are vitrinite rich, with vitrinite contents of more than 75% (on a mineral and moisture free basis). Gas contents of up to 5.8 m3/t were measured for the coal samples. The gas desorbed from coal samples contain mainly methane (CH4) ranging from 80 to 93% and carbon dioxide (CO2) ranging from 6 to 19%. The composition of the gas released into the production borehole/well is, however, much richer in CH4 with about 94 to 98% CH4 and less than 5% CO2.The initial results of drilling and reservoir characterization studies indicate suitable gas recovery parameters for three of the five coal seams with a total thickness of more than 30 m.  相似文献   

3.
4.
利用CBM-SIM煤层气数值模拟软件,以焦坪矿区低阶煤层为例,研究了煤层厚度、渗透率、含气量、吸附性、储层压力、含气饱和度和临储比等煤储层因素对煤层气井产量的影响。结果表明:气井产量随煤层厚度、渗透率、含气量、Langmuir压力、含气饱和度和临储比的增大而增大,随Langmuir体积的增大而减小;储层压力不影响产气量大小,只改变气井的产气时间;含气饱和度和临储比能更好地反映多个因素变化时的产气量变化。   相似文献   

5.
Two medium to low volatile bituminous rank coals in the Lower Cretaceous Gates Formation (Mannville equivalent), Inner Foothills of Alberta, were cored as part of a coalbed methane exploration program. The target seams (Seam 4 and Seam 10) were intersected at 652 m and 605 m, respectively. The coals were bright banded, relatively competent and reasonably cleated, with cleat spacing between 5–20 mm. The FMI (Formation Micro-Imaging) log identified two primary fracture directions, corresponding to both face and butt cleats, which were developed almost equally in some coal intervals. The amount of shearing was limited, in spite of the presence of numerous thrust faults and fold structures in the corehole vicinity. Total gas content was high, with an average of 17.7 cm3/g (arb; 568.1 scf/t). An adsorption isotherm of the thick Seam 4 showed gas saturation levels of 90% at in-situ reservoir conditions. Methane content was 92–96% and carbon dioxide levels were less than 2%. Isotopic studies on the methane confirmed the thermogenic origin of the gas, as anticipated based on the coal rank. The coal seams were fracture stimulated using 50/50 nitrogen and fresh water along with 9 to 12 tons of 12/20 mesh sand used as a proppant. It is believed that the coals were not stimulated properly because of the small proppant volume and the complex — and often unpredictable — fracture pattern in coals, particularly in the Inner Foothills region that has high stress anisotropy. An injectivity test showed coal absolute permeability to be less than 1 mD, the skin to be −  2 (indicating a slightly damaged coal) and water saturation in the cleats to be 90%. A four-month production test was conducted; gas rates declined from 930 to 310 m3/d (33 to 11 MCFD) and water rates were low (< 5 BWD). Produced water was saline (TDS was 20,000 mg/L) and high in chloride and bicarbonate ions. Production testing was followed by history matching and numerical simulation, which consisted of numerous vertical and horizontal well development scenarios and other parameters. Simulating multiple parallel horizontal wells in the Gates coals resulted in the highest peak gas production rates, cumulative production and recovery efficiencies, in agreement with public data from the Mannville coals in the deeper part of the Alberta Syncline. The positive effect of constructive interference in depressurizing the coal reservoirs and accelerating gas production over short periods of time was demonstrated. Coal quality data from a nearby underground mine shows that drilling horizontal wellbores in the Gates coals would be challenging because of unfavourable geomechanical properties, such as low cohesion and unconfined compressive strength values, and structural complexity.  相似文献   

6.
鄂尔多斯盆地东南缘陆续发现一批高产井,显示了上古生界煤层气资源勘探开发的潜力。然而,受煤储层非均质性影响,同一区块相邻井组甚至同一井组不同单井的产气效果表现出较大差异,因此深化对煤储层非均质性的认识是实现高效勘探开发的客观途径。该文从岩石学、物性、吸附性、含气性等特征方面对煤储层非均质性进行了研究,结果显示,区内3号、5号、11号煤层分布稳定,厚度较大,是煤层气勘探与开发的主要目的层;煤层以半亮煤和半暗煤为主,镜质组含量较高,具有较好的可压裂性;以低灰-中灰的瘦煤、贫煤为主,部分地段发育少量无烟煤,煤级较高;煤岩孔隙度和渗透率均较低,吸附性强,吸附时间较短且解吸率较高,有利于煤层气的产出,但需要加强煤储层改造措施研究;含气量平均在11 m~3/t以上,最高可达19.73 m~3/t,含气饱和度平均在61%以上,表明资源密度较大且具有较高的地层能量,有利于煤层气解吸产出。  相似文献   

7.
Summary During an investigation to study the gas flow characteristics of coal, adsorption and desorption rates of methane from powdered coal samples were measured. From adsorption tests, it was found that the capacity of coal to hold methane varies significantly with gas pressure. For pressures up to 4.14 MPa (600 psi) the amount of gas adsorbed was still rising and monomolecular saturation was not reached. Results of desorption tests were used to test three equations suggested by previous investigators to measure the quantity of desorbed gas. It was confirmed that no single equation would define adequately the complete desorption process. Changes of regime appeared to exist at desorption times of 100 s and, to a lesser extent, 1000 s following the initial release of ambient gas pressure. A hypothesis was advanced that initial flow was inhibited or choked by an efflux of desorbing gas molecules. This was followed by a short transitional period and a longer term regime of free flow with reduced resistance offered by the flow paths.  相似文献   

8.
The accumulation and productivity of shale gas are mainly controlled by the characteristics of shale reservoirs;study of these characteristics forms the basis for the shale gas exploitation of the Lower Cambrian Niutitang Formation(Fm),Southern China.In this study,core observation and lithology study were conducted along with X-ray diffraction(XRD)and electronic scanning microscopy(SEM)examinations and liquid nitrogen(N_2)adsorption/desorption and CH_4 isothermal adsorption experiments for several exploration wells in northwestern Hunan Province,China.The results show that one or two intervals with high-quality source rocks(TOC2 wt%)were deposited in the deep-shelf facies.The source rocks,which were mainly composed of carbonaceous shales and siliceous shales,had high quartz contents(40 wt%)and low clay mineral(30 wt%,mainly illites)and carbonate mineral(20 wt%)contents.The SEM observations and liquid nitrogen(N_2)adsorption/desorption experiments showed that the shale is tight,and nanoscale pores and microscale fractures are well developed.BJH volume(V_(BJH))of shale ranged from 2.144×10~(-3) to 20.07×10~(-3) cm~3/g,with an average of11.752×10~(-3) cm~3/g.Pores mainly consisted of opened and interconnected mesopores(2–50 nm in diameter)or macropores(50 nm in diameter).The shale reservoir has strong adsorption capacity for CH_4.The Langmuir volume(V_L)varied from1.63 to 7.39 cm~3/g,with an average of 3.95 cm~3/g.The characteristics of shale reservoir are controlled by several factors:(1)A deep muddy continental shelf is the most favorable environment for the development of shale reservoirs,which is controlled by the development of basic materials.(2)The storage capacity of the shale reservoir is positively related to the TOC contents and plastic minerals and negatively related to cement minerals.(3)High maturity or overmaturity leads to the growth of organic pores and microfractures,thereby improving the reservoir storage capacity.It can be deduced that the high percentage of residual gas in Niutitang Fm results from the strong reservoir storage capacity of adsorbed gas.Two layers of sweet spots with strong storage capacity of free gas,and they are characterized by the relatively high TOCcontents ranging from 4 wt%to 8 wt%.  相似文献   

9.
Sixty-five sediment samples and 25 water samples were collected from Al-Mujib reservoir, central Jordan, in order to investigate the heavy metal and ionic contamination assessment. Therefore, to achieve this aim, water and sediment samples were collected during winter and summer seasons (2007) from Al-Mujib reservoir and the areas surrounding it. The study shows that there are elevated levels of SO4 2−, Cl and Na+ in reservoir water, which might originate from anthropogenic activities in the reservoir catchment area. In addition, the reservoir water has higher total hardness (TH) values together with high Ca and Mg contents. This might be attributed to pH of reservoir water and the nature of the rocks exposed in the catchment area. The average levels of heavy metals in reservoir sediments are Fe = 14,888.1, Cu = 17.8, Zn = 88.6, Ni = 38.7, Cd = 4.4, Mn = 337.9 and Pb = 6.1 mg/kg, which are lower than that observed in Wadi Al-Arab reservoir, northern Jordan. The values of enrichment factor are Cd = 35.5, Ni = 3.02, Zn = 2.54, Cu = 1.26, Mn = 1.2 and Pb = 0.57; these values indicate that heavy metals in sediments of Al-Mujeb reservoir have a different anthropogenic incrimination inputs. The study showed that the sediments are polluted with Cd, relatively contaminated with Ni and Zn and uncontaminated with respect to Mn, Pb and Cu.  相似文献   

10.
1 Introduction     
The paper deals with the coalbed methane gas-bearing characteristics such as the gas content, theoretical gas saturation, gas concentration and abundance, as well as coal reservoir characteristics such as the adsorption, desorption and permeability of China's coal reservoirs. The paper also introduces the resources of coalbed methane with a gas content ≥4 m3/t and their distribution in China.  相似文献   

11.
Supercritical gas sorption on moist coals   总被引:2,自引:1,他引:1  
The effect of moisture on the CO2 and CH4 sorption capacity of three bituminous coals from Australia and China was investigated at 55 °C and at pressures up to 20 MPa. A gravimetric apparatus was used to measure the gas adsorption isotherms of coal with moisture contents ranging from 0 to about 8%. A modified Dubinin–Radushkevich (DR) adsorption model was found to fit the experimental data under all conditions. Moisture adsorption isotherms of these coals were measured at 21 °C. The Guggenheim–Anderson–de Boer (GAB) model was capable of accurately representing the moisture isotherms over the full range of relative pressures.Moist coal had a significantly lower maximum sorption capacity for both CO2 and CH4 than dry coal. However, the extent to which the capacity was reduced was dependent upon the rank of the coal. Higher rank coals were less affected by the presence of moisture than low rank coals. All coals exhibited a certain moisture content beyond which further moisture did not affect the sorption capacity. This limiting moisture content was dependent on the rank of the coal and the sorbate gas and, for these coals, corresponded approximately to the equilibrium moisture content that would be attained by exposing the coal to about 40–80% relative humidity. The experimental results indicate that the loss of sorption capacity by the coal in the presence of water can be simply explained by volumetric displacement of the CO2 and CH4 by the water. Below the limiting moisture content, the CO2 sorption capacity reduced by about 7.3 kg t− 1 for each 1% increase in moisture. For CH4, sorption capacity was reduced by about 1.8 kg t− 1 for each 1% increase in moisture.The heat of sorption calculated from the DR model decreased slightly on addition of moisture. One explanation is that water is preferentially attracted to high energy adsorption sites (that have high energy by virtue of their electrostatic nature), expelling CO2 and CH4 molecules.  相似文献   

12.
The adsorption capacity of seven organic wastes/by-products (slash pine, red gum and western cypress bark, composted green waste, prawn exoskeletons, spent brewery yeast and mill mud from a sugar mill) for transition metals were determined at two metal concentrations (10 and 100 mg L−1) and three equilibrium pH values (4.0, 6.0 and 8.0) in batch adsorption experiments. All tested materials indicate a positive affinity to adsorb metal cations from aqueous solution and spent yeast was the least effective. Adsorption generally increased with increasing pH and the order of selectivity of metals was: Cr3+ > Cu2+ > Pb2+ > Zn2+ ≥ Cd2+. For pine bark, compost, spent yeast and prawn shell, quantities of previously adsorbed Pb and Cd desorbed in 0.01 M NaNO3 electrolyte were negligible. However, 0.01 M HNO3, and more particularly 0.10 and 0.50 M HNO3 were effective at removing both adsorbed Pb and Cd. Using 0.10 M HNO3 as the regenerating agent, pine bark and compost maintained their Pb and Cd adsorption capacity over eight successive adsorption/regeneration cycles. For mill mud and prawn shell, there was a pronounced decrease in adsorption capacity after only one regeneration cycle. A subsidiary experiment confirmed that acid pre-treatment of the latter two materials appreciably reduced their Pb and Cd adsorption capacity. This was ascribed to the metal adsorption capacity of prawn shell and mill mud being partially attributable to their significant CaCO3 content and acid treatment induces dissolution of the CaCO3. It was shown that in relation to both adsorption capacity and desorption/regeneration capability, composted green waste showed the greatest potential.  相似文献   

13.
李建楼 《地质与勘探》2020,56(4):838-844
煤体结构是煤与瓦斯突出防治和煤与瓦斯共采的重要地质因素之一。为了区分煤体结构在地应力作用下的破坏程度,采集了淮北矿业股份有限公司桃园煤矿8283采煤工作面煤样,基于自相似原理和实验室内对煤样的加压模拟实验,通过煤基质纳米级孔隙在低温氮吸附-解吸曲线上的响应对比分析,建立了低温氮吸附法判识煤体结构的方法,并对淮北矿业股份有限公司桃园煤矿10号煤层内1026和1035工作面煤体宏观结构及微观孔隙发育特征进行了对比研究。结果表明,煤体微观孔隙结构变化与构造煤发育程度密切相关;随着煤体破坏程度的提高,在吸附-解吸曲线上表现为吸附量明显增大,纳米级孔隙的比表面积和比孔容明显增加,平均孔径略有增加;构造煤解吸曲线上有明显的陡降点,而原生结构煤的解吸曲线不具有这个特征。  相似文献   

14.
煤层气井排采历史地质分析   总被引:8,自引:0,他引:8  
根据晋城、潞安、焦作、铁法4个矿区25口煤层气生产试验井的排采资料,从煤储层渗透性和含气饱和度、生产压降条件、地下水系统、储层能量系统等方面综合分析研究,将排采曲线归纳为4种具有代表性的类型。认为煤储层渗透率0.5mD以上、临储压力比0.6以上以及含气饱和度80%以上,是获得高产煤层气井的必要储层条件。同时,煤储层和围岩的不同组合。将直接影响煤层气井的生产状况。  相似文献   

15.
沈瑞  郭和坤  胡志明  熊伟  左罗 《地学前缘》2018,25(2):204-209
针对目前页岩吸附等温线测试温度、压力通常未达到储层温压条件这一问题,设计了页岩高温高压吸附等温线测试方法,研究了储层温度、压力条件下页岩吸附等温线特征,以实际页岩岩心为例计算了游离气和吸附气随压力的变化规律,并采用全直径页岩氦气和甲烷控压生产实验研究了吸附气对产气特征的影响。结果表明:视吸附量先随压力增大而增大,到达峰值之后视吸附量随压力的增大而减小;在低压条件下,采用Langmuir外推计算的吸附气量与高压实验计算的吸附气量相差不大;而在高压条件下,采用低压Langmuir理论推算总含气量高估9.2%;低于临界解吸压力时,吸附气解吸附使得单位压差产气量增加;高于临界解吸压力时,吸附气对单位压差产气量几乎没有影响;开发初期,低于临界解吸压力范围较小,吸附气对产气量贡献较小,尽可能动用游离气是高效开发的关键。  相似文献   

16.
Geochemical and environmental magnetic studies were carried out to identify the effect of iron oxyhydroxides on arsenic mobilization in high arsenic aquifer system. Using high arsenic sediment samples from two boreholes, specifically drilled for this study, chemical composition and magnetic properties including magnetic susceptibility, saturation remnant magnetization, and isothermal remnant magnetization were measured. Results of correlation analysis of element contents show that arsenic and iron are closely associated with each other (r 2 = 0.40, α = 0.05, n = 21). In contrast, the correlation of phosphorus with iron (r = 0.11, α = 0.05, n = 21) and arsenic (r 2 = 0.18, α = 0.05, n = 21) was poor, which might result from competitive adsorption of phosphorus and arsenic on the surface of Fe-oxyhydroxides. The high correlation coefficients between arsenic contents and magnetic parameters suggest that the ferrimagnetic minerals including maghemite and hematite are the dominant carrier of arsenic in aquifer sediments. The results of sequential extraction experiments also revealed the association of arsenic with reducible iron oxides, such as maghemite and hematite in aquifer sediments. Therefore, under reducing conditions, reductive dissolution and desorption of arsenic from Fe-oxyhydroxides into the aqueous phase should be the dominant geochemical processes for its enrichment in groundwater at Datong. An erratum to this article can be found at  相似文献   

17.
煤层气资源条件及储层物性特征是煤层气勘探开发的基础,开展煤层气藏地质建模,厘清煤储层在空间上的展布特征,解释单井产能差异,可为煤层气选区、布井提供理论依据。以山西保德Ⅰ单元为研究对象,基于煤心含气量实测数据和试井渗透率测试,采用支持向量机算法(SVM)和变形F-S渗透率计算公式建立研究区含气量和渗透率反演模型,完成162口煤层气井含气量和渗透率测井数据的分析。进一步采用随机建模方法建立研究区含气量和渗透率模型,由模型计算结果表明:4+5号煤层的含气量为2.0~5.2 m3/t,平均3.3 m3/t,8+9号煤层含气量为2.4~9.2 m3/t,平均5.1 m3/t;4+5号煤层渗透率为(0.8~9.8)×10-3 μm2,平均6.1×10-3 μm2,8+9号煤层渗透率为(2.8~11)×10-3 μm2,平均7.3×10-3 μm2;保德Ⅰ单元总体表现为低含气量、高渗透率的煤层气藏开发单元。基于建立的地质模型,进一步分析研究区煤层气储层等效含气量、资源丰度、含气饱和度等平面展布规律,对比分析2口典型井(B1-X1和B1-X2)的地质条件,发现B1-X1井各项参数均优于B1-X2井。从过井剖面和生产曲线可以看出,影响两井产能差异的因素主要包括资源条件和储层物性条件,其中后者起决定性作用,B1-X1井条件明显优于B1-X2井。综合分析可以得出,渗透率差异是影响煤层气开采的关键参数,而煤层气资源丰度和吸附饱和度是评价煤层气井维持高产和长时间稳产的重要因素,煤层气开发前需查明煤储层主要地质条件和物性参数,为煤层气开发工程设计提供依据。   相似文献   

18.
影响煤层气解吸扩散运移的地质因素   总被引:1,自引:0,他引:1  
司胜利 《云南地质》2004,23(2):212-216
基于大量基础研究,从不同角度探讨影响煤层气解吸扩散运移因素。分析解吸扩散运移过程中气体组分、储层介质、温度、压力、地应力等内、外因素对煤层气扩散运移的制约关系及程度,获得规律性的认识。  相似文献   

19.
Systematic analysis of fluid inclusions was carried out on 34 samples from the Yingcheng Formation igneous reservoir of the Xujiaweizi rift, Songliao Basin, China. On the basis of petrographic characterization, the results of the microthermometric analyses indicated that the Yingcheng Formation igneous reservoir trapped six clusters of pure aqueous inclusions, and only four of them have the coeval gas-bearing aqueous inclusions been detected in the analyses. So the Yingcheng Formation igneous reservoir experienced four gas charging events during its evolutionary history. Combined with the research results of burial history and cap rocks, the four gas charging events happened during the time interval from 120 to 85 Ma, and every charging time is no more than 10 Ma. The main gas charging is the third, which happened during the time interval from 105 to 95 Ma.  相似文献   

20.
Arsenate and antimonate are water-soluble toxic mining waste species which often occur together and can be sequestered with varying success by a hydrous ferric oxide known as ferrihydrite. The competitive adsorption of arsenate and antimonate to thin films of 6-line ferrihydrite has been investigated using primarily adsorption/desorption kinetics monitored by in situ attenuated total reflectance infrared (ATR-IR) spectroscopy on flowed solutions containing 10−3 and 10−5 mol L−1 of both species at pH 3, 5, and 7. ICP-MS analysis of arsenate and antimonate adsorbed to 6-line ferrihydrite from 10−3 mol L−1 mixtures in batch adsorption experiments at pH 3 and 7 was carried out to calibrate the relative surface concentrations giving rise to the IR spectral absorptions. The kinetic data from 10−3 and 10−5 mol L−1 mixtures showed that at pH 3 antimonate achieved a greater surface concentration than arsenate after 60 min adsorption on 6-line ferrihydrite. However, at pH 7, the adsorbed arsenate surface concentration remained relatively high while that of adsorbed antimonate was much reduced compared with pH 3 conditions. Both species desorbed slowly into pH 3 solution while at pH 7 most adsorbed arsenate showed little desorption and adsorbed antimonate concentration was too low to register its desorption behaviour. The nature of arsenate which is almost irreversibly adsorbed to 6-line ferrihydrite remains to be clarified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号