首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Upper Cretaceous La Cova limestones (southern Pyrenees, Spain) host a rich and diverse larger foraminiferal fauna, which represents the first diversification of K-strategists after the mass extinction at the Cenomanian–Turonian boundary.The stratigraphic distribution of the main taxa of larger foraminifera defines two assemblages. The first assemblage is characterised by the first appearance of lacazinids (Pseudolacazina loeblichi) and meandropsinids (Eofallotia simplex), by the large agglutinated Montsechiana montsechiensis, and by several species of complex rotalids (Rotorbinella campaniola, Iberorotalia reicheli, Orbitokhatina wondersmitti and Calcarinella schaubi). The second assemblage is defined by the appearance of Lacazina pyrenaica, Palandrosina taxyae and Martiguesia cyclamminiformis.A late Coniacian-early Santonian age was so far accepted for the La Cova limestones, based on indirect correlation with deep-water facies bearing planktic foraminifers of the Dicarinella concavata zone. Strontium isotope stratigraphy, based on many samples of pristine biotic calcite of rudists and ostreids, indicates that the La Cova limestones span from the early Coniacian to the early-middle Santonian boundary. The first assemblage of larger foraminifera appears very close to the early-middle Coniacian boundary and reaches its full diversity by the middle Coniacian. The originations defining the second assemblage are dated as earliest Santonian: they represent important bioevents to define the Coniacian-Santonian boundary in the shallow-water facies of the South Pyrenean province.By means of the calibration of strontium isotope stratigraphy to the Geological Time Scale, the larger foraminiferal assemblages of the La Cova limestones can be correlated to the standard biozonal scheme of ammonites, planktonic foraminifers and calcareous nannoplankton. This correlation is a first step toward a larger foraminifera standard biozonation for Upper Cretaceous carbonate platform facies.  相似文献   

2.
In this study, we describe a new stratigraphy of three exposed sections in central Tunisia, integrating Coniacian and Santonian planktic foraminifera and calcareous nannoplankton, supported by ammonite and inoceramid bioevents. In the three sections, the Coniacian/Santonian (C/S) boundary lies slightly above the lowest occurrence (LO) of the calcareous nannofossil Lucianorhabdus cayeuxii, which marks nannofossil Zone CC16 and matches well with the LO of the planktic foraminifera Dicarinella asymetrica. It also lies ∼4–7 m below the LO of the inoceramid Platyceramus cycloides and the ammonite Texanites (Texanites) sp. Comparing these marker C/S bioevents with the global stratotype section, the Olazagutia section (Spain) shows that the stratigraphic range of the bioevents are variable. This observation must be taken into consideration when making regional chronostratigraphic correlations.  相似文献   

3.
The first detailed biostratigraphic analyses of the Coniacian-middle Campanian shallow-marine carbonate successions exposed in the Mitla Pass, west central Sinai, Egypt have revealed the stratigraphic distribution of diverse calcareous nannofossil and planktonic foraminiferal species. Thirty-six calcareous nannofossils and thirty-two planktonic foraminifera are identified, indicating a Coniacian to middle Campanian age and four Tethyan planktonic foraminiferal and five calcareous nannofossil zones. A comparison of these bioevents from different palaeolatitudes shows considerable variation in age.Three sequence boundaries coincident with the Turonian/Coniacian, Coniacian/Santonian and Santonian/Campanian stage boundaries are recognized. A fourth sequence boundary is marked by a major upper Campanian to early Ypresian (early Eocene) unconformity. These sequence boundaries are primarily related to regional tectonism associated with the Syrian Arc Fold System and secondarily to eustatic sea-level fluctuations.  相似文献   

4.
A scheme of radiolarian zonal subdivision is proposed for the upper Albian–Santonian of the Tethyan regions of Eurasia. The upper Albian contains one zone: Crolanium triangulare; the Cenomanian contains three zones: Patellula spica (lower Cenomanian), Pseudoaulophacus lenticulatus (middle Cenomanian), and Triactoma parva (upper Cenomanian); the Turonian contains four zones: Acanthocircus tympanum (lower Turonian (with no upper part)), Patellula selbukhraensis (upper part of the lower Turonian), Phaseliforma turovi (middle Turonian (with no upper part)), and Actinomma (?) belbekense (upper part of the middle Turonian–upper Turonian); the Coniacian contains two zones: Alievium praegallowayi (lower part of the Coniacian) and Cyprodictyomitra longa (upper part of the Coniacian); the Santonian contains three zones: Theocampe urna (lower Santonian), Crucella robusta (middle Santonian–lower part of the upper(?) Santonian), and Afens perapediensis (upper part of the upper Santonian). The biostratigraphic subdivisions are correlated with biostrata in the schemes proposed previously for the Tethys and Pacific. A new species Patellula selbukhraensis Bragina sp. nov. is described.  相似文献   

5.
Radiolarian paleobiogeography for the late Albian–Santonian is proposed for the first time. The paleobiogeographic differentiation is found to be different for the Albian, Cenomanian, Turonian, and Coniacian–Santonian. The Tethyan and Boreal superrealms can be recognized for the Albian–Santonian. For the Albian–Santonian, the Tethyan Superrealm can be subdivided into realms: Atlantic-Mediterranean, Carpathian-Caucasian, and Tropical-Pacific. The boundaries of these realms changed throughout geological time. The Boreal Superrealm recognized for the Albian so far cannot be subdivided into realms, whereas in the Cenomanian it included the East European and Western Siberian realms without a clear definition of the boundaries and the Boreal-Pacific (in the North Pacific). The Boreal Superrealm is subdivided in the Turonian into two realms (European-Western Siberian and Boreal-Pacific), and in the Coniacian–Santonian, it is subdivided into three realms (European, Western Siberian, and Boreal-Pacific). The Austral Superrealm can be recognized only for the Albian and Cenomanian, and because of the lack of data, it cannot be delineated for the Turonian and Coniacian–Santonian.  相似文献   

6.
The Cenomanian–Turonian boundary interval is generally considered a critical time for planktonic foraminifera due to the environmental perturbations associated with Oceanic Anoxic Event 2. However, only the rotaliporids became extinct at the onset of the event, whilst several lineages evolved and/or diversified. This remarkable morphologic plasticity is often overlooked in the literature, partly because a number of stratigraphic sections have only been studied in thin-section due to the degree of lithification of the samples. Improved documentation of the morphological variability of planktonic foraminifera and better defined species concepts are required in order to improve biostratigraphy, particularly as Helvetoglobotruncana helvetica is an unreliable marker for the base of the Turonian. At the same time, detailed study of the planktonic foraminiferal response to OAE 2 demands a more profound knowledge of the assemblage composition.We present new biostratigraphic, taxonomic, and quantitative data for planktonic foraminiferal species from the Clot Chevalier section (Vocontian Basin, SE France), with the aim of (1) providing a detailed biostratigraphic analysis of the section, (2) documenting the morphological plasticity of specimens in this time interval and stabilizing species concepts, and (3) identifying promising markers to improve the resolution of the present biozonation and allow regional correlation. Samples were processed with acetic acid to extract isolated planktonic foraminifera. Assemblages were assigned to the upper Cenomanian Rotalipora cushmani Zone and to the uppermost Cenomanian–lowermost Turonian Whiteinella archaeocretacea Zone. Planktonic foraminiferal bioevents and assemblage composition identified at Clot Chevalier are compared with the well-studied Pont d'Issole section located ca. 15 km to the NE, highlighting similarities and differences in the species occurrences that may complicate the stratigraphic correlation between the two sections.The results of our study support the validity and common occurrence of species that have been misidentified and/or overlooked in the literature (i.e., Dicarinella roddai, Praeglobotruncana oraviensis, Marginotruncana caronae) and indicate that primitive marginotruncanids evolved before the onset of OAE 2, although species diversification occurred only after the event. Moreover, we believe that the first appearance of P. oraviensis might represent a promising bioevent for approximating the Cenomanian/Turonian boundary, after calibration with bio- and chemostratigraphically well-constrained sections. Finally, we describe three new trochospiral species, named “Pseudoclavihedbergellachevaliensis, Praeglobotruncana pseudoalgeriana and Praeglobotruncana clotensis.  相似文献   

7.
对西藏岗巴上白垩统的新认识   总被引:25,自引:1,他引:24  
在前人研究的基础上对岗巴地区上白垩统的划分做了厘定 ,进一步建立了晚白垩世的 1 2个浮游有孔虫化石带。根据岩性特征及化石带的研究 ,上白垩统被划分为赛诺曼期至土仑早期的冷青热组 ;土仑中期至三冬期的岗巴村口组和康潘期至马斯特里赫特期的宗山组。该区赛诺曼期与土仑期的界线位于冷青热组上部 ,以 H elvetoglobotruncana praehelvetica的初现为标志。  相似文献   

8.
The late Turonian to early Campanian calcareous nannofossil biostratigraphy of the Austrian Gosau Group is correlated with ammonite and planktonic foraminiferal zones. The standard Tethyan zonations for nannofossils and planktonic foraminifers are applied with only minor modifications. The basal marine sediments of the Gosau Group, bearing late Turonian-early Coniacian macrofossils, belong to the Marthasterites furcatus nannofossil Zone (CC13). The Micula decussata Zone (middle Coniacian to early Santonian) is combined with the Reinhardtites anthophorus Zone because of the rare occurrence of Renhardtites cf. R. anthophorus already in the Coniacian and taxonomic problems concerning the correct identification of this species. The Santonian-Campanian boundary lies within the Calculites obscures Zone (CCl7).  相似文献   

9.
The Upper Cretaceous shallow-water carbonates of the Pyrenean Basin (NE Spain) host rich and diverse larger foraminiferal associations which witness the recovery of this group of protozoans after the dramatic extinction of the Cenomanian–Turonian boundary interval. In this paper a new, large discoidal porcelaneous foraminifer, Broeckina gassoensis sp. nov., is described from the middle Coniacian shallow-water deposits of the Collada Gassó Formation, in the Bóixols Thrust Sheet. This is the first complex porcelaneous larger foraminifer of the Late Cretaceous global community maturation cycle recorded in the Pyrenean bioprovince. It differs from the late Santonian–early Campanian B. dufrenoyi for its smaller size in A and B generations and the less developed endoskeleton, which shows short septula. Broeckina gassoensis sp. nov. has been widely employed as a stratigraphic marker in the regional geological literature, under the name of “Broeckina”, but its age was so far controversial. Its middle Coniacian age (lowermost part of the Peroniceras tridorsatum ammonite zone), established in this paper by strontium isotope stratigraphy, indicates that it took about 5 My after the Cenomanian–Turonian boundary crisis to re-evolve the complex test architecture of larger foraminifera, which is functional to their relation with photosymbiotic algae and K-strategy.  相似文献   

10.
Upper Cretaceous pelagic deposits outcropping in the Maçka (Trabzon) region include radiolarians and pelagic foraminifera. The Çatak Group represented by the volcano-sedimentary successions consists of three formations having different properties. Two sections, ÇTK1 and ÇTK2, are selected from the Çe meler and Elmalι Dere formations, respectively, establishing the biostratigraphy of outcropping sedimentary units. A total of 17 species of Whiteinella, Helvetoglobotruncana, Marginotruncana, Dicarinella, Praeglobotruncana, Archaeoglobigerina and Hedbergella demonstrating the early Turonian–Coniacian are established in the ÇTK1 stratigraphic section. The early Turonian radiolarian fauna consisting of Halesium sexangulum Pessagno, 1971, Crucella cachensis Pessagno, 1971, Stichomitra communis Squinabol, 1903 is also defined in the same section. A total of 30 species of Crucella, Halesium, Pessagnobrachia, Patulibracchium, Alievium, Archaeospongoprunum, Dicyomitra, Stichomitra, Diacanthocapsa, Dactiyliodiscus, Amphipydax, Pseudoaulophocus, Acaeniotyle, Archaeodictyomitra, Actinomma, Xitus, Neosciadocapsidae characterizing the early and late Turonian, as well as the Coniacian–early Santonian are recognized from red-coloured pelagic limestones of the ÇTK2 section. Also, planktonic foraminifera species of Marginotruncana, Hedbergella, Heterohelix, Globotruncana, Globotruncanita, Archaeoglobigerina, Dicarinella characterizing the Coniacian–Santonian are described in the thin sections of the same samples. The age of red-coloured limestones is identified as the Coniacian–Santonian benefit from radiolarians and pelagic foraminifera. Consequently, radiolarians and pelagic foraminifera within sedimentary successions of the investigation area are distributed in two intervals that coincide with the early Turonian–Coniacian and Coniacian–Santonian intervals.  相似文献   

11.
Biostratigraphic analysis is an essential element for understanding global tectonics and the evolution of life on Earth. Quantitative analysis of sedimentary sequences provides the precise age constraints on timing of significant events in Earth’s history. This paper presents results from quantitative stratigraphic analysis of Upper Cretaceous Tethyan Himalayan sequences. This analysis resulted in a new composite stratigraphic section for the Cretaceous strata of Tibet (TIBETKCS). The eight Upper Cretaceous sections were analyzed in this study and 12 planktonic foraminifera zones were recognized based on available data. Quantitative measurements were made using a Graphic Correlation with Graphcor 3.0 software and correlated to the world standard Cretaceous Composite Section (MIDKCS). The sections were also examined using Constrained Optimization software by CONOP9. Level Penalty was applied as the rule to measure misfit among automatically correlated sections. The new TIBETKCS correlates well with planktonic foraminifera ages from previous work in southern Tibet. A fitting equation of y=?0.19x+305 with a correlation coefficient of 0.94 was obtained from this work. The ages of the first and last appearances of 64 planktonic foraminifera can be calculated with this equation with ± 0.3 Ma precision. This level of precision is approximately 10 times higher than age determinations with traditional methods. Two extinction events were resolved within this analysis at ~93.5 Ma and ~85.5 Ma corresponding to the Ocean Anoxic Events at Cenomanian–Turonian and Coniacian–Santonian boundaries respectively.  相似文献   

12.
The Gustav Group of the James Ross Basin, Antarctic Peninsula, forms part of a major Southern Hemisphere Cretaceous reference section. Palynological data, chiefly from dinoflagellate cysts, integrated with macrofaunal evidence and strontium isotope stratigraphy, indicate that the Gustav Group, which is approximately 2.6 km thick, is Aptian–Coniacian in age. Aptian–Coniacian palynofloras in the James Ross Basin closely resemble coeval associations from Australia and New Zealand, and Australian palynological zonation schemes are applicable to the Gustav Group. The lowermost units, the coeval Pedersen and Lagrelius Point formations, have both yielded early Aptian dinoflagellate cysts. Because the overlying Kotick Point Formation is of early to mid Albian age, the Aptian/Albian boundary is placed, questionably, at the Lagrelius Point Formation–Kotick Point Formation boundary on James Ross Island, and this transition may be unconformable. Although the Kotick Point Formation is largely early Albian on dinoflagellate cyst evidence, the uppermost part of the formation appears to be of mid Albian age. This differentiation of the early and mid Albian has refined the age of the formation, previously considered to be Aptian–Albian, based on macrofaunal evidence. The Whisky Bay Formation is of late Albian to latest Turonian age on dinoflagellate cyst evidence and this supports the macrofaunal ages. Late Albian palynofloras have been recorded from the Gin Cove, lower Tumbledown Cliffs, Bibby Point and the lower–middle Lewis Hill members. However, the Cenomanian age of the upper Tumbledown Cliffs and Rum Cove members, based on molluscan evidence, is not supported by the dinoflagellate cyst floras and further work is required on this succession. The uppermost part of the Whisky Bay Formation in north-west James Ross Island is of mid to late Turonian age and this is confirmed by strontium isotope stratigraphy. The uppermost unit, the Hidden Lake Formation, is Coniacian in age on both palaeontological and strontium isotope evidence. The uppermost part of the formation appears to be early Santonian based on dinoflagellate cysts, but strontium isotope stratigraphy constrains this as being no younger than late Coniacian. This refined palynostratigraphy greatly improves the potential of the James Ross Basin as a major Cretaceous Southern Hemisphere reference section.  相似文献   

13.
By attention to the stratigraphic value of calcareous nannoplanktons for the age determination of sedimentary beds, for the first time Late Cretaceous calcareous nannofossil taxa, their distributions and relative abundances were recorded from the lower and the upper boundary of Aitamir Formation located in northeast Iran. In the present study, biostratigraphy and paleoecological conditions were reconstructed. The Aitamir Formation comprises glauconitic sandstones and olive-green shales. In this work, samples were prepared with smear slides, and nannofossils of these boundaries are listed and figured. They were photographed under a light microscope. Based on nannoplanktons and as a result of biostratigraphic studies, the age of the lower boundary of the Aitamir Formation in the east Kopet Dagh is Early/Middle Turonian, the age of the lower boundary in the west Kopet Dagh is Late Turonian/Early Coniacian, the age of the upper boundary of the Aitamir Formation in the east Kopet Dagh is Late Santonian, and the age of the upper boundary of this Formation in the west Kopet Dagh is Early Campanian. Based on paleoecological interpretation, the Aitamir Formation was deposited in a shallow marine environment, at relatively low latitude. A deepening trend of the sedimentary basin is recognized passing from Aitamir Formation to the overlying Abderaz Formation while in the lower boundary from Sanganeh to Aitamir Formation depth decreased.  相似文献   

14.
The first occurrence (FO) of Marthasterites furcatus was correlated with the FOs of other nannofossils, inoceramid bivalves and foraminifers in the Bohemian Cretaceous Basin and Outer Flysch Carpathians. The correlation showed that the FO of M. furcatus was diachronous, becoming younger from east to west. In the Silesian Unit it appears in the lower Turonian in association with Eprolithus moratus (UC6b nannofossil Zone). In the Pavlovské vrchy klippes it appears in the upper middle Turonian together with Lithastrinus septenarius (UC9 Zone). In the Bohemian Cretaceous Basin, the FO of M. furcatus was observed in the lower upper Turonian just above the FO of Liliasterites angularis. The presence of M. furcatus in Turonian strata is scarce and discontinuous up to its sudden quantitative increase (represented by 5–27% in assemblages) below the FO of the inoceramid bivalve species Cremnoceramus waltersdorfensis and C. deformis erectus in the Turonian–Coniacian boundary interval. The top of the M. furcatus acme was recorded below the FO of Micula staurophora. The second quantitative rise of M. furcatus (12% in assemblage) was found in the lower lower Campanian of the Pavlovské vrchy klippes above the FO of Broinsonia parca parca in the UC14a Zone and the last occurrence of the planktonic foraminifer Whiteinella baltica. Above this second acme M. furcatus disappears. The significantly earlier appearance of M. furcatus in the Silesian Basin may be connected with a southeast-heading surface current from the North European epicontinental sea where the species appeared in the early Turonian too.  相似文献   

15.
An abundant and diverse nannoflora occurs across the Cenomanian/Turonian (C/T) boundary at Tazra in the Tarfaya Basin of southern Morocco. The nannoflora of this sequence permits recognition of three biozones (CC10-CC12), three subzones (CC10a, CC10b and CC10c), and thirteen important nannolith bioevents previously reported from this interval elsewhere. The floral record shows erratic species abundance fluctuations that clearly vary with lithology and reflect at least in part preservational bias and diagenetic processes. In general, four dissolution resistant taxa are dominant: Watznaueria barnesae, Eiffellithus turriseiffelii, Eprolithus floralis, and Zeugrhabdotus spp. The late Cenomanian Zone CC10 marks a rapid excursion in ∂13C and is characterized by the successive extinction of four taxa, which are widely recognized as reliable biomarkers: Corollithion kennedyi, Axopodorhabdus albianus, Lithraphidites acutus, and Helenea chiastia. This interval is also marked by high species richness and high abundance of the tropical species Watznaueria barnesae, suggesting warm tropical waters. The subsequent ∂13C plateau and organic carbon-rich black shale deposition of the oceanic anoxic event (OAE2) is characterized by low species richness, but high nannofossil abundance, and peak abundance of the cool water and high productivity indicator Zeugrhabdotus spp., followed by the first peak abundance of cool water Eprolithus floralis. This interval correlates with the planktic foraminiferal diversity minimum and the Heterohelix shift, which marks the expansion of the oxygen minimum zone (OMZ). The C/T boundary is identified based on the FO of Quadrum gartneri, which is <1 m below the FO of the planktic foraminifer C/T marker Helvetoglobotruncana helvetica. In the early and middle Turonian, the two dominant species, tropical W. barnesae and cool water E. floralis, alternate in abundance and suggest fluctuating climatic conditions.  相似文献   

16.
The first data on the distribution of Radiolaria and planktonic Foraminifera in the section at Biyuk-Karasu River in central part of the Crimean Mountains, are presented. Based on the study of radiolarian findings, the upper Cretaceous deposits of Biyuk-Karasu section are subdivided into the following biostratigraphic units: Alievium superbum-Phaseliforma turovi (middle Turonian), Dactylodiscus longispinus-Patulibracchium (?) quadroastrum (upper Turonian), and Orbiculiforma quadrata-Patellula sp. B (Turonian-Coniacian boundary deposits). The stratigraphic interval of Alievium superbum-Phaseliforma turovi has been previously characterized by the complex of Alievium superbum-Phaseliforma sp. A (middle Turonian, Mt. Chuku section, SW of the Crimean Mountains, and middle Turonian, Mt. Ak, central part of the Crimean Mountains). Based on the study of Foraminifera findings, the following biostratigraphic subdivisions were identified: Whiteinella paradubia (lower-lower part of the middle Turonian), Marginotruncana pseudolinneiana (uppermost middle Turonian), and Marginotruncana coronata (upper Turonian). The complex of beds with Marginotruncana pseudolinneiana and Marginotruncana coronata are comparable to the deposits of zones of same name in the Crimean-Caucasian region.  相似文献   

17.
A well preserved skeleton of a new abelisaurid is reported here. The holotype of Viavenator exxoni was found in the outcrops of the Bajo de la Carpa Formation (Santonian, Upper Cretaceous), northwestern Patagonia, Argentina. This new taxon belongs to the South American clade of abelisaurids, the brachyrostrans. The current phylogenetic analysis places it as the basalmost member of a new clade of derived brachyrostrans, named Furileusauria, characterized by distinctive cranial, axial and appendicular anatomical features. The Santonian age of Viavenator allows filling the stratigraphic gap exhibited between the basal brachyrostrans of Cenomanian–Turonian age, and the derived forms from the Campanian-Maastrichtian. The evolution of abelisaurids during the Late Cretaceous, faunal replacements, and the adaptive radiation that occurred during that period of time in South America are discussed.  相似文献   

18.
Ultrahelvetic units of the Eastern Alps were deposited on the distal European continental margin of the (Alpine) Tethys. The Rehkogelgraben section (“Buntmergelserie”, Ultrahelvetic unit, Upper Austria) comprises a 5 m thick succession of upper Cenomanian marl-limestone cycles overlain by a black shale interval composed of three black shale layers and carbonate-free claystones, followed by lower Turonian white to light grey marly limestones with thin marl layers. The main biostratigraphic events in the section are the last occurrence of Rotalipora and the first occurrences of Helvetoglobotruncana helvetica and Quadrum gartneri. The thickest black shale horizon has a TOC content of about 5%, with predominantly marine organic matter of kerogen type II. Vitrinite reflectance and Rock-Eval parameter Tmax (<424 °C) indicate low maturity. HI values range from 261 to 362 mg HC/g TOC. δ13C values of bulk rock carbonates display the well documented positive shift around the black shale interval, allowing correlation of the Rehkogelgraben section with other sections such as the Global Boundary Stratotype Section and Point (GSSP) succession at Pueblo, USA, and reference sections at Eastbourne, UK, and Gubbio, Italy. Sediment accumulation rates at Rehkogelgraben (average 2.5 mm/ka) are significantly lower than those at Pueblo and Eastbourne.  相似文献   

19.
The exposed Cretaceous shelf succession of the Cauvery Basin, southeastern India, has provided a world-class record of mid and Late Cretaceous invertebrates, documented in a substantial literature. However, the lithostratigraphy of the succession has been little studied and previously subject to a range of nomenclature. It is revised here, on the basis of intensive regional mapping, to stabilize the definition and nomenclature of lithostratigraphic units. The Uttattur Group is restricted in outcrop to the Ariyalur district and divided into the Arogypapurum Formation (new; Albian), Dalmiapuram Formation (late Albian), and Karai Formation (late Albian–early Turonian) for which the Odiyam and Kunnam Members are recognized. The Trichinopoly Group follows unconformably and is also restricted in outcrop to the Ariyalur district. It is divided into the Kulakkalnattam Formation (Turonian) and Anaipadi Formation (late Turonian–Coniacian). The Ariyalur Group is more widely distributed. In the Ariyalur district, the Sillikkudi Formation (Santonian–Campanian) and its Kilpaluvari Member, the Kallakurichchi Formation (early Maastrichtian), the Kallamedu Formation (mid and Late Maastrichtian) and the Niniyur Formation (Danian) are recognized. The sequence in the Vriddhachalam area consists of the Parur and Patti formations (Campanian), Mattur Formation (late Campanian–earliest Maastrichtian) and Aladi Formation (Maastrichtian). For the Pondicherry district, the Valudavur and Mettuveli formations (Maastrichtian) and Kasur and Manaveli formations (Paleocene) comprise the succession. The interpreted depositional environments for the succession in the Ariyalur district indicate four eustatic cycles in the mid and Late Cretaceous and earliest Tertiary: late Albian–early Turonian, late Turonian–Santonian, Campanian, Maastrichtian, and Paleocene. Overall the Cauvery Basin sequence is arenaceous and relatively labile in terms of framework grain composition, and contrasts with the pelitic assemblage developed on the west Australian margin from which eastern India separated in the Early Cretaceous (Valanginian). The difference is ascribed to palaeoclimate as controlled by palaeolatitude. For the Late Cretaceous, the Cauvery Basin drifted north on the Indian plate from 40 to 30°S. This zone is inferred to constitute Southern Hemisphere horse latitudes for Late Cretaceous time, characterized by an arid climate, physical weathering and the production of labile sands. By contrast, the west Australian margin of matching tectonic history remained in a high palaeolatitude (>40°S) throughout the Late Cretaceous, experiencing a pluvial climate, the dominance of chemical weathering and the production of clays.  相似文献   

20.
The phylostratigraphy, taphonomy and palaeoecology of the Late Cretaceous neoselachian Ptychodus of northern Germany appears to be facies related. Ptychodus is not present in lower Cenomanian shark-tooth-rich rocks. First P. oweni records seem to relate to middle Cenomanian strata. P. decurrens appears in the middle to upper Cenomanian mainly in non-coastal environments of the shallow marine carbonate ramp and swell facies which isolated teeth were found partly in giant ammonite scour troughs on the Northwestphalian-Lippe High submarine swell in the southern Pre-North Sea Basin. They are recorded rare in deeper basin black shales facies (upwelling influenced, OAE Event II). P. polygyrus seems to be restricted to upwelling influenced basin and deeper ramp facies mainly of the uppermost Cenomanian and basal lower Turonian (OAE II Event). P. mammillaris is mostly represented during the lower to middle Turonian in the inoceramid-rich ramp and the near shore greensand facies along the Münsterland Cretaceous Basin coast north of the Rhenish Massif mainland. Finally, P. latissimus is recorded by two new tooth sets and appears in the upper Turonian basin swell facies and the coastal greensands. Autochthonous post-Turonian Ptychodus remains are unrecorded in the Santonian–Campanian of Germany yet. Reworked material from Cenomanian/Turonian strata was found in early Santonian and middle Eocene shark-tooth-rich condensation beds. With the regression starting in the Coniacian, Ptychodus disappeared in at least the Münster Cretaceous Basin (NW-Germany), but remained present at least in North America in the Western Interior Seaway. The Cenomanian/Turonian Ptychodus species indicate a rapid neoselachian evolution within the marine transgression and global high stand. A correlation between inoceramid shell sizes, thicknesses and their increasing size during the Cenomanian and Turonian might explain the more robust and coarser ridged enamel surfaces in Ptychodus teeth, if Ptychodus is believed to have preyed on epifaunistic inoceramid bivalves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号