首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
安徽铜陵冬瓜山铜、金矿床两阶段成矿模式   总被引:21,自引:0,他引:21  
冬瓜山铜金矿床包括层状硫化物矿体、矽卡岩型和斑岩型矿体。层状硫化物矿体具层状形态和层控特征,矿石具块状、层纹状和揉皱状构造。燕山期岩浆岩及其岩浆流体对层状矿体进行了叠加和改造,改变了其结构构造、矿物组合和矿石成分,并在其上叠加蚀变和矿化。层状矿体中的铜是由含铜流体交代块状硫化物矿石形成的。冬瓜山铜金矿床经历了两次成矿作用:第一成矿阶段.在石炭纪中期,海底喷流作用形成了块状硫化物矿床,矿石成分以硫、铁矿为主;第二成矿阶段。燕山期岩浆侵人,一方面岩浆热液与围岩相互作用发生矽卡岩化、硅化、钾长石化、石英绢云母化和青磐岩化,形成矽卡岩型和斑岩型矿体,另一方面岩浆流体对块状硫化物矿体进行叠加改造,致使块状硫化物矿体富集铜等成矿物质。  相似文献   

2.
Origin of the Kupferschiefer polymetallic mineralization in Poland   总被引:2,自引:0,他引:2  
The Kupferschiefer ore series, between the Lower Permian (Rotliegendes) terrestrial redbeds/volcanics and the Upper Permian (Zechstein) marine sequence, is developed as dark-grey organic matter-rich and metal sulphide-containing deposits (reduced zone) and as red-stained organic matter-depleted and iron oxide-bearing sediments (oxidized zone?=?Rote Fäule). The transition zone from oxidized to reduced rocks occurs both vertically and horizontally. This zone is characterized by sparsely disseminated remnant copper sulphides within hematite-bearing sediments, replacements of copper sulphides by iron oxides and covellite, and oxide pseudomorphs after framboidal pyrite. These textural features and copper sulphide replacements after pyrite in reduced sediments imply that the main oxide/sulphide mineralization postdated formation of an early-diagenetic pyrite. Hematite-dominated sediments locally contain enrichments of gold and PGE. The Kupferschiefer mineralization resulted from upward and laterally flowing fluids which oxidized originally pyritiferous organic matter-rich sediments to form hematitic Rote Fäule areas, and which emplaced base and noble metals into reduced sediments. It is argued that long-lived and large-scale lateral fluid flow caused the cross-cutting relationships, expansion of the hematitic alteration front, redistribution of noble metals at the outer parts of oxidized areas, and the location of copper orebodies directly above and around oxidized and gold-bearing areas. The Rote Fäule may be a guide to favourable areas for both the Cu-Ag and new Au-Pt-Pd Kupferschiefer-type deposits.  相似文献   

3.
新疆库鲁克塔格兴地Ⅱ号存体铜镍含矿性评价   总被引:6,自引:0,他引:6  
新疆库鲁克塔格兴地Ⅱ号岩体是一个深源岩浆经多次分异,多期侵入形成的基性-超基性杂岩体,岩体成矿背景条件,岩石化学及岩体矿化特征均显示,该杂岩体内可能赋存有大中型铜镍硫化物矿床,章通过对成矿背景条件,岩石特征及矿化特征的分析,对该杂岩体的铜镍含矿性做出初步评价。  相似文献   

4.
The principal copper deposits associated with Upper Creataceous — Laramian calc-alkaline volcano-plutonic complexes in the Bor district are classified as follows: Volcanogenic massive sulphide deposits are situated in andesitic volcanics, and are composed of pyrite and copper sulphides. Multistage deposition of mineral associations in this area was controlled mainly by secondary boiling of hydrothermal fluids rich in sulphur. Apart from cupriferous pyrite deposits, volcanogenic massive polymetallic deposits, containing a pyritic ZnCu+Pb association, have been found recently in hydrothermally altered dacite- and esite pyroclastics. Porphyry copper deposits are mainly situated in volcanic piles related to subvolcanic intrusions and/or hypabyssal plutons. Some porphyry copper deposits occur in the same structures with massive sulphide orebodies, lying above the porphyry copper system. Conglomerate-type ores consisting of clasts of massive sulphide in an andesitic pile have been discovered recently.  相似文献   

5.
Stratabound mineralization in the Mammoth area of NW Queensland occurs in steeply dipping, faulted Proterozoic arenites and dolomitic rocks overlying basic volcanics. Both syngenetic/diagenetic and epigenetic sulphides are present, with the latter divided into Mammoth- and South Mammoth II-styles. Syngenetic/diagenetic pyrite is distinguished from epigenetic pyrite by higher Co and Ni, and lower As, Mo, Sb and Tl contents. Chalcopyrite is the major copper sulphide associated with syngenetic/diagenetic pyrite and is characterized by low Ag, Bi, Mo, Ni and Tl contents relative to epigenetic chalcopyrite. No substantial wall rock alteration is associated with such sulphides. Disseminated syngenetic/diagenetic sulphides in the mine sequence may have induced deposition of epigenetic Cu mineralization, but alone, even when remobilized, do not reach economic grades.The four epigenetic Mammoth orebodies are all richer in chalcocite and bornite than syngenetic/diagenetic mineralization and have wall rock alteration characterized by alkali depletion and Fe enrichment in the zone between the ore and the fault considered the conduit for the hydrothermal ore-forming fluids. Pyrite associated with Mammoth-style mineralization has high As, Mo, Sb and Tl contents and was formed subsequent to the copper sulphides.Thick, essentially barren, pyritic sequences occur at South Mammoth II where the moderate As, high Mo, Sb and Tl contents reflect their hydrothermal origin but distinguish them from Mammoth-style pyrite. Their low As/Sb ratio and lack of wall rock alteration imply a lower temperature of formation than the Mammoth-style pyrite and possibly such mineralization represents the pre-ore stage of the Mammoth mineralizing hydrothermal system.An essential feature of economic Cu mineralization in NW Queensland is the operation of a hydrothermal system. As all such systems may not necessarily give rise to extensive wall rock alteration, use of the high As, Mo, Sb and Tl contents of hydrothermal pyrite can aid evaluation of mineralization intersected during drilling.  相似文献   

6.
何胜飞 《地质与勘探》2018,54(6):1153-1170
本文通过总结前人研究资料,认为中东部非洲主要由太古宙克拉通及其周缘的元古代活动带和显生宙沉积组成,并将中东部非洲划分为16个地质构造单元。中东部非洲矿产资源丰富,不同的地质构造单元的矿产资源种类亦不相同。其优势矿种主要有金、铜、钴、钨、锡、铌、钽、镍和宝石矿;金分布在克拉通内的新太古宙花岗绿岩带;铜钴产于新元古代卢菲利安弧层状沉积变质岩内;钨锡铌钽主要产于中元古代基巴拉带造山期后的锡石花岗岩内,多为伟晶岩或石英脉型;镍产于基巴拉带早期的镁铁-超镁铁质岩中;宝石矿多产于高级变质岩内;能源矿产主要位于显生宙陆内盆地及滨海盆地内。  相似文献   

7.
内蒙古狼山—渣尔泰山中元古代被动陆缘热水喷流成矿特征   总被引:22,自引:1,他引:21  
彭润民  翟裕生 《地学前缘》2004,11(1):257-268
狼山—渣尔泰山中元古代被动陆缘产有东升庙、炭窑口、霍各乞和甲生盘等热水喷流沉积矿床 ,与世界中元古代的SEDEX型矿集区有许多相似之处 :①矿床的产出受华北古陆北缘裂陷槽内三级断陷盆地控制 ;②各大矿床都具有鲜明的层控特征 ,所有矿体总体呈层产在中元古界的白云石大理岩、碳质千枚岩 (或片岩 )中 ;③矿石具有细纹层状、条带状构造 ,喷流沉积成矿特征十分明显 ;④成矿过程中伴有明显的同生断裂活动 ,它在一定程度上控制了矿体的空间分布及其组合 ;但不同矿床同生断裂活动的强度、时限、规模都不同 ,从而导致不同矿床在相同含矿岩组中矿体产出的先后顺序不同和大量层间砾岩与同生角砾状矿石的形成 ;⑤厚大Zn ,Pb ,Cu复合矿体具有明显的分带性 ,自下至上 ,Cu/ (Zn +Pb +Cu)比值由高→低 ;⑥重晶石层发育 ,多与黄铁矿层互层状产出 ,也有与闪锌矿层互层 ,但与世界典型SEDEX型矿床又有重要差别。成矿期间火山活动明显 ,在霍各乞、东升庙、炭窑口矿床惟一容矿的狼山群第二岩组中先后发现了具有变余斑状或聚斑状结构、变余杏仁构造的基性火山岩、钠质“双峰式”火山岩和钾质“双峰式”海相火山岩及凝灰岩夹层。结合①各种硫化物的铅同位素主要分布在地幔和下地壳铅演化曲线附近 ;②部分黄铁矿的Co/Ni值远  相似文献   

8.
喀拉通克I号铜镍矿床是与基性杂岩体有关的岩浆硫化物矿床.矿床∑REE和稀土配分模式与国内同类矿床相似.铜、镍、钴等主要元素和金、银、铂等贵重金属元素赋存规律明显,与矿化富集规律计算机模拟结果吻合.岩石模式年龄等数项测试分析.为矿床的形成(物理化学条件分析)提供了较合理的依据.  相似文献   

9.
海相火山-沉积建造铁铜矿床类型及地质特征   总被引:4,自引:1,他引:4  
于浦生  邬介人 《地球学报》1996,17(Z1):50-56
铁-铜型矿床产出的时代从元古宙到新生代均有,与其有关的火山岩大多数为中基性与中酸性或偏碱性岩石。作者以镜的山桦树沟、陇山陈家庙和陕西铜厂不同时代的铁-铜矿床为例,概述了该类型矿床的地质特征、成矿环境并着重探了铁-铜矿床的成因机制,认为该类型矿床是与火山作用有关的喷气-沉积型矿床,同时指出柳沟峡地区及其以西(东缰地区)铁-铜型铜矿化带的发现,是进一步寻找铁-铜-金矿床的有利地段。  相似文献   

10.
Metal-cystine complexes of iron, lead, zinc, copper and nickel under mild artificial diagenesis give rise to crystalline metal sulphides and insoluble organic matter as well as gaseous and “oily” organic products. Under confined reducing conditions at 200°C for 100 h a virtual 100% conversion of metal complex to metal sulphide occurs, while < 10% of the associated organic material may remain as kerogen. Such a mechanism could account for the formation of metal sulphides and in particular pyrite from protein- or amino acid-rich material in carbonaceous sediments during diagenesis.  相似文献   

11.
金川铜镍硫化物矿床铂族元素的赋存状态及分布规律   总被引:17,自引:3,他引:14  
金川铜硫化物矿床铂族元素球粒陨石标准化型式属于Pt-Pd配分类型,Pt、pd〉Os、Ir、Ru、Rh,存在3种不同形式的图形;PGE(铂族元素)在熔离和深熔--贯入型岩矿体中,PGE含量从非含矿岩石→SN-B→SN-A2→SN-A1依次增加,显示与金属硫化物含量具有正消长关系;矿石中80%以上的铂和70T以上的钯呈矿物相存在;PGE富集体主要分布在富矿体膨大处的中、下部。  相似文献   

12.
Uranium mineralization is present at many places along the 200 km long Singhbhum copper belt, but the mineralization is relatively concentrated at the central part of it. The belt is characterized by many shear zone features, such as mylonites, phyllonites, and L-S type of structures and of course, copious metasomatism. Country rocks are basic schists, metapelites, quartzose rocks and albite schist/gneiss (Soda Granite). Orebodies are sheet-like, conformable with the pervasive planar structures in the host rocks. No pronounced wall rock alteration accompanied the mineralization. Grade of the ore is low (<0.1% U3O8). The principal uraniferous mineral uraninite occurs as dissemination. Other uranium-bearing minerals include pitchblende, allanite, xenotime, davidite, clarkeite, autunite (-metaautunite), torbernite, schoepite (-metaschoepite) and uranophane. Uranium is also present in a number of refractory phases either as inclusion of uraninite or in the crystal structure. Additionally, nickel, cobalt and molybdenum are present at Jaduguda-Bhatin in the form of millerite, gersdorffite, melonite, nickel-bearing pyrite, molybdenite etc. Dominance of uraninite over pitchblende and the larger cell-edge of uraninite, development of hematite-bearing quartz and Na-oligoclase at places in the ore zone, association of uranium mineralization with Ni-Co-Mo(-S-As) mineralization at Jaduguda-Bhatin and continuation of the orebodies to considerable depths, suggest that the uranium mineralization along the Singhbhum belt belongs to moderate to high temperature vein type. The age obtained by Pb207/Pb206 ratio and the concordia method suggest that the uranium mineralization in Singhbhum took place 1500–1600 Ma ago and this age is not far different from the age of formation of uranium-vein deposits in many other Precambrian shields of the world. The following two mechanisms of the formation of the deposits are discussed: 1) uranium precipitated in the Dhanjori basal sediments was mobilized during deformation and metamorphism into ore deposits, 2) the hydrodynamic system that leached out copper from the metabasic rocks to form the copper deposits at an earlier stage, could, in one of the oxidised pulses leach out uranium from the basal sediments and precipitate it in the favourable situations. Subsequent small-scale redistribution is possible. Constituents of the Ni-Co-(-S-As) mineralization appear to have been contributed by the volcanic-sedimentary pile.  相似文献   

13.
Genesis of the Xinqiao Gold-Sulfide Orefield, Anhui Province, China   总被引:3,自引:0,他引:3  
The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield in recent years, showing that it belongs to various types, such as sedimentary-reformed type, stratabound-skarn type, sedimentary submarine rocks-hosted exhalative type. We propose that it was formed in two periods of mineralization base on systematic field observation and Pb and S isotopic analyses in nearly ten years. The first period was formed during a syngenetic sedimentary process, whereas the massive sulphide orebodies are mainly related to the Yanshanian granitic magmatism. Sulfide metallic mineral associations show zoning around a granite intrusion, i.e. magnetite and pyrite→pyrite, chalcopyrite and native gold→pyrite, sphalerite and galena. Gold orebodies occur outside the contact zone of the granite intrusion.  相似文献   

14.
The vertical distribution of pyrite, acid volatile sulphide (AVS), carbon, and total S (St) were determined directly in the sediments of three lakes of different trophic status. The results showed that freshwater pyrite formation reflects the redox status of the sediment or overlying waters. It appears to form chiefly in reducing sediments which are subject to oxidizing influences, by either a low turnover of organic carbon or periodic incursions of oxygen. Although there are high concentrations of AVS in the near-surface sediments of productive lakes, very little is diagenetically converted to pyrite.The feasibility of using sulphur ratios to diagnose whether rocks were formed in marine or freshwater environments is assessed. New values for FeS2/FeS of 0.5-5 show that this ratio does not provide a reliable test. Values of C/Sp, where Sp represents pyrite sulphur, lie within the range of 160–700 and are much higher than previously measured ratios of C/St of 1–50. These new determinations show that, if pyrite sulphur is unequivocally measured, C/S ratios may be a more sensitive indicator of salinity than had been previously thought.  相似文献   

15.
The Talvivaara deposit contains 1550 Mt of ore averaging 0.22% Ni, 0.13% Cu, 0.49% Zn and 0.02% Co. The precursors of the host rocks were deposited 2.1–1.9 Ga ago in a stratified marine basin. Fractured talc-carbonate rocks delineate the eastern border of the deposit and serpentinites and talc-carbonate rocks occur along the rift-related sequence to the north and south of Talvivaara. Characteristic features are high concentrations of organic carbon and sulphur with median values of 7.6% and 8.2%, respectively. Organic carbon is graphitic at present and a variety of sulphide textures occur, representing multiphase evolution during diagenesis, tectonic deformation and medium-grade regional metamorphism. The main sulphides of the Talvivaara ore are pyrrhotite, pyrite, sphalerite, chalcopyrite and pentlandite. Sulphides occur both as fine-grained disseminations and coarse grains or aggregates. Chalcopyrite mainly occurs in joint surfaces and quartz-sulphide veins and pentlandite occur as inclusions in pyrrhotite. Alabandite (MnS) occurs in black shales and black metacarbonate rocks. The early low-T sulphide minerals were overprinted by later stage processes. No framboidal pyrite is any longer present, but spheroidal pyrite with a grain size of < 0.01 mm and containing up to 0.7% Ni occurs. During the deposition of the organic-rich mud the anoxic/euxinic bottom waters were enriched in Ni+, Cu+ and Zn2 +. Sulphur isotope δ34S values indicate mixing of sulphur derived from different processes or fractionation by sulphate reduction in a restricted basin. Both thermochemical and bacterial sulphate reductions were important for the generation of reduced sulphur.  相似文献   

16.
The Hemlo deposit, near Marathon, Ontario, is one of the largest gold deposits in North America. It is stratiform within Archean metamorphosed volcano-sedimentary rocks. The main ore zone is composed of pyritic, sericitic schist, and massive barite. This is the first report of stratiform barite in the Archean of North America, but other occurrences have since been found west of Hemlo. The mineralization is substantially enriched in Au, Mo, Sb, Hg, Tl and V and lacks carbonate. Because of metamorphism and deformation of the body its genesis is uncertain.87Sr86Sr of .7017 for barite from the deposit is similar to that of the sedimentary barite west of Hemlo and to initial ratios of contemporaneous volcanic rocks. At the base of the main ore zone, barite with δ34S of +8 to +12%. was deposited with ~0%. pyrite. Upward, both barite and pyrite get isotopically lighter, with minimum values for pyrite, to ?17.5%, in non-baritic schist forming the upper part of the ore zone. In drill section, Au grades correlate with the isotopic composition of pyrite. This, and the association of fractionated sulphide with sulphate, suggests that Au, pyrite and barite were deposited contemporaneously. The linked, asymmetric distributions of S minerals and isotopic distributions, which are continuous from section to section, and the isotopic similarity of the Hemlo and western barites are consistent with a syngenetic depositional model.Two sources for the S minerals are considered. In the first, exogenous sulphate from a restricted basin were partially reduced in a geothermal system to form 34S-depleted sulphide. In the second, the sulphate and sulphide are of magmatic-hydrothermal origin. Sulphate and fractionated sulphide are uncommon in Archean rocks, but one or both occur with unusual frequency in major Archean gold deposits. Hydrothermal fluids of moderately high ?O2, containing sulphate and permitting isotopic fractionation between oxidized and reduced S species, may have favoured the dissolution, transport and precipitation of Au.  相似文献   

17.
The Konkola deposit is a high grade stratiform Cu–Co ore deposit in the Central African Copperbelt in Zambia. Economic mineralisation is confined to the Ore Shale formation, part of the Neoproterozoic metasedimentary rocks of the Katanga Supergroup. Petrographic study reveals that the copper–cobalt ore minerals are disseminated within the host rock, sometimes concentrated along bedding planes, often associated with dolomitic bands or clustered in cemented lenses and in layer-parallel and irregular veins. The hypogene sulphide mineralogy consists predominantly of chalcopyrite, bornite and chalcocite. Based upon relationships with metamorphic biotite, vein sulphides and most of the sulphides in cemented lenses were precipitated during or after biotite zone greenschist facies metamorphism. New δ34S values of sulphides from the Konkola deposit are presented. The sulphur isotope values range from −8.7‰ to +1.4‰ V-CDT for chalcopyrite from all mineralising phases and from −4.4‰ to +2.0‰ V-CDT for secondary chalcocite. Similarities in δ34S for sulphides from different vein generations, earlier sulphides and secondary chalcocite can be explained by (re)mobilisation of S from earlier formed sulphide phases, an interpretation strongly supported by the petrographic evidence. Deep supergene enrichment and leaching occurs up to a km in depth, predominantly in the form of secondary chalcocite, goethite and malachite and is often associated with zones of high permeability. Detailed distribution maps of total copper and total cobalt contents of the Ore Shale formation show a close relationship between structural features and higher copper and lower cobalt contents, relative to other areas of the mine. Structural features include the Kirilabombwe anticline and fault zones along the axial plane and two fault zones in the southern limb of the anticline. Cobalt and copper behave differently in relation to these structural features. These structures are interpreted to have played a significant role in (re)mobilisation and concentration of the metals, in agreement with observations made elsewhere in the Zambian Copperbelt.  相似文献   

18.
The Outokumpu region in eastern Finland is an integral part of the Precambrian formations of the Karelidic orogeny. The copper-cobalt ore deposits discovered in the region are associated with a lithologic complex that consists of serpentinites, skarns, carbonate rocks and quartzites. The outer zone of this rock association adjacent to the surrounding mica schists is commonly occupied by black schists. The association constitutes the coherent stratigraphic sequence known as the Outokumpu zone, which is the environment in which the ore deposits of the Outokumpu type occur. The total length of the ribbon-like zone is about 240 km. Three Cu---Co ore deposits: Outokumpu, Vuonos and Luikonlahti are currently being exploited and four sub-economic ore showings have been found in the zone. All the deposits and ore showings are of the polymetallic sulphide type with copper, zinc, cobalt and nickel. There are also small amounts of silver, gold, tin and selenium in the orebodies. These stratabound ore deposits are submarine volcanic exhalative in origin. The immediate host rock of the ore is commonly quartzite, interpreted as a chemical silica precipitate.The Outokumpu copper-cobalt ore deposit was discovered in 1910. Owing to its economic potential, the Outokumpu zone is one of the most thoroughly studied parts of the Finnish Precambrian. More than 1000 holes have been drilled from the surface into the zone and provide a large source of material for lithogeochemical studies.The association does not lend itself easily to geophysical investigations because of its complex geology, characterized by black schists and other rocks giving a strong geophysical response. For this reason, and because of the extensive drilling, lithogeochemistry has become an important exploration tool in the region.The discovery of the blind Vuonos ore deposit in 1965 was the result of a comprehensive lithogeochemical study carried out in the early 1960's. Several old prospects were sampled in the Outokumpu zone and the sulphide phase was analyzed for Cu, Co, Ni and Zn.Clustering of the analytical data gives five groups of rock types: (1) quartzite-skarn-dolomite; (3) black schists; (4) mica schists; (5) copper-cobalt ore (Huhma and Huhma, 1970). The locations of these groups in Ni---Co and Cu---Co diagrams and in an Co---Cu---Ni triangular diagram are shown in Figs. 1, 2 and 3. The nickel content of serpentinites varies between 1500 and 2200 ppm and that of cobalt between 70 and 110 ppm. Thus the Ni/Co ratio averages 20:1. In the quartzite-skarn-dolomite-group the nickel content ranges from 900 to 3000 ppm and the cobalt content from 50 to 120 ppm. The Ni/Co 150 to 500 ppm and the cobalt content from 20 to 60 ppm. The Ni/Co ratio is about 10:1. Mica gneisses are poor in sulphides. Their nickel content averages from 40 to 90 ppm and the cobalt content from 15 to 30 ppm.The copper-cobalt ore occupies a discrete area in the Ni---Co diagram. Its nickel content varies between 1000 and 2000 ppm and the cobalt content between 1000 and 3000 ppm. The copper-cobalt diagram shows that the cobalt content of the serpentinites and the quartzite-skarn-dolomite group is fairly constant varying between 60 and 140 ppm. The copper content ranges from zero to 100 ppm in the former and from 10 to 100 ppm in the latter. In black schists the copper content varies from 100 to 300 ppm, the cobalt content being some tens of ppm. The mica gneisses are somewhat poorer in their Cu and Co contents. In this case too, the copper-cobalt ore has a Cu---Co content distinctly apart from those of the other groups.In the Cu---Co---Ni triangular diagram the serpentinite and the quartzite groups plot near the Ni apex of the triangle, the relative Ni content being 94–96% and that of Cu less than 1%. The black schists and mica gneisses have their own area near the centre of the Cu---Ni join with the Co content not exceeding 10%. There are several exceptions where points in the diagrams described above plot outside the normal field. Most of these anomalous points are located between the normal area of the rock type and that of the Cu---Co ore. The Ni---Co diagram in particular demonstrates that the deviations are due to the increase in the Co content.In summary, the anomalies of the Outokumpu type have: (1) a Ni/Co ratio lower than 15:1; and (2) a Cu percentage of the sum Cu+Co+Ni = 100 higher than 5. These anomaly units are applied to rank the analytical data of the Outokumpu zone. It is evident from the diagrams that the increase in cobalt content outside its normal field is the prime indication of the proximity of the ore. Being rather constant, the nickel content is used as a reference. Thus a decrease in the Ni/Co ratio indicates the presence of the ore. In some cases the decrease in the Ni/Co ratio may be due to a local decrease in the Ni content. The anomaly can be checked by the Cu/Cu+Ni+Co ratio. Except when testing the anomalies with Co, Cu and Ni as described above, the Co content alone can be used as an indicator of the proximity of a Cu---Co orebody. This was tested in one section of the Vuonos orebody (Fig. 4). The pyrite phase of the quartzites was selectively leached and its Co content analyzed. It was noted that the Co content of pyrite increased somewhat when the orebody was approached along strike.Before this method can be used more widely, the stratigraphic position and the structure of the potential ore horizon must be known fairly accurately. The proximity of an orebody can also be evaluated by means of the Co content of the black schists. As shown above, the Co content of the black schists is usually considerably under 100 ppm; it is usually over 100 ppm only adjacent to an orebody. Consequently, the extensive data on black schists in the Outokumpu zone can be sorted into potential and less potential ones.  相似文献   

19.
Draa Sfar is a Visean, stratabound, volcanogenic massive sulphide ore deposit hosted by a Hercynian carbonaceous, black shale-rich succession of the Jebilet terrane, Morocco. The ore deposit contains 10 Mt grading 5.3 wt.% Zn, 2 wt.% Pb, and 0.3 wt.% Cu within two main massive sulphides orebodies, Tazakourt (Zn-rich) and Sidi M'Barek (Zn–Cu rich). Pyrrhotite is by far the dominant sulphide (70 to 95% of total sulphides), sphalerite is fairly abundant, chalcopyrite and galena are accessory, pyrite, arsenopyrite and bismuth minerals are rare. Pyrrhotite is monoclinic and mineralogical criteria indicate that it is of primary origin and not formed during metamorphism. Its composition is very homogeneous, close to Fe7S8, and its absolute magnetic susceptibility is 2.10− 3 SI/g. Ar–Ar dating of hydrothermal sericites from a coherent rhyolite flow or dome within the immediate deposit footwall indicates an age of 331.7 ± 7.9 Ma for the Draa Sfar deposit and rhyolite volcanism.The Draa Sfar deposit has undergone a low-grade regional metamorphic event that caused pervasive recrystallization, followed by a ductile–brittle deformation event that has locally imparted a mylonitic texture to the sulphides and, in part, is responsible for the elongated and sheet-like morphology of the sulphide orebodies. Lead isotope data fall into two compositional end-members. The least radiogenic end-member, (206Pb/204Pb = 18.28), is characteristic of the Tazakourt orebody, whereas the more radiogenic end-member (206Pb/204Pb  18.80) is associated with the Sidi M'Barek orebody, giving a mixing trend between the two end-members. Lead isotope compositions at Draa Sfar testify to a significant continental crust source for the base metals, but are different than those of the Hajar and South Iberian Pyrite Belt VMS deposits.The abundance of pyrrhotite versus pyrite in the orebodies is attributed to low fO2 conditions and neither a high temperature nor a low aH2S (below 10− 3) is required. The highly anoxic conditions required to stabilize pyrrhotite over pyrite are consistent with formation of the deposit within a restricted, sediment-starved, anoxic basin characterized by the deposition of carbonaceous, pelagic sediments along the flank of a rhyolitic flow-dome complex that was buried by pelitic sediments. Deposition of sulphides likely occurred at and below the seafloor within anoxic and carbonaceous muds.Draa Sfar and other Moroccan volcanogenic massive sulphide deposits occur in an epicontinental volcanic domain within the outer zone of the Hercynian belt and formed within a sedimentary environment that has a high pelagic component. In spite of the diachronous emplacement between the IPB deposits (late Devonian to Visean) and Moroccan deposits (Dinantian), all were formed around 340 ± 10 Ma following a major phase of the Devonian compression.  相似文献   

20.
Most ore-forming characteristics of the Langshan-Zha'ertaishan hydrothermal exhalation belt, which consists of the Dongshengmiao, Huogeqi, Tanyaokou and Jiashengpan large-superlarge Zn-Pb-Cu-Fe sulfide deposits, are most similar to those of Mesoproterozoic SEDEX-type provinces of the world. The characteristics include: (1) All deposits of this type in the belt occur in third-order fault-basins in the Langshan-Zha'ertaishan aulacogen along the northern margin of the North China Platform; (2) these deposits with all their orebodies hosted in the Mesoproterozoic impure dolomite-marble and carbonaceous phyllite (or schists) have an apparent stratabound nature; ores display laminated and banded structures, showing clear depositional features; (3) there is some evidence of syn-sedimentary faulting, which to a certain extent accounts for the temporal and spatial distribution and the size of the orebodies in all deposits and the formation of intrabed conglomerates and breccias; (4) they show lateral and vertical  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号