首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
A high-resolution pollen record from a 5-m-long sediment core from the closed-lake basin Laguna Piusbi in the southern Colombian Pacific lowlands of Chocó, dated by 11 AMS14C dates that range from ca. 7670 to 22014C yr B.P., represents the first Holocene record from the Chocó rain forest area. The interval between 7600 and 610014C yr B.P. (500–265 cm), composed of sandy clays that accumulated during the initial phase of lake formation, is almost barren of pollen. Fungal spores and the presence of herbs and disturbance taxa suggest the basin was at least temporarily inundated and the vegetation was open. The closed lake basin might have formed during an earthquake, probably about 440014C yr B.P. From the interval of about 600014C yr B.P. onwards, 200 different pollen and spore types were identified in the core, illustrating a diverse floristic composition of the local rain forest. Main taxa are Moraceae/Urticaceae,Cecropia,Melastomataceae/Combretaceae,Acalypha, Alchornea,Fabaceae,Mimosa, Piper, Protium, Sloanea, Euterpe/Geonoma, Socratea,andWettinia.Little change took place during that time interval. Compared to the pollen records from the rain forests of the Colombian Amazon basin and adjacent savannas, the Chocó rain forest ecosystem has been very stable during the late Holocene. Paleoindians probably lived there at least since 346014C yr B.P. Evidence of agricultural activity, shown by cultivation ofZea maissurrounding the lake, spans the last 1710 yr. Past and present very moist climate and little human influence are important factors in maintaining the stable ecosystem and high biodiversity of the Chocó rain forest.  相似文献   

2.
Pollen evidence from a 350-cm section of a fen in a moraine belt at Rucañancu (39°33′S, 72°18′W) bears on the controversy regarding interpretation of late-glacial and Holocene climate in midlatitude Chile. Earlier pollen studies, indicating a cooling trend between approximately 11,000 and 10,000 yr B.P., disagreed with observations of glacier fluctuations which show continuous glacier wastage and, by inference, warming after 12,500 yr B.P. and possibly earlier, up until Neoglaciation, beginning after 6850 yr B.P. Fossil beetle assemblage data in this time range support the interpretation of climate made from the observed glacier behavior. At Rucañancu, a pollen assemblage containing upper montane podocarp (Podocarpus andinus) in quantities reaching 34% and dating between 10,440 and 10,000 yr B.P. implies a cold climate with summer temperatures possibly 5–8°C lower than today's. Holocene warming began afterward, later than the glacier and beetle records indicate, and continued until at least 8350 yr B.P., as suggested by the sequence of assemblages dominated by Myrtaceae, by Aextoxicon punctatum, and by Gramineae. A subsequent assemblage of Nothofagus obliqua type implies an increase of moisture until 6960 yr B.P., following which N. dombeyi type, under a cool and humid Neoglacial climate, became dominant.  相似文献   

3.
Southern Westerlies during the last glacial maximum   总被引:1,自引:0,他引:1  
Vegetation and climate over approximately the past 13,000 yr are reconstructed from fossil pollen in a 9.4-m mire section at Caleta Róbalo on Beagle Channel, Isla Navarino (54°56′S, 67°38′W), southern Tierra del Fuego. Fifty surface samples reflecting modern pollen dispersal serve to interpret the record. Chronologically controlled by nine radiocarbon dates, fossil pollen assemblages are: Empetrum-Gramineae-Gunnera-Tubuliflorae (zone 3b, 13,000–11,850 yr B.P.), Gramineae-Empetrum-assorted minor taxa (zone 3a, 11,850-10,000 yr B.P.), Nothofagus-Gramineae-Tubuliflorae-Polypodiaceae (zone 2, 10,000–5000 yr B.P.), Nothofagus-Empetrum (zone 1b, 5000-3000 yr B.P.), and Empetrum-Nothofagus (zone 1a, 3000-0 yr B.P.). Assemblages show tundra under a cold, dry climate (zone 3), followed by open woodland (zone 2), as conditions became warmer and less dry, and later, with greater humidity and lower temperatures, by closed forest and the spread of mires (zone 1). Comparisons drawn with records from Antarctica, New Zealand, Tasmania, and the subantarctic islands demonstrate broadly uniform conditions in the circumpolar Southern Hemisphere. The influences of continental and maritime antarctic air masses were apparently considerable in Tierra del Fuego during cold late-glacial time, whereas Holocene climate was largely regulated by interplay between maritime polar and maritime tropical air.  相似文献   

4.
Pollen records from two sites in western Oregon provide information on late-glacial variations in vegetation and climate and on the extent and character of Younger Dryas cooling in the Pacific Northwest. A subalpine forest was present at Little Lake, central Coast Range, between 15,700 and 14,850 cal yr B.P. A warm period between 14,850 and 14,500 cal yr B.P. is suggested by an increase inPseudotsugapollen and charcoal. The recurrence of subalpine forest at 14,500 cal yr B.P. implies a return to cool conditions. Another warming trend is evidenced by the reestablishment ofPseudotsugaforest at 14,250 cal yr B.P. Increased haploxylonPinuspollen between 12,400 and 11,000 cal yr B.P. indicates cooler winters than before. After 11,000 cal yr B.P. warm dry conditions are implied by the expansion ofPseudotsuga.A subalpine parkland occupied Gordon Lake, western Cascade Range, until 14,500 cal yr B.P., when it was replaced during a warming trend by a montane forest. A rise inPinuspollen from 12,800 to 11,000 cal yr B.P. suggests increased summer aridity.Pseudotsugadominated the vegetation after 11,000 cal yr B.P. Other records from the Pacific Northwest show an expansion ofPinusfrom ca. 13,000 to 11,000 cal yr B.P. This expansion may be a response either to submillennial climate changes of Younger Dryas age or to millennial-scale climatic variations.  相似文献   

5.
6.
Lithology, pollen, macrofossils, and stable carbon isotopes from an intermontane basin bog site in southern New Zealand provide a detailed late-glacial and early Holocene vegetation and climate record. Glacial retreat occurred before 17,000 cal yr B.P., and tundra-like grassland–shrubland occupied the basin shortly after. Between 16,500 and 14,600 cal yr B.P., a minor regional expansion of forest patches occurred in response to warming, but the basin remained in shrubland. Forest retreated between 14,600 and 13,600 cal yr B.P., at about the time of the Antarctic Cold Reversal. At 13,600 cal yr B.P., a steady progression from shrubland to tall podocarp forest began as the climate ameliorated. Tall, temperate podocarp trees replaced stress-tolerant shrubs and trees between 12,800 and 11,300 cal yr B.P., indicating sustained warming during the Younger Dryas Chronozone (YDC). Stable isotopes suggest increasing atmospheric humidity from 11,800 to 9300 cal yr B.P. Mild (annual temperatures at least 1°C higher than present), and moist conditions prevailed from 11,000 to 10,350 cal yr B.P. Cooler, more variable conditions followed, and podocarp forest was completely replaced by montane Nothofagus forest at around 7500 cal yr B.P. with the onset of the modern climate regime. The Cass Basin late-glacial climate record closely matches the Antarctic ice core records and is in approximate antiphase with the North Atlantic.  相似文献   

7.
An ∼8000-cal-yr stratigraphic record of vegetation change from the Sierra de Apaneca, El Salvador, documents a mid-Holocene warm phase, followed by late Holocene cooling. Pollen evidence reveals that during the mid-Holocene (∼8000-5500 cal yr B.P.) lowland tropical plant taxa were growing at elevations ∼200-250 m higher than at present, suggesting conditions about 1.0°C warmer than those prevailing today. Cloud forest genera (Liquidambar, Juglans, Alnus, Ulmus) were also more abundant in the mid-Holocene, indicating greater cloud cover during the dry season. A gradual cooling and drying trend began by ∼5500 cal yr B.P., culminating in the modern forest composition by ∼3500 cal yr B.P. A rise in pollen from weedy plant taxa associated with agriculture occurred ∼5000 cal yr B.P., and pollen from Zea first appeared in the record at ∼4440 cal yr B.P. Human impacts on local vegetation remained high throughout the late Holocene, but decreased abruptly following the Tierra Blanca Joven (TBJ) eruption of Volcán Ilopango at ∼1520 cal yr B.P. The past 1500 years are marked by higher lake levels and periodic depositions of exogenous inorganic sediments, perhaps indicating increased climatic variability.  相似文献   

8.
Fossil beetles and pollen were examined from an intermorainal bog at Puerto Edén, Isla Wellington, Chile (latitude 49°08'S, longitude 74°25'W). Wood from near the base of the section has an age of 12 960 ± 150 yr BP. Occurrence of flightless beetle species in the basal peat sample is evidence that some members of the biota survived the last glacial maximum in refugia. The assumption that the Chilean Channels were entirely ice-covered is incorrect. Plants and insects that invaded the deglaciated terrain were those of an Empetrum heathland in which patches of Nothofagus forest were restricted to sheltered locations. The climate supporting the heathland is inferred to have been windier and probably drier than that of the present day. From 13 000 yr BP to 9500 yr BP Nothofagus forest expanded, possibly in response to less windiness and more available moisture. Neither the fossil beetle nor pollen data support a return to significantly colder conditions between 11 000 and 10 000 yr BP at the time of the Younger Dryas Stade. From 9500 to 5500 yr BP the climate was as wet as that of the present day, based on an increased representation of the pollen of moorland plants and of aquatic beetle species. From 5500 to 3000 yr BP the climate was drier, as indicated by the expansion of Empetrum heath and the reduction in mesic habitats. From 3000 yr BP to the present-day mesic habitats dominated as the climate returned to a wetter mode. The alternatively wetter and drier episodes are attributed to latitudinal shifts in the position of storm tracks in the belt of Southern Westerlies.  相似文献   

9.
The palaeoenvironmental history has been studied based on palynology of a sedimentary profile from the Alpes de São Francisco bog (29°29′35′′S, 50°37′18′′W), São Francisco de Paula municipality, Rio Grande do Sul eastern Plateau, extreme Southern Brazil. The results indicate a regional cold and dry climate between 25,000 and 12,500 yr BP, interpreted from the grassland vegetation, forest taxa were present in refuges and the shallow local lake began to fill in. Climatic conditions became more aride after 16,000 yr BP, when grassland became rare. From 12,500 yr BP onwards, the climate began to change and at 11,000–9700 yr BP a warm and moist climate permitted the slight migration of pioneer arboreal taxa from refuges and locally a marsh formation. Between 9700 and 6500 yr BP a warm and dry climate resulted in reduction of grassland, confined the forest in refuges, dried out the marsh. The gradual increase of humidity between 6500 and 4000 yr BP allowed migration of forests from refuges and a bog developed. Between 4000 and 2000 yr BP Araucaria forest spread, indicating moister climate. The local bog expanded. From 2000 yr BP onwards, humid but warmer climate seems to result in a lower reproductive capacity of Araucaria forest taxa limiting its expansion. The bog reached the present-day in a decline condition. The results are compared to previous records from Southern Brazil highlands and some places from Argentina in order to better elucidate the climatic and vegetational history of these important South America areas during the late Quaternary.  相似文献   

10.
A 12,500-yr pollen record from Loon Lake, Wyoming provides information on the climate history of the southwestern margin of Yellowstone National Park. The environmental reconstruction was used to evaluate hypotheses that address spatial variations in the Holocene climate of mountainous regions. Loon Lake lies within the summer-dry/winter-wet climate regime. An increase in xerophytic pollen taxa suggests drier-than-present conditions between ca. 9500 and 5500 14 C yr B.P. This response is consistent with the hypothesis that increased summer radiation and the expansion of the east Pacific subtropical high-pressure system in the early Holocene intensified summer drought at locations within the summer-dry/winter-wet regime. This climate history contrasts with that of nearby sites in the summer-wet/winter-dry region, which were under the influence of stronger summer monsoonal circulation in the early Holocene. The Loon Lake record implies that the location of contrasting climate regimes did not change in the Yellowstone region during the Holocene. The amplitude of the regimes, however, was determined by the intensity of circulation features and these varied with temporal changes in the seasonal distribution of solar radiation.  相似文献   

11.
Pollen in Quaternary deposits from the subtropical Hanjiang Delta records three major phases in the local vegetation and climate history during the last 55,000 yr: (1) a prevalent cool-to-temperate and humid climate at ca. 24,000 14C yr B.P. is indicated by abundant pollen of temperate trees including conifers; (2) between 20,000 and 15,000 14C yr B.P., a cold, dry environment was associated with low sea level during the last glaciation, leading to subaerial exposure, weathering, and interruption of sedimentation, as well as departure from the region of Dacrydium and Sonneratia; (3) a short-term expansion of grassland at ca. 10,300 14C yr B.P. reduced the predominant Lauraceae-Fagaceae evergreen forest, possibly corresponding to the Younger Dryas cooling. The combined data indicate a maximum sea-level rise in the mid-Holocene (7500–4000 14C yr B.P.) and a marine influence in the late Pleistocene at 45,000–20,000 14C yr B.P. The Holocene warming, however, did not bring back moisture-sensitive taxa, indicating high seasonal aridity probably caused by renewed monsoon conditions.  相似文献   

12.
A high-resolution pollen and Pediastrum record, spanning 12,500 yr, is presented for Lake Bayanchagan (115.21°E, 41.65°N, and 1355 m a.s.l.), southern Inner Mongolia. Individual pollen taxa (PT-MAT) and the PFT affinity scores (PFT-MAT) were used for quantitative climatic reconstruction from pollen and algal data. Both techniques indicate that a cold and dry climate, similar to that of today, prevailed before 10,500 cal yr B.P. The wettest climate occurred between 10,500 and 6500 cal yr B.P., at which time annual precipitation was up to 30–60% higher than today. The early Holocene increases in temperature and precipitation occurred simultaneously, but mid-Holocene cooling started at approximately 8000 cal yr B.P., 1500 yr earlier than the drying. Vegetation reconstruction was based on the objective assignment of pollen taxa to the plant functional type. The results suggest that this region was dominated by steppe vegetation throughout the Holocene, except for the period 9200 to 6700 cal yr B.P., when forest patches were relatively common. Inner Mongolia is situated at the limit of the present East Asian monsoon and patterns of vegetation and climate changes in that region during the Holocene probably reflect fluctuations in the monsoon's response to solar insolation variations. The early to middle Holocene monsoon undoubtedly extended to more northern latitudes than at present.  相似文献   

13.
A Late‐glacial–Holocene pollen record was obtained from a 3.96 m sediment core taken from Lake St Clair, central Tasmania. Modern vegetation and pollen analyses formed the basis for interpretation of the vegetation and climate history. Following deglaciation and before ca. 18450 yr BP Podocarpus lawrencei coniferous heath and Astelia–Plantago wet alpine herbfield became established at Lake St Clair. A distinct Poaceae‐Plantago peak occurs between 18450 and 11210 yr BP and a mean annual temperature depression from ca. 6.2°C to 3°C below present is inferred for this period. The marked reduction in Podocarpus and strong increase of Poaceae suggests reduced precipitation levels during the period of widespread deglaciation (ca. 18.5–11 kyr BP). The local Late Pleistocene–Holocene non‐forest to forest biostratigraphical boundary is dated at 11.2 kyr BP. It is characterised by expansion of the subalpine taxa Athrotaxis/Diselma with Nothofagus gunnii, and by the establishment of Nothofagus cunninghamii with Eucalyptus spp. A ‘Phyllocladus bulge’ prior to the expansion of Nothofagus cunninghamii, reported at other Tasmanian sites, is not present at Lake St Clair. Nothofagus cunninghamii cool temperate rainforest peaked at 7800 yr BP, probably under wetter climatic conditions than present. The maximum development of rainforest in the early–middle Holocene may indicate that the temperature was slightly warmer than present, but the evidence is not definitive. The expansion of Eucalyptus spp. and Poaceae after 6000 yr BP may be partly a disclimax effect as a result of Aboriginal burning, but appears also to reflect reduced precipitation. The changes in vegetation and inferred climate can be explained by major changes in synoptic patterns of southern Australia and the adjacent southwest Pacific. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The Gage Street site in Kitchener, Ontario, is a peat/marl sequence representing continuous lacustrine sedimentation from the time of deglaciation (ca. 13,000 yr B.P.) through 6900 yr B.P. Insect, pollen, and plant macrofossil remains isolated from the sediments indicate that from ca. 13,000 to 12,500 yr B.P. the region was characterized by parkland-tundra vegetation existing within thermal conditions more analogous to those today of the midboreal forest. The transition from parkland to coniferous forest at ca. 12,500 yr B.P. occurred within a climate that was only gradually warming. By the time of the spruce/pine transition at 10,500 yr B.P., an insect fauna had become established that is typical of southwestern Ontario today. The replacement of this fauna at ca. 8400 yr B.P. by one characteristic of the lowlands of the east-central United States represents the beginning of Hypsithermal conditions in southern Ontario. Vegetation and insects indicate that the climate continued to gradually warm through the mid-Holocene.  相似文献   

15.
Two sediment cores from Kaiyak and Squirrel lakes in northwestern Alaska yielded pollen records that date to ca. 39,000 and 27,000 yr B.P., respectively. Between 39,000 and 14,000 yr B.P., the vegetation around these lakes was dominated by Gramineae and Cyperaceae with some Salix and possibly Betula nana/glandulosa forming a local, shrub component of the vegetation. Betula pollen percentages increased about 14,000 yr B.P., indicating the presence of a birchdominated shrub tundra. Alnus pollen appeared at both sites between 9000 and 8000yr B.P., and Picea pollen (mostly P. mariana) arrived at Squirrel Lake about 5000 yr B.P. The current foresttundra mosaic around Squirrel Lake was established at this time, whereas shrub tundra existed near Kaiyak Lake throughout the Holocene. When compared to other pollen records from north-western North America, these cores (1) represent a meadow component of lowland. Beringian tundra between 39,000 and 14,000 yr B.P., (2) demonstrate an early Holocene arrival of Alnus in northwestern Alaska that predates most other Alnus horizons in northern Alaska or northwestern Canada, and (3) show an east-to-west migration of Picea across northern Alaska from 9000 to 5000 yr B.P.  相似文献   

16.
In order to establish paleoenvironmental conditions during the late Quaternary, four cores from the Basin of Mexico (central Mexico) were drilled in Chalco Lake, located in the southeastern part of the basin. The upper 8 m of two parallel cores were studied, using paleomagnetic, loss-on-ignition, pollen, and diatom analyses. Based on 11 14C ages, the analyzed record spans the last 19,000 14C yr B.P. Volcanic activity has affected microfossil abundances, both directly and indirectly, resulting in absence or reduction of pollen and diatom assemblages. Important volcanic activity took place between 19,000 and 15,000 yr B.P. when the lake was a shallow alkaline marsh and an increase of grassland pollen suggests a dry, cold climate. During this interval, abrupt environmental changes with increasing moisture occurred. From 15,000 until 12,500 yr B.P. the lake level increased and the pollen indicates wetter conditions. The highest lake level is registered from 12,500 to ca. 9000 yr B.P. The end of the Pleistocene is characterized by an increase in humidity. From 9000 until ca. 3000 yr B.P. Chalco Lake was a saline marsh and the pollen record indicates warmer conditions. After 3000 yr B.P. the lake level increased and human disturbance dominates the lacustrine record.  相似文献   

17.
Charcoal analysis for paleoenvironmental interpretation: A chemical assay   总被引:1,自引:0,他引:1  
Pollen and charcoal analysis of radiocarbon-dated sediment cores from Duck Pond in the Cape Cod National Seashore provide a continuous 12,000-yr vegetation and climate history of outer Cape Cod. A Picea-Hudsonia parkland and then a Picea-Pinus banksiana-Alnus crispa boreal forest association grew near the site between 12,000 and 10,000 yr B.P. This vegetation was replaced by a northern conifer forest of Pinus strobus-P. banksiana, and, subsequently, by a more mesophytic forest (Pinus strobus, Tsuga, Quercus, Fagus, Acer, Ulmus, Fraxinus, Ostrya) as the climate became warmer and wetter by 9500 yr B.P. By 9000 yr B.P. a Pinus rigida-Quercus association dominated the landscape. High charcoal frequencies from this and subsequent levels suggest that the pine barrens association developed during a warmer and drier climate that lasted from 9000 to about 5000 yr B.P. Increased percentages of Pinus strobus pollen indicate a return to moister and cooler conditions by about 3500 yr B.P. A doubled sedimentation rate, increased charcoal, and increased herb pollen suggest land disturbance near the pond before European settlement. These results suggest a rapid warming in the northeast in the early Holocene and support a hypothesis of a rapid sea level rise at that time. Comparison of the pollen results from Duck Pond with those from Rogers Lake, Connecticut, illustrates the importance of edaphic factors in determining the disturbance frequency and vegetation history of an area.  相似文献   

18.
A pollen diagram from Lago di Martignano, a maar lake in central Italy, provides an 11000-year record of vegetation and environment change. The earliest pollen spectra are dominated by Artemisia and Gramineae, representing late glacial steppe vegetation typical of the Mediterranean region. Broad-leaved forests were established by ca. 11 000 yr BP. Although Quercus initially dominated their canopy, a wide range of other mesophyllous trees were also present. Pollen values for sclerophyllous tree and shrub taxa characteristic of Mediterranean woodlands and scrub are initially low (<10%). After ca. 7000 yr BP, however, they begin to increase and rise to a peak of >40% of total land pollen at ca. 6700 yr BP, with Olea europaea the single most abundant taxon. Human influence upon the vegetation only becomes significant somewhat after this peak, with progressive clearance of woodland and expansion of herbaceous communities. Castanea sativa and luglans regia pollen is recorded consistently from the beginning of the rise in pollen values for taxa characteristic of Mediterranean scrub communities. Pollen values for arable crops increase progressively after ca. 5500 yr BP, following the peak pollen values for taxa characteristic of Mediterranean scrub vegetation. Late glacial and Holocene climate changes have been complex in this region, with the present character of the climate developing only during the last millennium. Rates of change of pollen spectra peak during this period.  相似文献   

19.
Four pollen sequences along a transect from north-central Iowa to southeast Wisconsin reveal the distribution of prairie and forest during the Holocene and test the use of pollen isopolls in locating the Holocene prairie-forest border. Prairie was dominant in central Iowa and climate was drier than present from about 8000 to 3000 yr B.P. During the driest part of this period in central Iowa (6500-5500 yr B.P.), mesic forest prevailed in eastern Iowa and Wisconsin, suggesting conditions wetter than at present. Prairie replaced the mesic forest about 5400 yr B.P. in eastern Iowa but did not extend much farther east; mesic forests were replaced in southern Wisconsin and northern Illinois about 5400 yr B.P. by xeric oak forests. This change from mesic to xeric conditions at 5400 yr B.P. was widespread and suggests that the intrusion of drier Pacific air was blocked by maritime tropical air from the Gulf of Mexico until the late Holocene in this area.  相似文献   

20.
Palynological studies undertaken in the mountainous regions of the northwest of the Iberian Peninsula are few in number and have been concerned largely with the second half of the Holocene. New pollen data from two Galician sierras, the Courel and Queixa Sierras, provide a 10000‐yr record of vegetation and climate change. In the Courel Sierra before 9750 yr BP, Laguna Lucenza (1420 m a.s.l.) reflects a period of open landscape covered by Poaceae and heliophilous plants, which may be correlated with the Younger Dryas. The onset of the Holocene is characterised by the expansion of oak woodland, prior to 9300 yr BP, following a short phase of birch along with the gradual decline of pine. The oak values reach a peak at 8350 ± 80 yr BP. Towards 8800 yr BP Corylus begins to expand, followed by Alnus (7500 yr BP) and Ulmus. During this period, the Fraga pollen assemblage (Queixa Sierra, 1360 m a.s.l.) indicates Betula woodland surrounding the site, masking the regional predominance of oak. After 5000 yr BP there is a gradual decrease in arboreal pollen values in both Sierras. Castanea appears in Laguna Lucenza (Courel Sierra) at 4075 ± 75 yr BP. There is widespread deforestation during the last 4000 yr. During this period the presence of large quantities of microcharcoal particles points to the occurrence of fire. The reduction in forest is associated with the arrival of cultivation at 4000 yr BP at low altitudes in the Queixa Sierra. At higher altitudes the first agricultural activity is dated at later than 2000 yr BP. This coincides with the first record of cereal cultivation at high altitude in the Courel Sierra. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号