首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Hydrothermally altered areas forming pyrophyllite‐kaolin‐sericite‐alunite deposits are distributed in Chonnam and Kyongsang areas, Cretaceous volcanic field of the Yuchon Group. The Chonnam alteration area is located within depression zone which is composed of volcanic and granitic rocks of late Cretaceous age. The clay deposits of this area show the genetic relationship with silicic lava domes. The Kyongsang alteration area is mainly distributed within Kyongsang Basin comprising volcanic, sedimentary and granitic rocks of Cretaceous and Tertiary age. Most of the clay deposits of this area are closely related to cauldrons. Paleozoic clay deposit occurs in the contact zone between Precambrian Hongjesa granite gneiss and Paleozoic Jangsan quartzite of Choson Supergroup. Cretaceous igneous rocks of the both alteration areas belong to high K calc‐alkaline series formed in the volcanic arc of continental margin by subduction‐related magmatism. Chonnam igneous rocks show more enrichment of crustal components such as K, La, Ce, Sm, Nd and Ba, higher (La/Yb)cn ratio, and higher initial 87Sr/86Sr ratio (0. 708 to 0. 712) than those of Kyongsang igneous rocks. This might be due to the difference of degree of crustal contamination during Cretaceous magmatism. The most characteristic alteration minerals of Chonnam clay deposits are alunite, kaolin, quartz, pyrophyllite and diaspore which were formed by acidic solution. Those of Kyongsang clay deposits are sericite, quartz and pyrophyllite which were formed by weak acid and neutral solution. The formation ages of the clay deposits of two alteration areas range from 70. 1 to 81. 4 Ma and 39. 7 to 79. 4 Ma, respectively. The Daehyun clay deposit in Ponghwa area of Kyongsang province shows the alteration age range from 290 to 336 Ma. This result shows the different alteration episode from the hydrothermal alteration of Cretaceous to early Tertiary in the Kyongsang and Chonnam alteration areas. These data indicate, at least, three hydrothermal activities of Tertiary (middle to late Eocene), late Cretaceous (Santonian to Maastrichtian) and Paleozoic Carboniferous Periods in South Korea.  相似文献   

2.
Volcanic rocks preserved in the Lampang–Den Chai area in NW Thailand are important components of the giant Paleotethyan igneous belt. Constraining their age and petrogenesis is critical for better understanding their temporal-spatial relationship with the Lancangjiang igneous zone and the Paleotethyan tectonic evolution in SE Asia. The volcanic suite is constituted by intermediate to acid rocks with zircon U–Pb ages of 240.4 ± 1.7 Ma and 240.6 ± 1.9 Ma for the representative andesitic and rhyolitic samples, respectively. Volcanic sequence is dominated by calc-alkaline andesites, dacites and rhyolites. The andesitic and dacitic samples are characterized by high Mg# (37–57) and TiO2 (0.91–1.59 wt%), and can be classified as high-Mg series. They are enriched in LILEs and LREEs and depleted in HFSEs. Representative andesitic samples have 87Sr/86Sr (i) ratios of 0.70398–0.70567, εNd (t) values of +3.6–+3.9, zircon εHf (t) values of +2.8–+8.0 and δ18O values of 7.01–8.11‰, respectively. The rhyolitic samples are characterized by high Mg# (38–70) and low TiO2 (0.25–0.61 wt%). They are enriched in LILEs and LREEs, along with 87Sr/86Sr (i) = 0.70468–0.70645, εNd (t) = +2.0–+4.3 and zircon εHf (t) = +5.7–+13.6. Geochemical signatures suggest that the andesitic and dacitic samples might originate from a newly modified mantle source by slab-derived fluids and recycled sediments, and rhyolitic samples were derived from juvenile mafic crust. It is proposed that the Middle Triassic high-Mg volcanic rocks in the Lampang–Den Chai area formed in response to slab roll-back during transition of tectonic regime from subduction to continental collision between the Sibumasu and Indochina blocks. These rocks constitute part of the Chiang Khong–Lampang–Tak igneous zone, and can northerly link with the Lancangjiang igneous zone and southerly extend to the Chanthaburi, Malaysia and Singapore areas.  相似文献   

3.
The Sawuershan region, one of the important gold metallogenic belts of Xinjiang, is located in the western part of the Kalatongke island arc zone of north Xinjiang, NW China. There are two gold deposits in mining, namely the Kuoerzhenkuola and the Buerkesidai deposits. Gold ores at the Kuoerzhenkuola deposit occur within Carboniferous andesite and volcanic breccias in the form of gold‐bearing quartz–pyrite veins and veinlet groups containing native gold, electrum, pyrite, pyrrhotite and chalcopyrite. Gold ores at the Buerkesidai deposit occur within Carboniferous tuffaceous siltstones in the form of gold‐bearing quartz veinlet groups and altered rocks, with electrum, pyrite and arsenopyrite as major metallic minerals. Both gold deposits are hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite–sericite zone and an outer chlorite–calcite–epidote zone between orebodies and wall rocks. δ34S values (0.3–1.3‰) of pyrite of ores from Kuoerzhenkuola deposit are similar to those (0.4–2.9‰) of pyrite of ores from Buerkesidai deposit. δ34S values (1.1–2.8‰) of pyrite from altered rocks are similar to δ34S values of magmatic or igneous sulfide sulfur, but higher than those from ores. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb data of sulfide from ores range within 17.72–18.56, 15.34–15.61, and 37.21–38.28, respectively. These sulfur and lead isotope compositions imply that ore‐forming materials might originate from multiple, mainly deep sources. He and Ar isotope study on fluid inclusions of pyrites from ores of Kuoerzhenkuola and Buerkesidai gold deposits produces 40Ar/36Ar and 3He/4He ratios in the range of 282–525 and 0.6–9.4 R/Ra, respectively, indicating a mixed source of deep‐seated magmatic water (mantle fluid) and shallower meteoric water. In terms of tectonic setting, the gold deposits in the Sawuershan region can be interpreted as epithermal. These formations resulted from a combination of protracted volcanic activity, hydrothermal fluid mixing, and a structural setting favoring gold deposition. Fluid mixing was possibly the key factor resulting in Au deposition in the gold deposits in Sawuershan region.  相似文献   

4.
Abstract: The Mesozoic potash‐rich volcanic rocks which hosted several gold or gold (copper) deposits are widely distributed around the Yishu deep fault zone, eastern China. Lithologically, these rocks include basaltic trachyandesite, trachyandesite, latite and trachyte, of which the trachyandesite and latite are the predominant rock types. Whole‐rock Rb‐Sr isochron ages and 40Ar‐39Ar plateau dates of them are 108.2 ? 119.6 Ma and 114.7 ? 124.3 Ma, respectively. Chemically, they are characterized by high and variable Al2O3 contents, high K2O+Na2O values, and high K2O/Na2O and Fe2O3/FeO ratios. The rocks also have enriched LILE and LREE concentrations, low HFSE abundance, and display extraordinary Sr‐Nd isotope signatures (ISr = 0.7084 ? 0.7125, εNd(t) = ‐9.43 ? ?18.07). Integrated geological and geochemical data suggest that they were formed in a continental‐arc setting and most likely originated from the partial melting of enriched mantle which was induced by source contamination of subducted continental crustal materials. Gold (copper) deposits in this district are closely related to Mesozoic volcanic‐subvolcanic magmatism. They are frequently located either at the margin or adjacent to the volcanic basins. Most of them are spatially associated with maar‐diatreme systems and/or flow‐dome complexes. The formations of two gold (copper) deposits, the Qibaoshan breccia pipe‐porphyry type Au‐Cu deposit and the Guilaizhuang tellurium‐gold type epithermal Au deposit, have been proved to be in close relation with potash‐rich magmatism. The genetic relations between potash‐rich magmatism and Cu‐Au mineralization is still quite unclear. Detailed review of the previous works demonstrates that the high contents of volatiles (such as H2O, CO2, S, F and Cl, especially F and Cl) and the high oxidation state of the potash‐rich magmas may be the main favorable factors for the formation of the Cu‐Au deposits.  相似文献   

5.
Miocene igneous rocks in the 1,600 km-long E–W Gangdese belt of southern Tibet form two groups separated at longitude ~89° E. The eastern group is characterized by mainly intermediate–felsic calc-alkaline plutons with relatively high Sr/Y ratios (23 to 342), low (87Sr/86Sr)i ratios (0.705 to 0.708), and high εNdi values (+5.5 to ?6.1). In contrast, the western group is characterized by mainly potassic to ultrapotassic volcanic rocks with relatively high Th and K2O contents, low Sr/Y ratios (11 to 163), high (87Sr/86Sr)i ratios (0.707 to 0.740), and low εNdi values (?4.1 to ?17.5). The eastern plutonic group is associated with several large porphyry Cu–Mo ± Au deposits, whereas the western group is largely barren. We propose that the sharp longitudinal distinction between magmatism and metallogenic potential in the Miocene Gangdese belt reflects the breakoff of the Greater India slab and the extent of underthrusting by the Indian continental lithosphere at that time. Magmas to the east of ~89° E were derived by partial melting of subduction-modified Tibetan lithosphere (mostly lower crust) triggered by heating of hot asthenospheric melt following slab breakoff. These magmas remobilized metals and volatile residual in the crustal roots from prior arc magmatism and generated porphyry Cu–Mo ± Au deposits upon emplacement in the upper crust. In contrast, magmas to the west of ~89° E were formed by smaller volume partial melting of Tibetan lithospheric mantle metasomatized by fluids and melts released from the underthrust Indian plate. They are less hydrous and oxidized and did not have the capacity to transport significant amounts of metals into the upper crust.  相似文献   

6.
In the Sierras Pampeanas of San Luis, Argentina, Late Tertiary volcanic rocks extend along a 80-km NW-SE-trending belt, between La Carolina and Sierra del Morro. Several gold deposits, among which those in the western end of the belt are better known, are genetically related to the volcanic rocks, formed during a volcanic episode that occurred between 9.5 Ma and 1.9 Ma. Located 600 km from the Peru-Chile trench, the volcanic belt represents the easternmost and youngest mineralized magmatic manifestation associated with the shallowing of the Nazca plate in the flat-slab Andean segment extending from 28° to 33° S Lat.

The volcanic complex includes lavas and volcaniclastic rocks. Small-volume lavas were emplaced as domes, flows, and dikes. Pyroclastic deposits are associated with them in certain areas, such as at La Carolina, Cerro Tiporco, and Sierra del Morro. At La Carolina, phreatomagmatic breccias and base-surge deposits define a maar-diatreme volcanic setting. At Cerro Tiporco and Sierra del Morro, the volcaniclastic units are related to the formation of calderas. Mesosilicic magmas (SiO2 = 59% to 68%) belong to normal to high-K calc-alkaline and shoshonitic magma types. At both local and regional scales, K enrichment accompanies progressively decreasing age. Although the volcanic rocks differ from the typical Andean series, some geochemical features, such as Ta and Ti depletion, high large-ion-lithophile-element (LILE) contents, and arc-like Ba/La and La/Ta ratios, indicate an arc signature.

In the La Carolina zone, the most important mineralization is the La Carolina volcanic-hosted, low-sulfidation, epithermal gold deposit. Here, several gold and base-metal-bearing epithermal veins cut basement rocks. In the Canada Honda district, the most important mineral deposits are the Diente Verde gold-rich porphyry copper deposit and low-sulfidation epithermal gold and base-metal veins hosted by both basement and coeval volcanics.

There is no strong evidence of gold-bearing mineral deposits on the eastern side of the volcanic belt. However, there are hydrothermal alteration zones at Cerros del Rosario and El Morro as well as traces of gold at the Santa Isabel calcareous onyx deposit and inside the Sierra del Morro caldera. In addition, favorable volcanic structures, such as the calderas at Tiporco, Cerro Lomita, and El Morro, make the eastern side of the belt an interesting target for mineral exploration.  相似文献   

7.
The Kooh-Shah region located in a Tertiary volcanic-plutonic belt of the Lut Block in eastern Iran comprises several subvolcanic intermediate to acidic intrusive rocks, diorite to syenite in composition, which have intruded into volcanic rocks. The Kooh-Shah granitoid rocks are characterized by enrichment in large ion-lithophile elements (LILE: e.g. Sr, Ba, Rb) and depletion in high field-strength elements (HFSE: e.g. Nb, Ta, Ti). The chondrite-normalized REE patterns are characterized by moderate LREE enrichment (La/Yb)N=6.01-10.01, medium-heavy REE enrichment, and absence of Eu anomalies. The Kooh-Shah intrusive rocks are metaluminous, shoshonitic with calc-alkaline affinity and high values of magnetic susceptibility, and classified as the magnetite-series of oxidant I-type granitoids. The age of Kooh-Shah granitoid rocks based on zircon U-Pb age dating is 39.7±0.7 Ma (=Middle Eocene) and the ranges of their initial 87Sr/86Sr and 143Nd/144Nd ratios are from 0.704812 to 0.704920 and 0.512579 to 0.512644, respectively, when recalculated to an age of 39 Ma. The initial ?Nd isotope values for the Kooh-Shah intrusive rocks range from -0.18 to 1.09. This geochemical data indicates that the Kooh-Shah granitoid rocks formed from depleted mantle in an island arc setting. The geochemical signature of the studied granitoid rocks represents a characteristic guide for future exploration of copper-gold porphyry-type deposits in the Lut block.  相似文献   

8.
Remnants of the Proto-Tethys are mainly preserved in the region between south of the North China-Tarim Block and north of Qiangtang-Sibumasu/Baoshan Blocks. Magmatic-metallogenic events related to the Proto-Tethyan subductions were rarely reported, and the subduction history and polarity of the Proto-Tethyan are still under debate. Here, we presented new data of zircon UPb ages, whole-rock Sr–Nd–Pb isotopes, major and trace elements and zircon Hf isotopes for the volcanic rocks in the northeastern Altyn Mountains. Information of over 14 volcanic-hosted deposits/prospects in the region has been compiled. These volcanic ore hosts consist mainly of basaltic andesite, andesite, dacite and rhyolite rocks. The andesite and rhyolite rocks are newly zircon UPb dated to be Late Cambrian-Early Ordovician (andesite: 490.5 ± 5.2 Ma; rhyolite: 492.6 ± 2.9 Ma and 491.6 ± 5.6 Ma), representing the timing of volcanism and VMS (Volcanogenic Massive Sulfide) mineralization. All the volcanic rocks belong to the high-K calc-alkaline and shoshonite series: the andesite rocks from the Kaladawan area in north of the region display arc geochemical affinities and contain (87Sr/86Sr)i (0.7082–0.7083) and εNd(t) (−9.7 to −7.6), indicating that they were likely formed by partial melting of the mantle wedge with subducted sediment inputs. The rhyolite rocks from the Kaladaban area in south of the region are characterized by high SiO2 (64.46–78.55 wt%), low alkali (Na2O + K2O, 3.46–7.17 wt%), and contain (87Sr/86Sr)i (0.7063–0.7095), εNd(t) (−6.6 to −1.5), and zircon εHf(t) (−5.5 to 5.4), indicating that they were likely derived from partial melting of the lower crust with depleted mantle inputs. Rock assemblage and geochemistry suggest that volcanic rocks in the northeastern Altyn Mountains may have formed in a continental arc setting. Their spatial distributions with respect to the ophiolites in the region suggest that the subduction was likely south-dipping. This subduction-related arc magmatism may have formed the many important VMS and porphyry–skarn deposits in the region.  相似文献   

9.
The Sandaowanzi (>22t Au) and Beidagou (>5t Au) tellurium–gold deposits are located in the northeastern Central Asian Orogenic Belt (Heilongjiang Province, NE China). The ore-hosting volcanic rocks unconformably overly monzogranite and were intruded by adakitic granodiorite. In this study, we report new-age, geochemical, and Sr–Nd–Pb isotopic data to elucidate the genetic link between the igneous rocks and the Te–Au mineralization. New-age data indicate that local magmatism occurred in the Early Jurassic (ca. 177.2 Ma) and Early Cretaceous (ca. 118.7 ? 122.0 Ma). Geochemically, the igneous rocks are enriched in LREEs, Pb, K, and U, and depleted in Nb, P, and Ti, showing calc-alkaline affinity. The Early Jurassic monzogranite rocks are featured by 87Sr/86Sr = 0.7111?0.7118; εNd(t) = ?4.6 to ?4.7; 206Pb/204Pb = 18.098?18.102, 207Pb/204Pb = 15.558?15.580, and 208Pb/204Pb = 37.781?37.928, whereas the Early Cretaceous adakitic granodiorite contains: 87Sr/86Sr = 0.7071?0.7073; εNd(t) = ? 3.4 to ?3.2; 206Pb/204Pb = 17.991?18.080, 207Pb/204Pb = 15.483?15.508, and 208Pb/204Pb = 37.938?37.985. Initial isotopic ratios for the Early Cretaceous volcanic rocks: 87Sr/86Sr = 0.7061?0.7087; εNd(t) = ? 3.6 to ?2.9; 206Pb/204Pb = 18.136?18.199, 207Pb/204Pb = 15.512?15.628, and 208Pb/204Pb = 38.064?38.155. The pyrite, chalcopyrite, and telluride grains yielded δ34S of ?6.52 ‰ to 2.13 ‰ (mean = ? 0.82 ‰) and δ13CPDB of the calcite samples are in the range of ?6.64 ‰ to ?5.24 ‰, implying the ore materials were derived from mantle. The geochemical and isotopic results indicate that primary melts of Late Mesozoic magmatic rocks have features by partial melting of the continental crust. The adakitic rocks may have been the products of the thickened lower crustal delamination and the subsequent asthenospheric upwelling during the intra-continental extension in NE China. Regionally, intrusive activity and molybdenum mineralization during the Jurassic was affected by subduction setting, whereas gold mineralization was controlled by the Early Cretaceous tectonothermal events associated with a superposition extension.  相似文献   

10.
Uranium–Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu–Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (εNd(t) range from + 3.1 to + 7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have < 1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu–Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium–Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu–Au deposits are ~ 372 Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu–Au mineralization are ~ 366 Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu–Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu–Au deposits from younger magmatic suites in the district.  相似文献   

11.
The volcanic rock system of the Miaoling Formation contains the main ore-bearing rocks of two volcanogenic massive sulfide (VMS)-type deposits in the Yanbian area of NE China. Investigation of the VRSMF is needed to better understand the formation of these VMS-type deposits and the tectonic evolution of the Yanbian area. To determine the petrogenesis, material sources, and formation age of the VRSMF, and elucidate its late Paleozoic tectonic evolution and metallogenic significance, this paper presents new petrological, geochronological, geochemical, whole-rock Sr–Nd and in situ zircon Hf isotopic data for the VRSMF. The VRSMF is composed of marine carbonate, intermediate–felsic volcanic rocks (andesite–trachyandesite–dacite) and pyroclastic rocks. Laser-ablation–inductively coupled plasma–mass spectrometry zircon U–Pb dating gives an eruption age of ca. 265 Ma for the pyroclastic rocks in the VRSMF. These rocks are classified as low- to medium-K calc-alkaline series. They are characterized by enrichments in large-ion lithophile elements (e.g., K, Rb, and Ba) and light rare earth elements, and depletions in high field-strength elements (e.g., Nb, Ta, and Ti) and heavy rare earth elements, showing affinity to igneous rocks formed in arc-related tectonic settings. These features, together with homogeneous zircon εHf(t) values of 10.9–15.7 and depleted Sr–Nd isotopic compositions [εNd(t) values of 2.4–5.0], suggest that the parental magma was derived from the partial melting of depleted mantle that had been metasomatized by subduction-related fluids. These results, along with findings of regional geological investigations, suggest that the formation of the VRSMF was related to subduction of the Paleo-Asian oceanic plate during the middle Permian. The VMS-type mineralization in the Hongtaiping and Dongfengnanshan deposits is interpreted to have formed in a bimodal–felsic setting in a back-arc extensional tectonic environment.  相似文献   

12.
以沙坪沟钼矿主要的赋矿岩石——石英正长岩和花岗斑岩为对象,通过对比不同蚀变强度岩石的岩相学、岩石地球化学和同位素特征,研究该矿床的钾质交代作用-矿化特征,探讨不同热液蚀变的元素组合、蚀变过程中的元素迁移和Sr-Nd同位素的变化及其成因、不同蚀变的物理化学条件差异及其与矿化的关系,进而揭示蚀变-成矿热液流体的特征和起源。研究表明,石英正长岩和花岗斑岩的地球化学特征总体相似,显示其属同源岩浆演化产物,二者均受到钾质蚀变,但蚀变强度相差较大。钾质蚀变岩石的化学成分表现为高K_2O、Rb和低Na_2O、CaO、Sr、Ba,不同蚀变强度的岩石Rb/Sr和Sr同位素组成差别较大,花岗斑岩样品数据更显离散,甚至出现异常低的锶同位素初始值,表明热液蚀变强烈改造了Rb-Sr同位素体系,而Sm-Nd体系基本保持稳定。这一现象在东秦岭-大别钼矿带中典型的斑岩钼矿床也有出现,显示该成矿带具有相似的蚀变类型、热液起源和演化特征。而且钾长石化后期至黄铁云(绢)英岩化阶段也是最主要的钼成矿期,表明这期间流体系统pH值的降低致使Mo元素从流体中沉淀成矿。对比斑岩铜、铜-钼矿床和钼矿床的蚀变特征及其过程中元素和同位素的变化可以发现,这3种矿床均发育碱质交代作用,但蚀变强度、热液的Rb-Sr分异程度及其对原岩的改造程度存在较大差异,这暗示了各自特有的成岩、成矿物质和流体来源及大地构造背景。  相似文献   

13.
The paper discusses geological, mineralogical, petrographic, and geochemical data on the Ureg Nuur volcanoplutonic association of high-Mg volcanic and subvolcanic rocks located among Vendian–Cambrian accretionary structures in the Mongolian Altay. These rocks have a high potassium alkalinity (K2O/Na2O up to 1.2), are enriched in LILE and Sr, and have negative Zr–Hf and Nb anomalies in multielement spectra; this confirms the suprasubduction type of the source of melts. The geological setting and established age (512.4 ± 6.1 Ma, 39Ar–40Ar dating of biotite phenocrysts) evidence picritic magmatism at the accretionary stage of the development of the Altay fragment of the Paleoasian ocean. This indicates a large igneous province related to a mantle plume.  相似文献   

14.
The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.  相似文献   

15.
Mineral chemistry, major and trace elements, and 87Sr/86Sr ratios are presented for 29 igneous rocks dredged from the northern portion of the Izu-Ogasawara arc. These rocks are compositionally bimodal. Basement gabbro and trondhjemite from the arc are extremely poor in K2O (0.05–0.19%) and Rb (0.48–0.62 ppm), and their REE patterns and Sr isotope ratios indicate that there are island arc tholeiites. Quaternary volcanic rocks from the present volcanic front (Shichito Ridge; active arc), back-arc seamounts (east side; inactive arc) and Torishima knoll between the two back-arc depressions (incipient back-arc basins) behind the active arc have the same geochemical characteristics as the above plutonic rocks though they are not as depleted in K and Rb. Rhyolite pumice from the backarc depression is also the depleted island arc tholeiite, whereas basalts from the depression have compositions that are transitional between MORB and island arc tholeiites in trace element (Ti, Ni, Cr, V, Y and Zr) and mineral chemistries. The back-arc depression basalts have relatively high BaN/CeN(0.66–1.24), Cen/YbN(1.1–1.9) and K/Ba(45–105) and low 87Sr/86Sr (0.70302–0.70332) and Ba/Sr (0.1–0.2), which are similar to other back-arc basin basalts and E-type MORB, but are quite unlike the depleted island arc tholeiites. The diverse trace element and Sr isotope compositions of basalt-andesite from the back-arc depressions imply the interplay between E-type MORB and island arc tholeiite. These chemical characteristics and the relationships of (Ce/Yb)N vs (Ba/Ce)N and (Ce/Yb)N vs 87Sr/86Sr suggest that the back-arc depression magmas are generated by mixing of E-type MORB and depleted island arc tholeiite magmas. Geochemical characters of the associated rhyolite from the depression are compatible with partial melting of lower crust.  相似文献   

16.
东安金矿床是环太平洋成矿域的一处大型低硫型浅成低温热液金矿床,赋存于燕山期碱长花岗岩和中酸性火山岩中。本文通过LA-ICP-MS锆石U-Pb同位素定年,获得赋矿的碱长花岗岩和光华组流纹岩的加权平均年龄分别为183.2±1.3Ma和109.1±1.2Ma,表明碱长花岗岩的侵位年代为早侏罗世,光华组火山岩的喷出时代为早白垩世。在地球化学组成上,东安碱长花岗岩具高硅、高钾和低磷的特征,富集Rb、Th和K,亏损Nb、Ta、Sr、P和Ti,属于高分异的I型花岗岩,是太平洋板块俯冲作用的产物。光华组中酸性火山岩富集Rb、Th、U和K,亏损Nb、Ta、P和Ti,为太平洋板块俯冲方向发生改变后的岩石圈伸展减薄环境下,镁铁质下地壳部分熔融而形成的。东安金矿床成矿年龄(107~108Ma)与光华组火山岩的成岩年龄在误差范围内一致,表明成矿与成岩作用为同一地质事件,均形成于早白垩世太平洋板块俯冲背景下的拉张构造环境中。结合区内其他浅成低温热液型金矿床的赋矿围岩特征,认为早白垩世陆相火山岩是东北地区寻找浅成低温热液金矿床的有利场所。  相似文献   

17.
Zircon U–Pb ages, geochemical and Sr–Nd isotopic data are presented for the late Carboniferous Baoligaomiao Formation (BG Fm.) and Delewula Formation (DW Fm.) volcanic rocks, widely distributed in northern Inner Mongolia, in the northern part of the Xing'an–Mongolia Orogenic Belt (XMOB). The BG Fm. rocks mainly consist of basaltic andesites and andesites while the DW Fm. rocks include dacites, trachytes, rhyolites, pyroclastic rocks and minor andesites. New LA-ICPMS zircon U–Pb analyses constrain their eruption to late Carboniferous (317–322 Ma and 300–310 Ma, respectively). The BG Fm. volcanic rocks are characterized by enriched large ion lithophile elements (LILE) and depleted high field strength elements (HFSE), with initial 87Sr/86Sr ratios of 0.70854–0.70869 and negative εNd(t) (− 2.1 to − 2.4) values. They have low La/Ba (0.03–0.05), high La/Nb (2.05–3.70) ratios and variable Ba/Th (59.5–211) ratios. Such features suggest that they are derived from melting of heterogeneous sources including a metasomatized mantle wedge and Precambrian crustal material. The DW Fm. volcanic rocks are more depleted in HFSE with significant Nb, Ta, P, Ti anomalies. They have high initial 87Sr/86Sr ratios (0.72037–0.72234) and strong negative εNd(t) (− 11 to − 11.6) values which indicate those igneous rocks were mainly derived from reworking of the Paleoproterozoic crust. The late Carboniferous volcanic rocks have geochemical characteristics similar to those of the continental arc rocks which indicate the northward subduction of the Paleo Asian Ocean may have continued to the late Carboniferous. The volcanic association of this study together with the early Permian post-collisional magmatic rocks suggests that a tectonic transition from subduction-related continental margin arc volcanism to post-collisional magmatism occurred in the northern XMOB between the late Carboniferous and the early Permian.  相似文献   

18.
Eastern Iran has great potential for the discovery of different types of mineralization. The study area encompasses Tertiary magmatism in the northern Lut block located in northern Khur, South Khorasan, eastern Iran and is mostly covered by volcanic rocks, which are intruded by porphyritic subvolcanic intrusions in some places. Application of the spectral angle mapper (SAM) technique to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images detected sericitic, argillic, and propylitic alterations, silicification, and secondary iron oxides. The alteration is linear and associated within vein-type mineralization. Twelve prospective areas are selected for detailed exploration and based on our processing results, in addition to NW-SE faults, which are associated with Cu mineralization indications, NE-SW faults are also shown to be important. Based on the presence of subvolcanic rocks and numerous Cu ± Pb-Zn vein-type mineralizations, extensive alteration, high anomaly of Cu and Zn (up to 100 ppm), the age (43.6 to 31.4 Ma) and the initial 87Sr/86Sr ratio (0.7047 to 0.7065) of the igneous rocks, and the metallogenic epoch of the Lut block (middle Eocene-lower Oligocene) for the formation of porphyry Cu and epithermal deposits, the studied area shows great potential for porphyry copper deposits.  相似文献   

19.
Extensional-tectonic processes have generated extensive magmatic activity that produced volcanic/plutonic rocks along an E-W-trending belt across north-western Turkey; this belt includes granites and coeval volcanic rocks of the Ala?amdağ volcano-plutonic complex. The petrogenesis of the Early Miocene Ala?amdağ granitic and volcanic rocks are here investigated by means of whole-rock Sr–Nd isotopic data along with field, petrographic and whole-rock geochemical studies. Geological and geochemical data indicate two distinct granite facies having similar mineral assemblages, their major distinguishing characteristic being the presence or absence of porphyritic texture as defined by K-feldspar megacrysts. I-type Ala?amdağ granitic stocks have monzogranitic-granodioritic compositions and contain a number of mafic microgranular enclaves of monzonitic, monzodioritic/monzogabbroic composition. Volcanic rocks occur as intrusions, domes, lava flows, dykes and volcanogenic sedimentary rocks having (first episode) andesitic and dacitic-trachyandesitic, and (second episode) dacitic, rhyolitic and trachytic-trachydacitic compositions. These granitic and volcanic rocks are metaluminous, high-K, and calc-alkaline in character. Chondrite-normalised rare earth element patterns vary only slightly such that all of the igneous rocks of the Ala?amdağ have similar REE patterns. Primitive-mantle-normalised multi-element diagrams show that these granitic and volcanic rocks are strongly enriched in LILE and LREE pattern, high (87Sr/86Sr)i and low ε Nd(t) ratios suggesting Ala?amdağ volcano-plutonic rocks to have been derived from hybrid magma that originated mixing of co-eval lower crustal-derived more felsic magma and enriched subcontinental lithospheric mantle-derived more mafic magmas during extensional processes, and the crustal material was more dominant than the mantle contribution. The Ala?amdağ volcano-plutonic complex rocks may form by retreat of the Hellenic/Aegean subduction zone, coinciding with the early stages of back-arc extension that led to extensive metamorphic core-complex formation.  相似文献   

20.
ABSTRACT

The West Junggar region, located in the Central Asian Orogenic Belt (CAOB), is characterized by extensive Carboniferous magmatism and porphyry Cu (-Au) deposits. The Shiwu porphyry Cu-Au deposit, located in the east of the Barluk Mountains, the West Junggar region, is not only a newly discovered deposit but also a representative porphyry Cu-Au deposit in this area. The volcanic rocks (including andesite and tuff) and intrusive rocks (including diorite, quartz diorite, quartz diorite porphyry, and tonalite porphyry) occurred in the Shiwu area and the mineralization associated with the quartz diorite porphyry. The secondary ion mass spectrometry (SIMS) zircon U–Pb ages of quartz diorite porphyry and tonalite porphyry are 310.4 ± 2.3 Ma and 310.1 ± 2.4 Ma, respectively, indicating that the Shiwu deposit is related to the Late Carboniferous magmatism. Intrusive rocks, which were characterized by the enrichment of large ion lithophile elements (LILEs) and pronounced negative high field strength elements (HFSEs), belong to the calc-alkaline or tholeiitic series. Their (87Sr/86Sr)i, (143Nd/144Nd)I, and εNd(t) values range from 0.703569 to 0.704311, 0.512488 to 0.512512, and 4.9 to 5.3, respectively. Volcanic rocks, which belong to the calc-alkaline series, have similar geochemical features as the intrusive rocks, and their (87Sr/86Sr)i, (143Nd/144Nd)i, and εNd(t) values, respectively, are 0.703704–0.704071, 0.512520–0.512542, and 5.49–5.92. These characters indicate that the igneous rocks in the Shiwu area derived dominantly from the mantle and formed in an island arc setting. These characters also further confirmed that the Barluk Mountains is still in an island arc setting in the Late Carboniferous and the accretionary orogenesis can exist until 310 Ma at least.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号