首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
How and how fast do hillslope soils form as the landscape’s morphology changes over time? Here results are shown from an ongoing study that simultaneously examines the morphologic and geochemical evolution of soil mantled hillslopes that have been exposed to distinctively different denudation history. In Northern Sierra Nevada, California, the authors are investigating a tributary basin to the Middle Fork Feather River. A major incision signal from the river is well marked in a knickpoint within the tributary basin which stretches from its mouth to the Feather River at an elevation of ~700 m to the plateau at an elevation of ~1500 m. Hillslopes are significantly steeper below the knickpoint. The area’s total denudation rates are currently being constrained using cosmogenic radio nuclides, but a previous study suggested an order of magnitude difference in total denudation rates below and above the knickpoint. When compared with topographic attributes calculated from LIDAR data, physical erosion rates can be modeled as a linear function of ridge top curvature. Surprisingly, over the wide range of total denudation rates, soil thicknesses do not vary significantly until a threshold point where soil mantled landscapes abruptly shift to bedrock dominated landscapes. Bioturbation by tree falls appear to buffer soil thickness over the wide range of physical soil erosion rates. From three hillslopes with different physical erosion rates, the concentrations of Zr, which were considered conserved during dissolution and leaching, were determined and used as a proxy for the degree of mass losses via chemical denudation. There is a general trend that colluvial soils along the hillslopes with lower physical erosion rates are enriched in fine size fractions, Zr, and pedogenic crystalline Fe oxides. Likewise, the saprolites show greater degrees of chemical denudation at the sites above the knickpoint, presumably because of the saprolites’ longer turnover time in the slowly eroding landscapes. In the two steep hillslopes below the knickpoint, no significant or systematic topgraphic trends were found for soil geochemistry. However, soils show increasing Zr enrichment in the downslope direction in the hillslope above the knickpoint, which suggests a critical denudation rate beyond which soils’ turnover time is too short to develop a geochemical catena. As detailed CRN-based soil production rates and catchment scale denudation rates are acquired, the data will be combined with a mass balance model to calculate the rates of chemical denudation and weathering in soils and saprolites along the denudation gradient.  相似文献   

2.
The High Himalaya is a key area for tectonic, geomorphological and climate studies, because of its extreme relief and location at the transition zone between areas with abundant monsoonal precipitation and the arid/semiarid Tibetan Plateau. We present 10Be surface exposure ages on 22 boulders from the Annapurna area in Nepal. The ages improve understanding of the Late Quaternary landscape history and the geomorphological processes operating in this part of the Himalaya.Although our study is reconnaissance in nature, it highlights the importance of catastrophic events, such as landslides and debris flows, for denudation of high mountains. Holocene exposure ages for the Dhampu–Chooya landslide (~4.1 ± 0.6 ka) and for 600 m of alluviation in Kali Gandaki Valley (~2.1 ± 0.6 ka), for example, indicate the frequent occurrence and extent of catastrophic events and their implications for natural hazards. We also offer an explanation for the differences in Late Quaternary glacial chronologies at closely spaced study sites in the Nepal Himalaya. Topographically controlled and spatially variable precipitation in the Himalaya determines the sensitivity of glaciers to changes in temperature and precipitation. Accordingly, some glaciers advanced in-phase with Northern Hemisphere ice sheets, whereas others reached their maximum extent at times of increased monsoonal precipitation during Marine Isotope Stage 3 and the early Holocene.  相似文献   

3.
Low-temperature thermochronological data from two profiles across central Madagascar give apatite fission track and apatite (U–Th)/He ages ranging between 258 Ma and 176 Ma and from 239 Ma to 48 Ma, respectively. Thermal models derived from these data, as well as modelling of basement denudation and the sedimentary record, indicate that first order topography of central Madagascar developed mainly due to flexural uplift during Mesozoic times. This was in response to successive erosion and depositional loading associated with the sedimentation in the Morondava and Majunga basins, both of which are now exposed along the western margin of Madagascar. Our data suggest that the eastern margin of the island had a similar denudation history and was probably at a similar topographic level before the late Cretaceous break-up of Madagascar and the India/Seychelles block. Cretaceous normal faulting, without major amounts of denudation, led to the development of the present east coast topography defined by a tectonically juvenile escarpment. In the centre of the island Cenozoic tectonics and volcanism has had a minor and localised influence on the landscape of central Madagascar.  相似文献   

4.
《Quaternary Science Reviews》2007,26(17-18):2247-2264
In the semiarid loess regions, slackwater deposition of overbank flooding over the piedmont alluvial plains was episodic and alternated with dust accumulation and soil formation throughout the Holocene. The records of past hydrological events are therefore preserved within the architecture of loess and soils and are protected from subsequent erosion and destruction. Several Holocene loess–soil sequences with the deposits of overbank flooding over the semiarid piedmont alluvial plains in the southeast part of the middle reaches of the Yellow River drainage basin were investigated by field observation, OSL and C14 dating, measurement of magnetic susceptibility, particle-size distribution and chemical elements. This enables the reconstruction of a complete catalog of Holocene overbank flooding events at a watershed scale and an investigation of hydrological response to monsoonal climatic change as well. During the Holocene, there are six episodes of overbank flooding recorded over the alluvial plain. The first occurred at 11,500–11,000 a BP, i.e. the onset of the Holocene. The second took place at 9500–8500 a BP, immediately before the mid-Holocene Climatic Optimum. After an extended geomorphic stability and soil formation, the third overbank flooding episode came at about 3620–3520 a BP, i.e. the late stage of the mid-Holocene Climatic Optimum, and the floodwater inundated and devastated a Bronze-age town of the Xia Culture built on the alluvial plain, and therefore the town was abandoned for a period of ca 100 years. During the late Holocene, the alluvial plain experienced three episodes of overbank flooding at 2420–2170, 1860–1700 and 680–100 a BP, respectively. The occurrence of these overbank flooding episodes corresponds to the anomalous change in monsoonal climate in the middle reaches of the Yellow River drainage basin when rapid climate change or climatic decline occurs. During at least the last four episodes, both extreme floods and droughts occurred and climate departed from its normal condition, which was defined as a balanced change between the northwestern continental monsoon and southeastern maritime monsoon over time. Great floods occurred as a result of extreme rainstorms in summers caused by rare intensive meridianal airflows involving northwestward moving tropical cyclone systems from the Pacific. These results could be applied to improve our understanding of high-resolution climatic change, and of hydrological response to climatic change in the semiarid zones.  相似文献   

5.
We employed X-ray diffraction methods to quantify clay mineral assemblages in the Indus Delta and flood plains since ~ 14 ka, spanning a period of strong climatic change. Assemblages are dominated by smectite and illite, with minor chlorite and kaolinite. Delta sediments integrate clays from across the basin and show increasing smectite input between 13 and 7.5 ka, indicating stronger chemical weathering as the summer monsoon intensified. Changes in clay mineralogy postdate changes in climate by 5–3 ka, reflecting the time needed for new clay minerals to form and be transported to the delta. Samples from the flood plains in Punjab show evidence for increased chemical weathering towards the top of the sections (6–< 4 ka), counter to the trend in the delta, at a time of monsoon weakening. Clay mineral assemblages within sandy flood-plain sediment have higher smectite/(illite + chlorite) values than interbedded mudstones, suggestive of either stronger weathering or more sediment reworking since the Mid Holocene. We show that marine records are not always good proxies for weathering across the entire flood plain. Nonetheless, the delta record likely represents the most reliable record of basin-wide weathering response to climate change.  相似文献   

6.
This study seeks to quantify the rate and timing of regolith generation in the Critical Zone at the Susquehanna Shale Hills Critical Zone Observatory (SSHO). Meteoric 10Be depth profiles were determined using measurements from 30 hillslope soil and bedrock core samples in an effort to constrain 10Be inventories. The SSHO is located in the temperate climate zone of central Pennsylvania and comprises a first-order watershed developed entirely on a Fe-rich, organic-poor, Silurian-aged shale. Two major perturbations to the landscape have occurred at SSHO in the geologically recent past, including significant and sustained periglacial activity until after the retreat of the Laurentide ice sheet (~21 ka) and deforestation during early colonial land-use. Bulk soil samples (n = 16) were collected at three locations along a planar hillslope on the southern ridge of the catchment, representing the ridge top, mid-slope and valley floor. Rock chip samples (n = 14) were also collected from a 24 m deep core drilled into the northern ridge top. All meteoric 10Be concentration profiles show a declining trend with depth, with most of the 10Be retained in the uppermost decimeters of the soil. Meteoric 10Be inventories are higher at the mid-slope and valley floor sample sites, at 3.71 ± 0.02 × 1010 at/cm2 and 3.69 ± 0.02 × 1010 at/cm2, than at the ridge top site (1.90 ± 0.01 × 1010 at/cm2). The 10Be inventory at the convex ridge top site implies a minimum residence time of ~10.6 ka, or if erosion is steady, an erosion rate of 19.4 ± 0.2 m/My.  相似文献   

7.
Mylonite textures in granodiorite boulders are responsible for higher rates of surface denudation of host rocks and the progressive development of unusual rock weathering features, termed weathering posts. These textures are characterized by smaller grain sizes, higher biotite content, and a higher biotite axial ratio in host rocks relative to weathering posts. Elemental concentrations do not show a significant difference between weathering posts and the host rocks in which they are found, and this reflects the absence of a weathering residue on the rock surfaces. Chemical weathering loosens the bonds between mineral grains through the expansion of biotite, and the loosened grains fall off or are blown off the boulder surface and continue their chemical alteration in the surrounding soil. The height of weathering posts on late Quaternary moraines increases at a linear rate of ~ 1.45 ± 0.45 cm (1000 yr)? 1 until post heights reach the diameter of host rocks. Such a rate of boulder denudation, if unrecognized, would generate significant errors (> 20%) in cosmogenic exposure ages for Pleistocene moraines. Given the paucity of boulders with diameters that significantly exceed 1.5 m, the maximum age of utility of weathering posts as a numeric age indicator is ~ 100 ka.  相似文献   

8.
This study presents the results of the palynological and diatom analyses of the sediment core recovered in Hoton-Nur Lake (48°37′18″N, 88°20′45″E, 2083 m) in 2004. Quantitative reconstruction of the Holocene vegetation and climate dynamics in the semiarid Mongolian Altai suggests that boreal woodland replaced the primarily open landscape of northwestern Mongolia at about 10 kyr BP (1 kyr = 1000 cal yr) in response to a noticeable increase in precipitation from 200–250 mm/yr to 450–550 mm/yr. A decline of the forest vegetation and a return to a predominance of open vegetation types occurred after 5 kyr BP when precipitation sums decreased to 250–300 mm/yr. Prior to 11.5 kyr BP diatom concentrations are relatively low and the lake is dominated by planktonic Cyclotella and small Fragilariaceae, suggesting the existence of a relatively deep and oligotrophic/mesotrophic lake. The great abundance of Staurosirella pinnata from the beginning of the record until 10.7 kyr BP might imply intensified erosion processes in the catchment and this is fully consistent with the presence of scarce and dry vegetation and the generally arid climate during this period. From about 10.7 kyr BP, more planktonic diatom taxa appeared and increased in abundance, indicating that the lake became more productive as diatom concentration increased. This change correlates well with the development of boreal woodland in the catchment. Decrease in precipitation and changes in the vegetation towards steppe are reflected by the rapid increase in Aulacoseira distans from about 5 kyr BP. The Holocene pollen and diatom records do not indicate soil and vegetation cover disturbances by the anthropogenic activities, implying that the main transformations of the regional vegetation occurred as a result of the natural climate change. Our reconstruction is in agreement with the paleomonsoon records from China, demonstrating an abrupt strengthening of the summer monsoon at 12 kyr BP and an associated increase in precipitation and in lake levels between 11 and 8 kyr BP, followed by the stepwise attenuation of the monsoon circulation and climate aridization towards the modern level. The records from the neighboring areas of Kazakhstan and Russia, situated west and north of Hoton-Nur, demonstrate spatially and temporally different Holocene vegetation and climate histories, indicating that the Altai Mountains as a climate boundary are of pivotal importance for the Holocene environmental and, possibly, habitation history of Central Asia.  相似文献   

9.
Glaciers erode bedrock but are also efficient conveyors of debris supplied during a cycle of glaciation by processes other than basal erosion. In this dual capacity as both an eroding and a transporting agent lies the ambiguity of ‘glacial erosion’ as a geomorphic process, with implications for methods of measuring the removal of rock mass by glaciers in the geological past, and for interpreting what exactly the consequences have been on topography and elevation change. A global review of ~400 Quaternary glacial denudation rates estimated from five different measurement techniques provides values ranging between 10?4 and 10 mm yr?1. We investigate the causes of such wide variability by examining the respective influences of environmental setting and methodological bias. A reference frame chosen for assessing these issues is the Massif du Carlit (Pyrenees, France), where a quantified mass balance of the well preserved glacial, periglacial and paraglacial deposits was made possible by detailed geomorphological mapping and terrestrial cosmogenic nuclide dating of extant erosional and depositional landform sequences. Resulting age brackets helped to define three main episodes of ice-cap growth and decline, each characterized by a volume of debris and a mappable source area. Erosion rates were expressed in two ways: (i) as spatially averaged denudation rates (D) during the successive stages of glacial advance to the line of maximum ice extent (MIE), post-MIE ice recession, and Lateglacial cirque readvance, respectively; and (ii) as cirque-wall recession rates (R) where moraine facies criteria indicated a supraglacial provenance of debris. Results indicate low erosion (D  0.05 mm yr?1) during the ice advance phase, probably because of thin or passive ice covering the low-gradient subglacial topography that occurs just above the late Pleistocene equilibrium line altitude (2.2–2.4 km). Erosion rates peaked (D  0.6 mm yr?1 and R  2.4–4.5 mm yr?1) during the main transition to ice-free conditions, when deglacial debuttressing promoted the rapid response of freshly exposed slope systems to new equilibrium conditions in the steep crest zone. Lateglacial D- and R-values declined to 0.2–0.3 mm yr?1, with indications of spatially variable R controlled by lithology. In this environment glaciers overall behaved more as conveyors of debris supplied by supraglacial rock exposures in the mountain crest zone than as powerful modifiers of subglacial topography. This explains the widespread preservation of deep, in situ preglacial weathering profiles on relict Cenozoic land surfaces in the deglacierized part of the Eastern Pyrenees. When plotted on the global data set analyzed and discussed in the review, the East Pyrenean erosion rates stand out as being amongst the lowest on record.  相似文献   

10.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at ∼38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between ∼306 and ∼286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to ∼250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   

11.
The Albany-Fraser Orogen (AFO), southeast Western Australia, is an underexplored, deeply weathered regolith-dominated terrain that has undergone complex weathering associated with various superimposed climatic events. For effective geochemical exploration in the AFO, integrating landscape evolution with mineralogical and geochemical variations of regolith and bedrock provides fundamental understanding of mechanical and hydromorphic dispersion of ore and pathfinder elements associated with the different weathering processes.In the Neale tenement, northeast of the AFO, a residual weathering profile that is 20-55 m thick was developed under warm and humid climatic conditions over undulating Proterozoic sheared granitoids, gneisses, schists and Au-bearing mafic rocks. From the base, the typical weathering profile consists of saprock, lower ferruginous saprolite, upper kaolinitic saprolite and discontinuous silcrete duricrust or its laterally coeval lateritic residuum. These types of duricrusts change laterally into areas of poorly-cemented kaolinitic grits or loose lateritic pisoliths and nodules.Lateritic residuum probably formed on remnant plateaus and was transported mechanically under arid climatic conditions over short distances, filling valleys to the southeast. Erosion of lateritic residuum exposes the underlying saprolite and, together with dilution by aeolian sands, constitutes the transported overburden (2-25 m thick). The reworked lateritic materials cover the preserved silcrete duricrusts in valleys. The lower ferruginous saprolite and lateritic residuum are well developed over mafic and sulphide-bearing bedrocks, where weathering of ferromagnesian minerals and sulphides led to enrichment of Fe, Cu, Ni, Cr, Co, V and Zn in these units. Kaolinitic saprolite and the overlying pedogenic silcrete are best developed over alkali granites and quartzofeldspathic gneisses, which are barren in Au and transition elements, and enriched in silica, alumina, rare earth and high field strength elements.A residual Au anomaly is formed in the lower ferruginous saprolite above a Au -bearing mafic intrusion at the Hercules prospect, south of the Neale tenement, without any expression in the overlying soil (< 20 cm). Conversely, a Au anomaly is recorded in the transported cover, particularly in the uppermost 3 m at the Atlantis prospect, 5 km southwest of the Hercules prospect. No anomalies have been detected in soils using five different size fractions (> 2,000 μm, 2,000-250 μm, 250-53 μm, 53-2 μm and < 2 μm). Therefore, soil cannot be efficiently applied as a reliable sampling medium to target mineralization at the Neale tenement. This is because mechanical weathering was interrupted by seasonal periods of intensive leaching under the present-day surface conditions and/or dilution by recently deposited aeolian sediments which obscure any signature of a potential Au anomaly in soils. Therefore, surface soil sampling should extend deeper than 20 cm to avoid dilution by aeolian sands and seasonal leaching processes. Regolith mapping and the distinction between the residual and transported weathering products are extremely significant to follow the distal or proximal mineralization.  相似文献   

12.
Pollen, chironomid, and ostracode records from a lake located at alpine treeline provide regional paleoclimate reconstructions from the southwest Yukon Territory, Canada. The pollen spectra indicate herbaceous tundra existed on the landscape from 13.6–11 ka followed by birch shrub tundra until 10 ka. Although Picea pollen dominated the assemblages after 10 ka, low pollen accumulation rates and Picea percentages indicate minimal treeline movement through the Holocene. Chironomid accumulation rates provide evidence of millennial-scale climate variability, and the chironomid community responded to rapid climate changes. Ostracodes were found in the late glacial and early Holocene, but disappeared due to chemical changes of the lake associated with changes in vegetation on the landscape. Inferred mean July air temperature, total annual precipitation, and water depth indicate a long-term cooling with increasing moisture from the late glacial through the Holocene. During the Younger Dryas (12.9–11.2 ka), cold and dry conditions prevailed. The early and mid-Holocene were warm and dry, with cool, wet conditions after 4 ka, and warm, dry conditions since the end of the Little Ice Age.  相似文献   

13.
Chemical weathering of silicate minerals has long been known as a sink for atmospheric CO2, and feedbacks between weathering and climate are believed to affect global climate. While warmer temperatures are believed to increase rates of weathering, weathering in cool climates can be accelerated by increased mineral exposure due to mechanical weathering by ice. In this study, chemical weathering of silicate minerals is investigated in a small temperate watershed. The Jamieson Creek watershed is covered by mature coniferous forest and receives high annual precipitation (4000 mm), mostly in the form of rainfall, and is underlain by quartz diorite bedrock and glacial till. Analysis of pore water concentration gradients indicates that weathering in hydraulically unsaturated ablation till is dominated by dissolution of plagioclase and hornblende. However, a watershed scale solute mass balance indicates high relative fluxes of K and Ca, indicating preferential leaching of these solutes possibly from the relatively unweathered lodgement till. Weathering rates for plagioclase and hornblende calculated from a watershed scale solute mass balance are similar in magnitude to rates determined using pore water concentration gradients.When compared to the Rio Icacos basin in Puerto Rico, a pristine tropical watershed with similar annual precipitation and bedrock, but with dissimilar regolith properties, fluxes of weathering products in stream discharge from the warmer site are 1.8 to 16.2-fold higher, respectively, and regolith profile-averaged plagioclase weathering rates are 3.8 to 9.0-fold higher. This suggests that the Arrhenius effect, which predicts a 3.5- to 9-fold increase in the dissolution rate of plagioclase as temperature is increased from 3.4° to 22 °C, may explain the greater weathering fluxes and rates at the Rio Icacos site. However, more modest differences in K and Ca fluxes between the two sites are attributed to accelerated leaching of those solutes from glacial till at Jamieson Creek. Our findings suggest that under conditions of high rainfall and favorable topography, weathering rates of silicate minerals in warm tropical systems will tend to be higher than in cool temperate systems, even if the temperate system is has been perturbed by an episode of glaciation that deposits regolith high in fresh mineral surface area.  相似文献   

14.
The Yellow River system, the largest river system in northern China, generally flows northeasterly through a series of linear mountain belts in the northeastern margin of the Tibetan plateau, the youngest of which are the Laji–Jishi Shan and Riyue Shan ranges, formed during late Cenozoic time due to NE–SW oblique shortening. As the product of the interaction between the tectonic process and the climate, the incision of the Yellow River system is a crucial parameter in models of the scale and timing of the crustal uplift and erosion in northeastern Tibetan plateau. Thus, whether the along-strike topographic feature of the Laji-Jishi Shan that is cut through by the Yellow River system and related streams is controlled by structural deformation or by erosion needs to be constrained. Our mapping shows that the variation in deformation along this mountain belt formed two structural saddles with relative low elevation in late Cenozoic time, through which the Yellow and Yaoshui Rivers cut into the plateau and drained a series of the Tertiary basins. The Yaoshui River is the tributary of the Huangshui River which itself flows into the Yellow River in the Lanzhou area. One saddle is present along the Yaoshui River valley, formed by NW–SE extension along the Riyue Shan Pass (RSP) normal fault, along which the Miocene and Mesozoic rocks were subsided against Proterozoic metamorphic rocks. These deformed rocks in the hanging wall are truncated by a sub-horizontal erosion surface at an elevation of 3200 m, on which terrace deposits are locally present, presumably middle Pleistocene in age. This terrace is incised by the Yaoshui River to an elevation of 3000 m, which yields 300 m of incision. Another saddle is along the Yellow River valley (the Xunhua-Linxia gouge) between the southern tip of the Laji Shan and the northern tip of the Jishi Shan, generated by en echelon folding. This structural saddle is underlain by the lower Cretaceous and Pliocene clastic rocks, which are truncated on the top by a rugged erosion surface at an average elevation of 3000 m. The Yellow River incised into this surface to an elevation of 1900 m, which yields 1100 m of incision. These two saddles, featured by topographic and structural low, were formed in the middle or late Miocene, and facilitated the headward propagation of the Yellow and Yaoshui Rivers, which initiated in early and middle Pleistocene time, respectively.  相似文献   

15.
Our study provides detailed information on the Lateglacial landscape and vegetation development of Tibet. Based on a suite of geomorphological and palynological proxy data from the Nianbaoyeze Shan on the eastern margin of the Tibetan Plateau (33°N/101°E, 3300–4500 m asl.), we reconstruct the current state as a function of climate history and the longevity of human influence. Study results constrain several major phases of aeolian sedimentation between 50–15 ka and various glacier advances during the Late Pleistocene, the Holocene and the Little Ice Age. Increased aeolian deposition was primarily associated with periods of more extensive glacial ice extent. Fluvial and alluvial sediment pulses document an increase of erosion starting at 3926 ± 79 cal yr B.P., coinciding with cooling (Neoglacial) and a growing anthropo-zoogenic influence. Evidence for periglacial mass movements indicate that the late Holocene cooling started at around 2000 cal yr B.P., demonstrating increased surface activity under the combined effects of human influence and climate deterioration. The onset of peat growth generally depended on local conditions that include relief, meso-climate and in more recent times also on soil compaction due to animal trampling. We distinguish three initiation periods of peat growth: 12,700–10,400 cal yr B.P. for flat basins inside last glacial terminal moraines; 7000–5000 cal yr B.P. for the main valley floors; and 3000–1000 cal yr B.P. for the higher terrace surfaces.The Holocene vegetation history started with an open landscape dominated by pioneer shrubs along braided rivers (<10,600–9800 cal yr B.P.), followed by the spreading of conifers (Picea, Juniperus, Abies) and Betula-trees accompanied by a successive closing of the vegetation cover by Poaceae, Cyperaceae and herbs (9800–8300 cal yr B.P.). First signs of nomadic presence appear as early as 7200 cal yr B.P., when temperatures were up to 2 °C warmer than today. Forest remained very patchy with strong local contrasts. During the following cooling phase (5900–2750 cal yr B.P.) the natural vegetation was transformed by nomadic grazing to Bistorta-rich Kobresia pygmaea-pastures. Modern nomadic migration routes were established at least 2200 years ago. Overgrazing and trampling led to the shrinking of Bistorta and the spreading of annual weeds. Short-lived cold events (8000, 6200, 3500 cal yr B.P.) impacted on the vegetation only temporarily.As the transformation of the natural Poaceae-rich vegetation into Kobresia-pastures modified the influence of the Tibetan Plateau (“hot plate”) on the monsoon system, our data even point to an early start of a nomadic (!) Anthropocene nearly 6000 years ago. Against the background of a very long grazing history, modern Tibet must be seen as a cultural landscape.  相似文献   

16.
The Cenozoic landscape development of Britain remains relatively poorly understood. On the one hand, ‘plumists’ have tried to explain the present-day topography as a consequence of effects of the Iceland mantle plume during the Palaeocene-Eocene British Tertiary Igneous Province (BTIP) magmatism, with little or no subsequent modification. On the other hand, abundant evidence exists from fluvial and marine terraces and superimposed karstic levels for significant vertical crustal motions during the Quaternary, which clearly has nothing to do with any mantle plume. To shed light on this issue, we present the first publication of data that constrain the Cenozoic thermal history of the North Pennine uplands of northern England, from apatite fission-track analysis of drill cuttings from the Eastgate Borehole in Weardale, in the western part of County Durham. Our results indicate ~650 m of regional denudation since the latest Oligocene/Early Miocene, plus the ~400 m of localized entrenchment that has created the modern Weardale valley. Before the latest Oligocene/Early Miocene, but following the BTIP magmatism, the crust in this region experienced significant cooling, mainly due to a decrease in the geothermal gradient from ~55 to 61 °C km?1 to the present 38 °C km?1, along with ~300 ± 200 m of denudation. Although significant BTIP magmatism occurred in northern England, it thus had only a limited net effect; the crust experienced dramatic heating, but cooled back to its original thermal state within, at most, a few tens of millions of years. We suggest that this rapid cooling effect resulted from westward flow of relatively cold material within the mobile lower-crustal layer, driven by the lateral pressure gradient induced by earlier heating effects and effects of surface processes. Whatever topography developed during the Palaeogene, as a direct result of these heating effects, underplating at the base of the crust, and the associated modest denudation, was presumably also short-lived; significant changes to the crustal thickness, and thus to the topography, can be envisaged as a consequence of subsequent lower-crustal flow.  相似文献   

17.
The Kapalagulu layered ultramafic and mafic intrusion is emplaced between the Paleoproterozoic Ubendian basement and overlying Neoproterozoic Itiaso Group metasedimentary rocks, located near the western shore of Lake Tanganyika. High-grade platinum group element (PGE) mineralization (1–6 g/t Pt + Pd + Au) is associated with chromitite and sulfide-bearing harzburgite within the southeastern extension of the intrusion, known as the Lubalisi Zone, which is covered by a layer of nickel-rich (0.2–2%Ni) laterite regolith that contains linear areas of PGE mineralization.In the Lubalisi Zone, the mineralization may be divided into several significant geometallurgical domains: (a) high-grade PGE mineralization (1–6 g/t Pt + Pd + Au) associated with stratiform PGE reefs and chromitite seams within a harzburgite unit; (b) high-grade PGE mineralization (up to 12 g/t Pt + Pd + Au) associated with small bodies and veins of nickel massive sulfide within harzburgite below PGE-bearing reefs and chromitite seams; (c) low-grade PGE mineralization (0.1–0.5 g/t Pt + Pd + Au) associated with a sulfide-mineralized harzburgite unit above the PGE-bearing reefs; (d) laterite style residual PGE mineralization (0.2–4 g/t Pt + Pd + Au) associated with chromite concentrations in the saprolite and overlying red clay horizons of the laterite regolith; and (e) supergene Ni associated with the saprock and overlying saprolite clay.Mineralogical study of three samples from the PGE reef consisting of high grade PGE chromitite and harzburgite indicate that this mineralization will give a good metallurgical response to conventional grinding and floatation due to the relatively coarse-grained nature of the PGM (P80 from ∼37 to 52 µm), association with base metal sulfides, and unaltered gangue minerals (Wilhelmij and Cabri, 2016). In contrast, mineralogical and metallurgical study of the Ni and PGE mineralized laterite indicate that it cannot be processed using conventional mineral processing techniques but that a hydrometallurgical route should be used to recover the base and precious metals. Because any process is very much deposit-controlled, significant metallurgical and geometallurgical testing of mineralized samples, as well as pilot plant testing, will be required to arrive at feasibility studies.  相似文献   

18.
Fission-track ages and confined track length distribution of apatite samples separated from the Chiplakot Crystalline Belt (CCB) of the Lesser Himalayan Crystalline (LHC) zone, located to the south of the Main Central Thrust (MCT)/Munsiari Thrust (MT) in Kumaon, India, have been determined. Ages from the CCB along the Kali and Darma valleys fall in two distinct groups. In the northern part of the CCB, the ages range from 9.8 ± 0.6 to 7.6 ± 0.6 Ma with a weighted mean of 9.6 ± 0.1 Ma, while in the southern part the ages vary from 17.9 ± 0.9 to 12.9 ± 1.1 Ma with a weighted mean of 14.1 ± 0.1 Ma. The bimodal distribution of track lengths indicates that the ages are mixed ages, rather than simple cooling ages. The apatite fission-track (AFT) ages and already published structural data of the CCB suggest a complex erosional, denudation history within the upper 3–4 km of the crust of the CCB. The ages further indicate that the CCB was thrust into place earlier than the Middle Miocene i.e. at the time of development of the MCT. Since, then these rocks have remained within the upper 3 km of crust and were affected by only moderate to slow erosion and exhumation. These results have important implications for the tectonic evolution of the LHC zone to the south of the MCT/MT. The exhumation of the LHC zone in different parts of the Himalaya was not uniform. In the Kumaon Himalaya, it was not controlled, as in the Himachal Himalaya, by any major tectonic event, since it was thrust over the Lesser Himalayan Meta-sedimentary (LHMS) zone, and underwent moderate to slow erosion and exhumation.  相似文献   

19.
The establishment of a chronology of landscape-forming events in lowland and mid-altitude Tasmania, essential for assessing the relative importance of climatic and human influences on erosion, and for assessing present erosion risk, has been limited by the small number of ages obtained and limitations of dating methods. In this paper we critically assess previous Tasmanian studies, list published radiocarbon ages considered to be dependable, present new radiocarbon and thermoluminescence (TL) ages for 25 sites around Tasmania, and consider the evidence for the hypotheses that erosion processes at low and mid altitudes have been: (1) purely climatically controlled; and (2) influenced both by climatic and anthropogenic (increased fire frequency) effects. A total of 94 dependable finite ages (calibrated for radiocarbon and ‘as measured’ for TL and optically stimulated luminescence (OSL) determinations) are listed for deposits comprising dunes, colluvium, alluvium and loess-like aeolian deposits. Two fall in the >100 ka period, 15 fall in the period 65–35 ka, and 77 fall in the period 35–0.3 ka. There was a sustained increase in erosion recorded in the period 35–15 ka, as reflected by a greater number of dated aeolian deposits during this period.We considered three possible biases that may have affected the age distribution obtained: the limitations of radiocarbon dating, sampling bias, and preservation bias. Sampling bias may have favoured more recent dune strata, but radiocarbon dating and preservation biases are unlikely to have significantly distorted the age distribution obtained.Long but intermittent aeolian deposition is recorded at two sites (Southwood B; c. 59–28 ka and Dunlin Dune; c. 29–14 ka) but there is no evidence of regional loess deposits such as found in New Zealand. The timing of increased erosion in Tasmania between 35 and 30 ka approximately coincides with the intermittent ten-fold increase of dust accumulation between 33 and 30 ka in the Antarctic Dome C ice core. The absence of widespread erosion before 35 ka, the abrupt increase of erosion around this time, the frequent association of erosion products with charcoal, the arrival of people in Tasmania at c. 40 cal ka, and the known use of fires by Aborigines to maintain areas of non-climax vegetation suggest that ecosystem disturbance by anthropogenic fires, in a drier climate than that presently prevailing, may have contributed to erosion in lowland and mid-altitude Tasmania after 35 ka. Thus the Tasmanian erosion record provides circumstantial support for the proposition that human dispersal in southeast Australia was accompanied by significant ecological change.  相似文献   

20.
Mountain soils store huge amounts of carbon which may be highly vulnerable to the strong land use and climate changes that mountain areas currently experience worldwide. Here, we tested the Rock–Eval (RE) pyrolysis as a proxy technique to (i) quantify soil organic carbon (SOC) stocks, (ii) bring insights into SOC bulk chemistry and (iii) investigate biogeochemical stability at the landscape scale in a mountain area of the French calcareous Prealps. A total of 109 soils from 11 eco-units representing the variety of ecosystems of the study area were analyzed with RE pyrolysis. RE pyrolysis showed an excellent predictive performance (R2 = 0.99) for SOC content even in calcareous soils. The technique revealed specific chemical fingerprints for some eco-units and soil types, with decreasing hydrogen index values from Anthroposols (425 ± 62 mg HC/g SOC) to Umbrisols, Leptosols (311 ± 49 mg HC/g SOC) and to Cambisols (278 ± 35 mg HC/g SOC), associated with an increase in SOC maturation. Newly developed RE pyrolysis indices revealed the high stability of SOC in most eco-units developed on Cambisols (acidic grasslands, alpine meadows, bushy facies) and a significantly lower stability of SOC in mountain ridges, sheepfold areas and coniferous forest soils. The persistence of SOC in this mosaic of ecosystems may depend not only on its chemistry or thermal stability, but also on local environmental factors such as climatic conditions or pH, especially for high altitude soils. Overall, RE pyrolysis appears as an appropriate tool for landscape scale carbon inventories and could become a standardized proxy for assessing the vulnerability of SOC stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号