首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The coastal dunes of Israel have been undergoing a process of stabilization since 1948. One of the major features of this process is a change in the surface properties of the dunes – the development of a biological soil crust (BSC), and a change in the properties of the sand grains themselves. In Ashdod, at the southern coastal plain of Israel, sand properties that include the BSC, their fines (silt and clay) content and free iron-oxide (indicating their degree of rubification) have been analysed in detail using field and lab spectroscopy methods. In addition, sand erosion and deposition were measured using erosion pins to determine their effect on the presence of the above-mentioned factors. It was found that the BSC over these dunes is comprised of green algae that differs in its reflectance spectra from cyanobacterial crust, especially in the blue band. The crust was found to be particularly developed in the stable areas (mainly the interdunes) and on the north-facing slopes rather than on the south-facing slopes. A positive correlation was found between the crust fines and chlorophyll content, with stable areas showing more developed BSC. The stable areas showed also a lower albedo and slightly more developed reddish colour, indicating a slightly higher rate of rubification. This study demonstrates that the intensity of sand erosion/deposition rates affects soil properties, with the BSC being the fastest to react to the stabilization process (months to several years), followed by the content of fine particles (several years to a decade), whereas the rubification process is a much weaker marker and may need much longer time periods to develop (decades to centuries).  相似文献   

2.
Currently, numerical studies at the real scale of an entire engineering structure considering internal erosion are still rare. This paper presents a three-dimensional (3D) numerical simulation of the effects of internal erosion within a linear dike located on a foundation. A two-dimensional (2D) finite element code has been extended to 3D in order to analyze the impact of internal erosion under more realistic hydromechanical conditions. The saturated soil has been considered as a mixture of four interacting constituents: soil skeleton, erodible fines, fluidized fine particles, and fluid. The detachment and transport of the fine particles have been modeled with a mass exchange model between the solid and the fluid phases. An elastoplastic constitutive model for sand-silt mixtures has been developed to monitor the effect of the evolution of both the porosity and the fines content induced by internal erosion upon the behavior of the soil skeleton. An unsaturated flow condition has been implemented into this coupled hydromechanical model to describe more accurately the seepage within the dike and the foundation. A stabilized finite element method was used to eliminate spurious numerical oscillations in solving the convection-dominated transport of fluidized particles. This numerical tool was then applied to a specific dike-on-foundation case subjected to internal erosion induced by a leakage located at the bottom of the foundation. Different failure modes were observed and analyzed for different boundary conditions, including the significant influence of the leakage cavity size and the elevation of the water level at the upstream and downstream sides of the dike.  相似文献   

3.
INTRODUCTION Theinfiltrationandevaporationofwaterinasoil slopeareofparamountimportanceindetermining slopestability.Previousengineeringcasesandstud ieshaveshownthatrainwaterisoftenamajorfactor intheslopefailureofexpansivesoils.Expansivesoils intropicalandsubtropicalzonesareoftenunsaturat ed,andsoilslopesareinastablestateinnormalcli mateconditionsbecauseofthehighsuctionandshear strengthofthesoilmass.However,oncepermeation happensrainwaterwillinfiltrateintothesoilmasswhichleadstoanincreasein…  相似文献   

4.
One of the major causes of instability in geotechnical structures such as dikes or earth dams is internal erosion, an insidious process that occurs over a long period of time. Research on this topic is still fairly new and much more needs to be understood in order to solve the problems posed by this phenomenon. This paper proposes a hydromechanical model based on porous continuous medium theory to assess how internal erosion impacts the safety of earthen structures. The saturated soil is considered as a mixture of four interacting constituents: soil skeleton, erodible fines, fluidized fine particles, and fluid. The detachment and transport of the fine particles are described by a mass exchange model between the solid and the fluid phases. An elastoplastic constitutive model for sand-silt mixtures has been developed to monitor the effect of the evolution of both porosity and fines content induced by internal erosion upon the behavior of the soil skeleton. The model has been numerically solved with the finite element method. It has then been applied to the specific case study of a dike foundation subjected to internal erosion induced by the presence of a karstic cavity beneath the alluvium layer. The numerical results show the onset of erosion, the time-space evolution of the eroded zone, and the hydromechanical response of the soil constituting the dike, all of which highlights the effects of the cavity location, the erosion rate, and the fines content.  相似文献   

5.
The deposition of natural dust in an area of 53 ha, situated in the northern Negev desert, is investigated in detail both in the wind tunnel (dust storm simulations over a topographic scale model) and in the field. The wind tunnel results and the field results show a high degree of agreement, indicating that scale-model simulation may be considered an important technique for future loess and desert research. More dust settles on windward slopes than on leeward slopes, which is in contradistinction with the widespread wind shadow concept. Air-flow separation zones immediately downwind of steep windward slopes have an important impact on dust deposition too. In the case of dust deposition on topographic scale models, a restricted height distortion of the model will not necessarily lead to serious problems. In addition, wind tunnel blockage percentages up to 13% may be allowed in order to obtain acceptable dust deposition patterns for the scale model. A mean gross dust deposition of about 200–250 g m?2 year?1 is calculated for the northern Negev desert for 1987. Thus, if the settled dust can be protected against erosion in the cultivated areas in the Negev, the dust content of the top soil will markedly increase with time. However, it has to be borne in mind that cultivation activities themselves may also contribute to a higher soil erosion and, hence, to a higher dust content in the atmosphere. At any rate, a higher dust content in the top soil will unquestionably have an important positive effect on agricultural yields. From the air dust concentration data and the dust deposition data, a deposition velocity of 4.7cms?1 can be calculated for Avdat dust.  相似文献   

6.
Lower slopes of the Sandia Mountains are characterized by granitic corestone topography and weathering-limited slopes with thin grusy colluvium and weakly developed soils. In contrast, thick soils with illuvial clay and pedogenic carbonate have developed below aplite outcrops. Aplite is resistant to chemical decomposition, but physically weathers to blocky clasts that enhance surface roughness and erosional resistance of colluvium, promoting accumulation of eolian fines. Thick B horizons on aplite slopes indicate limited erosion and prolonged periods of stability and soil development. Accretion of eolian material limits runoff and prevents attainment of a steady-state balance between soil production and downslope transport.  相似文献   

7.
This paper presents a dynamic fully coupled formulation for saturated and unsaturated soils that undergo large deformations based on material point method. Governing equations are applied to porous material while considering it as a continuum in which the pores of the solid skeleton are filled with water and air. The accuracy of the developed method is tested with available experimental and numerical results. The developed method has been applied to investigate the failure and post‐failure behaviour of rapid landslides in unsaturated slopes subjected to rainfall infiltration using two different bedrock geometries that lie below the top soil. The models show different failure and post‐failure mechanisms depending on the bedrock geometry and highlight the negative effects of continuous rain infiltrations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Soil–water characteristic curve (SWCC) is the most fundamental and important soil property in unsaturated soil mechanics. It has been used for analyzing slope stability due to the infiltration of rainfall into slopes and water flow in unsaturated embankments. Generally, SWCC is obtained by laboratory tests. However high cost, long duration and difficulty of the tests impede the application of unsaturated soil mechanics to practical design or analysis. Therefore, several equations have been developed to predict the SWCC using grain-size distribution (GSD) curve. However, most of the equations were limited to soils with unimodal characteristics and the parameters of the equations are not related to the physical properties of the soil. In this paper, an equation to predict SWCC for soils with bimodal characteristics is proposed. The parameters of the proposed equation are related to the physical properties of soil and the variables of SWCC closely. The proposed equation is evaluated with data from the literature and laboratory tests carried out in this study. In addition, the computer codes for the computation of the predicted bimodal SWCC are presented.  相似文献   

9.
It has been reported that sand production, which is a simultaneous production of soil particles along with gas and water into a production well, forced to terminate the operation during the world's first offshore methane production test from hydrate-bearing sediments in the Eastern Nankai Tough. The sand production is induced by internal erosion, which is the detachment and migration of soil particles from soil skeleton due to seepage flow. The inflow of the eroded soil particles into the production well leads to damage of the production devices. In the present study, a numerical model to predict the chemo-thermo-mechanically coupled behavior including internal erosion during hydrate dissociation has been formulated based on the multiphase mixture theory. In the proposed model, the internal erosion is expressed as mass transition of soil particles from soil skeleton to the fluidized soil particles. Since the internal erosion is considered to depend on the soil particle size, mass of soil particles are divided into several groups that have different representative particle diameters, and the constitutive equations for the onset condition and the mass transition rate of the internal erosion are formulated for each group. Also, transportation of soil particles in the liquid phase is formulated for each particle size group in the proposed model. Finally, a simulation of the methane gas production from the hydrate-bearing sediment by depressurization method is presented, and the internal erosion and the dissociation behavior are discussed.  相似文献   

10.
The dynamic characteristics and migration of a pyramid dune   总被引:6,自引:0,他引:6  
The results of wind tunnel experiments and field observations show that when the intersection angle between airflow direction and dune crest (ridge) line is > 30°, a reverse vortex is formed. Because of the convergence of sand streams from the windward and lee slopes at the crest, sand accumulates in the crestal region, causing vertical growth. Nevertheless, studies also show that the common asymmetry of the two slopes of a dune may significantly influence the evolution of arms of a pyramid dune. The migration rates of pyramid dunes are mediated by the interplay of their arms moving transversely and the vertical growth in response to the variations in wind regimes. Comparing the effects of airflow transverse to a given arm with longitudinal airflow, it is indicated that the transverse airflow is more significant in controlling the arms of pyramid dunes. The whole body of the studied pyramid dune, particularly the upper quarter section, migrated SE direction during the monitoring period. The patterns of wind erosion and deposition change alternately with seasonal variations in wind directions. The W, NE and SE sides undergo constant erosion, deposition and both erosion and deposition, respectively. The results of long-term monitoring of a pyramid dune show that southerly winds, resulting from a local circulation, markedly affect the transverse migration of the whole pyramid dune.  相似文献   

11.
非饱和土壤水力参数预测的分形模型   总被引:12,自引:3,他引:12       下载免费PDF全文
综述了利用分形几何理论,可在土壤水力性质,包括土壤水分特征曲线及水力传导系数与土壤结构分维之间建立起一定的函数关系式.这些函数关系式大多与Campbell定律具有相同或相似的幂定律形式,一方面揭示了Campbell定律的物理实质,另一方面可用于土壤持水量及水力传导系数的预测.  相似文献   

12.
The formulation of watershed management strategies to protect water resources threatened by soil erosion and sedimentation requires a thorough understanding of sediment sources and factors that drive soil movement in the watershed. This paper describes a study of medium-term water-driven soil erosion rates in a mountainous watershed of the Shihmen Reservoir in Taiwan. A total of 60 sampling sites were selected along a hillslope. At each sampling site, the inventory 137Cs activity was determined and then calculated with the diffusion and migration model to derive soil erosion rates. The rates are one to two orders of magnitude lower than estimates using the Universal Soil Loss Equation, a soil erosion model often used in Taiwan. Results of multiple regression analysis indicate that the spatial variability of soil erosion rates is associated with the relative position of a sampling site to the nearest ridge and soil bulk densities (r 2 = 0.33, p < 0.01). Finally, the patterns of soil redistribution rates on the hillslope follow the 137Cs hillslope model as soil erosion increases in the downslope direction. No deposition site is found at footslope because soil deposition is swept away by regular flooding along the stream channel. This study is an important first step in using 137Cs as a tracer of soil redistribution in mountainous watersheds of Taiwan.  相似文献   

13.
许韬  白冰 《岩土力学》2018,39(10):3853-3862
为了研究热源温度和外界水压对缓冲层中水-热迁移规律的影响,以GMZ膨润土为例,从基于势能的非饱和土的水-热迁移控制方程出发,考虑了蒸发效应的影响,得到了水-热耦合的方程组,采用改进的光滑粒子流体动力学(SPH)算法,能够对每一处土体根据不同时刻的不同状态实时更新计算参数,得到参数变化的水-热耦合解。计算结果表明:土的物理性质参数与土体的温度和饱和度密切相关,是否考虑这些参数的变化会对计算结果产生较大影响;核废料释放的热量能够在较短的时间内扩散到外边界,水分迁移的速度则相对慢很多;缓冲层温度的升高会加快水分的迁移速度,外界水压对温度的分布则影响较小。  相似文献   

14.
谌文武  毕骏  马亚维  刘伟  江耀 《岩土力学》2016,37(11):3208-3214
土-水特征曲线可以预测非饱和土的各种性质(如:非饱和渗透系数、剪应力和热学性能等)。但测量土-水特征曲线耗时久且花费昂贵。为了解决这一问题,目前,很多研究都致力于从基本的岩土工程性质预测土-水特征曲线。基于此,以MK(Modified Kovács)模型的2种形式(拟合方程和预测方程)为土-水特征曲线模型,以Matlab编程语言中的cftool为拟合工具,以西宁黄土、粉砂土、红黏土和冰碛土4种细粒土为研究对象,对比拟合方程和预测方程描述细粒土土-水特征曲线的效果和差异,分析MK模型中黏附饱和度 1解 的变化规律,提出了基于MK模型的饱和度进行参数敏感性分析的计算公式。结果表明:拟合曲线和预测曲线在描述4类典型细粒土土-水特征曲线时均具有较好的效果,但拟合曲线整体上优于预测曲线;土壤质地和黏粒含量影响 值;饱和度对拟合参数 的敏感性较大,对拟合参数 的敏感性较小。  相似文献   

15.
16.
黄土暗穴在水土流失方面作为一种独特的侵蚀方式,往往会威胁到建设在非饱和黄土层之上的公路边坡稳定性。基于考虑基质吸力的强度折减有限元程序,本文通过开展不同位置暗穴、单双暗穴和基质吸力赋存与丧失等条件下边坡稳定性的对比研究,着重对影响边坡稳定性的暗穴、基质吸力等因素进行了研究。研究结果表明,当暗穴接近地表时由于存在一定的减载效应而利于坡体的稳定,而当暗穴接近边坡坡脚时则成为黄土边坡稳定性的不利因素,在边坡底部存在的双暗穴明显削弱了边坡的稳定性,基质吸力使得非饱和黄土边坡安全系数增大,潜在滑动面变深,反之则使安全系数减小,潜在滑动面上移,基质吸力的丧失或减小以及暗穴的削弱作用使得潜在滑动面位置变化较大。  相似文献   

17.
揭示煤层气排采储层非饱和流阶段煤粉与气体相互作用机理,对制定排采制度和提高产气量具有重要意义。通过气泡–煤粉微观作用实验装置,系统开展了不同直径大小的气泡对不同粒度和密度煤粉的作用实验,分析了气泡对煤粉运移轨迹和速度的影响及捕获煤粉特征。结果表明,气泡产出能够影响煤粉的运移轨迹,甚至能够捕获煤粉;煤粉通过气泡时会产生3种运动类型:沿着气泡表面运移到气泡底部最后被捕获、沿着气泡表面运移到气泡底部最后脱落及接近气泡时被排斥而轨迹发生偏转。煤粉若被气泡捕捉,则运动速度呈现出减小–增大–减小的变化特征;若未被气泡捕获,速度呈现出减小–增大–减小–增大的变化特征。不同条件下气泡对煤粉的捕获效率高达64.38%~86.64%;在气泡表面最高点附近发生碰撞煤粉被捕获的概率最大,并且随着偏离角度的增大,气泡捕获效率均呈现出逐渐减小的趋势;在相同的碰撞位置下,气泡对煤粉的捕获效率随着煤粉密度、煤粉粒径的增大而减小,随着气泡直径的增大而增大。煤层气产气初期应根据储层的实际导流能力合理控制降压速率,若储层导流能力较强,应加大排采速率,增大气体解吸对煤粉的扰动和捕获作用,促使大量煤粉随地下水或气泡产出;若储层...  相似文献   

18.
137Cs示踪农耕地土壤侵蚀速率模型的比较研究   总被引:5,自引:0,他引:5  
^137Cs示踪技术广泛地应用于农耕地土壤侵蚀研究,目前已建立了许多运用^137Cs估算土壤侵蚀速率的模型。这些模型主要分为两类:经验模型与理论模型。其中理论模型中的质量平衡模型应用较多。质量平衡模型主要有:Walling模型、张信宝模型、杨浩模型和周维芝模型。重点讨论这4种质量平衡模型的异同。详细阐述了这四种模型的建立过程,并用图形模拟的方法给出各个模型所刻画的土壤侵蚀速率与土壤剖面中^137Cs相对损失率的关系。分析表明,尽管各个模型在建立的假设和方法上以及对^137Cs沉降过程的处理上存在一定程度的差异,但是各个模型所刻画的土壤侵蚀速率与土壤剖面中^137Cs相对损失率的关系实质上都是幂函数的形式,而且这4条曲线的走势基本一致,各自计算的土壤侵蚀速率差异也较小。因此,在利用^137Cs技术示踪农耕地土壤侵蚀速率时,这4个模型都可以应用。  相似文献   

19.
137 Cs示踪技术广泛地应用于农耕地土壤侵蚀研究,目前已建立了许多运用 137 Cs估算土壤侵蚀速率的模型。这些模型主要分为两类:经验模型与理论模型。其中理论模型中的质量平衡模型应用较多。质量平衡模型主要有:Wal l ing模型、张信宝模型、杨浩模型和周维芝模型。重点讨论这 4种质量平衡模型的异同。详细阐述了这四种模型的建立过程,并用图形模拟的方法给出各个模型所刻画的土壤侵蚀速率与土壤剖面中 137 Cs相对损失率的关系。分析表明,尽管各个模型在建立的假设和方法上以及对 137 Cs沉降过程的处理上存在一定程度的差异,但是各个模型所 刻画的土壤侵蚀速率与土壤剖面中 137 Cs相对损失率的关系实质上都是幂函数的形式,而且这 4条曲线的走势基本一致,各自计算的土壤侵蚀速率差异也较小。因此,在利用 137 Cs技术示踪农耕地土壤侵蚀速率时,这 4个模型都可以应用。  相似文献   

20.
Field monitoring is necessary for the geotechnical engineer to verify design assumptions. More importantly, the field data may also be assembled into a comprehensive case record that is available for use when checking validity of any analytical and numerical models. The ongoing process of back-analysis in unsaturated soil engineering can help to refine and improve our understanding, providing guidance for future designs, where the effects of soil suction and hydraulic hysteresis are still being explored. A range of recent field studies of the mechanisms of rainfall infiltration into slopes is presented. In addition, some physical simulations of unsaturated soil slopes subjected to rainfall, rising ground water table and changes of moisture in centrifuge model tests are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号