首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The northern coasts of the Gulf of Mexico (GoM) are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks are exacerbated by land subsidence and global sea-level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea-level rise in the northern Gulf coast. The unstructured-grid finite-volume coastal ocean model was used to simulate tides and hurricane-induced storm surges in the GoM. Simulated distributions of co-amplitude and co-phase lines for semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan, and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea-level rise on coastal inundation in the Louisiana coast were evaluated using a “change of inundation depth” parameter through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea-level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea-level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea-level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.  相似文献   

2.
钱塘江河口杭州湾风暴潮溢流计算方法研究   总被引:5,自引:0,他引:5       下载免费PDF全文
建立钱塘江河口杭州湾风暴潮模型,探讨风暴潮出现溢流的计算方法。将可能出现溢流的沿海堤防以及海水侵入的陆地均依照高程概化为计算区域,采用糙率控制潮水的溢流流量,以模型的堤顶单宽流量和根据计算潮位采用宽顶堰公式换算流量的一致性来率定糙率值。在此基础上模拟了风暴潮漫溢堤防的过程,结果表明风暴潮出现溢流后,钱塘江河口杭州湾之间两岸大片的陆地存在淹没风险,沿程潮位由于溢流出现不同程度的降低响应。  相似文献   

3.
Evaluation of coastal inundation hazard for present and future climates   总被引:2,自引:1,他引:1  
Coastal inundation from hurricane storm surges causes catastrophic damage to lives and property, as evidenced by recent hurricanes including Katrina and Wilma in 2005 and Ike in 2008. Changes in hurricane activity and sea level due to a warming climate, together with growing coastal population, are expected to increase the potential for loss of property and lives. Current inundation hazard maps: Base Flood Elevation maps and Maximum of Maximums are computationally expensive to create in order to fully represent the hurricane climatology, and do not account for climate change. This paper evaluates the coastal inundation hazard in Southwest Florida for present and future climates, using a high resolution storm surge modeling system, CH3D-SSMS, and an optimal storm ensemble with multivariate interpolation, while accounting for climate change. Storm surges associated with the optimal storms are simulated with CH3D-SSMS and the results are used to obtain the response to any storm via interpolation, allowing accurate representation of the hurricane climatology and efficient generation of hazard maps. Incorporating the impact of anticipated climate change on hurricane and sea level, the inundation maps for future climate scenarios are made and affected people and property estimated. The future climate scenarios produce little change to coastal inundation, due likely to the reduction in hurricane frequency, except when extreme sea level rise is included. Calculated coastal inundation due to sea level rise without using a coastal surge model is also determined and shown to significantly overestimate the inundation due to neglect of land dissipation.  相似文献   

4.
Impact of Sea-level Rise and Storm Surges on a Coastal Community   总被引:7,自引:7,他引:7  
A technique to evaluate the risk of storm tides (the combination of a storm surge and tide) under present and enhanced greenhouse conditions has been applied to Cairns on the north-eastern Australian coast. The technique combines a statistical model for cyclone occurrence with a state-of-the-art storm surge inundation model and involves the random generation of a large number of storm tide simulations. The set of simulations constitutes a synthetic record of extreme sea-level events that can be analysed to produce storm tide return periods. The use of a dynamic storm surge model with overland flooding capability means that the spatial extent of flooding is also implicitly modelled. The technique has the advantage that it can readily be modified to include projected changes to cyclone behaviour due to the enhanced greenhouse effect. Sea-level heights in the current climate for return periods of 50, 100, 500 and 1000 years have been determined to be 2.0 m, 2.3 m, 3.0 m and 3.4 m respectively. In an enhanced greenhouse climate (around 2050), projected increases in cyclone intensity and mean sea-level see these heights increase to 2.4 m, 2.8 m, 3.8 m and 4.2 m respectively. The average area inundated by events with a return period greater than 100 years is found to more than double under enhanced greenhouse conditions.  相似文献   

5.
Marsh sediment accumulation is predominately a combination of in situ organic accumulation and mineral sediment input during inundation. Within the Pamlico River Estuary (PRE), marsh inundation is dependent upon event (e.g., storms) and seasonal wind patterns due to minimal astronomical tides (<10 cm). A better understanding of the processes controlling sediment deposition and, ultimately, marsh accretion is needed to forecast marsh sustainability with changing land usage, climate, and sea level rise. This study examines marsh topography, inundation depth, duration of inundation, and wind velocity to identify relationships between short-term deposition (tile-based) and long-term accumulation (210Pb and 137Cs) recorded within and adjacent to the PRE. The results of this study indicate (1) similar sedimentation patterns between the interior marsh and shore-side marsh at different sites regardless of elevation, (2) increased sedimentation (one to two orders of magnitude, 0.04–4.54 g m?2 day?1) within the interior marsh when the water levels exceeded the adjacent topography (e.g., storm berm), and (3) that short-term sea level changes can have direct effects on sediment delivery to interior marshes in wind-driven estuarine systems.  相似文献   

6.
设计暴雨雨型对城市内涝影响数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
为分析设计暴雨雨型对城市内涝的影响,应用耦合了水文和水动力过程的数值模型,以陕西省西咸新区为研究区域,对不同重现期及峰值比例设计暴雨条件下的内涝过程进行模拟,并对内涝积水总量、不同积水深度内涝面积等量值进行对比分析。结果表明:设计暴雨重现期短于20年时,峰值比例较小的设计暴雨内涝积水总量较大,而重现期长于20年时,规律相反;除2年一遇设计暴雨外,峰值比例较大的设计暴雨致涝总面积较大,但其中影响严重的Ⅳ级致涝面积较小;设计暴雨峰值比例越小,重现期越长,积水总量峰值时刻相对于暴雨峰值时刻的迟滞时间越长。揭示了暴雨雨型与内涝积水程度的量化规律,对更合理地开展城市雨洪管理工作具有指导意义。  相似文献   

7.
Coastal regions are vulnerable to storm surge and flooding due to tropical and extratropical storms. It is necessary to build robust resiliency of the coastal communities to these hazards. The main objectives of operational surge and inundation forecast and coastal warning systems are to protect life and to sustain economic prosperity. The National Oceanic and Atmospheric Administration of the United States has initiated an integrated effort through pilot demonstration projects, and model-based ocean and coastal forecasting systems, to build improved operational warnings and forecasts capability for storm surge and inundation. This note describes the overall strategy and progress to date, with an emphasis on forecasting extratropical storm surge.  相似文献   

8.
Bay of Bengal cyclone extreme water level estimate uncertainty   总被引:4,自引:3,他引:1  
  相似文献   

9.
Global sea levels have risen through the twentieth and twenty-first centuries. This rise will almost certainly continue and probably accelerate during the rest of the twenty-first century, albeit there is strong disagreement about the range of future sea level rise due to uncertainties regarding scenarios and emission of greenhouse gasses. Although the impacts of sea level rise are diverse, inundation during high tides is one of the most obvious and immediate consequences. A probabilistic methodology for mapping the inundation hazard because of sea level rise has been applied to the coast of El Puerto de Santa María in the province of Cádiz in southwest Spain. This methodology involves a step forward since represents the full range of probabilities, associated with each scenario of sea level rise considered, and thus offers a more realistic view of the probability of inundation in each area. Results show large differences in the spatial distribution of probable inundation in urban areas and wetlands leading to different consequences for management actions.  相似文献   

10.
A water level model incorporating the nonlinear interactions between tides and storm surges for numerical simulation and prediction use is developed in this paper. Using a conventional two-dimensional nonlinear storm surge model and tide model and associated semi-momentum finite-difference scheme, both the storm surges caused by the tropical cyclones hitting Shanghai and the tides in related regions during the period 1949–1990, are numerically simulated. In simulating storm surges, 16 tropical cyclones with different kinds of tracks are chosen. Meanwhile, to simulate tides, the governing equations for tides, along with 63 prescribed tidal constituents at open sea boundaries are numerically computed. Sixteen associated cases of total water-level simulations comprising joint effects linking surges and tides and one case of real-time prediction have been carried out in 1990 on the basis of computed surges and tides. The total water levels thus obtained in this way give better results than those obtained by the traditional method, i.e. without taking into account, in the model, nonlinear coupling between storm surges and tides.Comparison of the predictions of storm surges and the total water level with the hindcast ones in 1990 showed that a relatively larger error of prediction mainly results from the incorrect forecasting of tropical cyclones but not from the prediction method itself.  相似文献   

11.
Smith  Grant  Juria  Nover 《Natural Hazards》2019,99(1):189-216

Inhabitants of low-lying coral atolls benefit from disaster risk reduction decision makers receiving early warnings of coastal inundation leading to heightened levels of alert and preparedness. Majuro, the capital of the Marshall Islands, is a coral atoll that experiences coastal inundation events on a near annual frequency and is likely to be exacerbated by sea-level rise, increasing the importance of early warning systems. However, current early warnings are not always provided for every inundation event. Inundation is driven by a combination of various oceanographic processes that contribute to sea level at the coastline, with the primary driver dependent on how extreme a particular process may be at the time. Incoming swell from distant storms and cyclones can trigger an inundation event, especially when coinciding with high spring tides and/or sea-level anomalies. Historical data from three directional scenarios were analysed to determine the critical values for offshore wave height, peak period, directional range, and sea level that had led to inundation in the past. Bulk wave statistics and static sea level were found to be sufficient information to identify the occurrence of an inundation event. These inundation thresholds serve as a reference to be used in conjunction with forecast models as an analogue for future events informing both the likelihood and impact. The analysis showed that inundation with a significant contributing swell factor propagates via three main routes, with approximately 50% occurring from the north-east. The two highest sea-level measurements on record both occurred during La Niña events, with both leading to inundation, suggesting that spring tides during La Niña events should exhibit a heightened level of alert for inundation at Majuro regardless of swell contribution.

  相似文献   

12.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

13.
In the Lower Rhine Delta of the Netherlands, the high water level is driven by a joint impact of the downstream storm surge and the upstream fluvial discharge, and affected by the operation of existing man-made structures. In scenario-based risk assessment, a large number of stochastic scenarios of storm surges are required for estimating the high water level frequency. In this article, a fast computing stochastic storm surge model is applied to the gauge station of Hook of Holland in the west of the Netherlands. A fixed number of tides are considered in this model based on the information of historical storm surge events. Based on this model, a large number of stochastic storm surge scenarios are derived and forced into a one-dimensional hydrodynamic model of the Netherlands, resulting in peak water levels in Rotterdam, the most vulnerable city in the delta. These peak water levels are statistically analyzed and converted to the high water level frequency curve in Rotterdam. The high water level frequency curve in Rotterdam tends to a much lower design water level compared to the official design water level that is used to design the dikes and structures for protection of the city. Moreover, there is a significant difference in the high water level frequency curves due to the fact that the stochastic storm surge model considers different numbers of tides. This highlights the critical impact of the storm surge duration on the high water level frequency in the Lower Rhine Delta.  相似文献   

14.
15.
Tidal freshwater wetlands (TFW) alter nitrogen concentrations in river water, but the role of these processes on a river’s downstream nitrogen delivery is poorly understood. We examined spatial and temporal patterns in denitrification in TFW of four rivers in North Carolina, USA and evaluated the relative importance of denitrification rate and inundation on ecosystem-scale N2 efflux. An empirical model of TFW denitrification was developed to predict N2 efflux using a digital topographic model of the TFW, a time series of water level measurements, and a range of denitrification rates. Additionally, a magnitude-frequency analysis was performed to investigate the relative importance of storm events on decadal patterns in N2 efflux. Spatially, inundation patterns exerted more influence on N2 efflux than did the range of denitrification rate used. Temporal variability in N2 efflux was greatest in the lower half of the tidal rivers (near the saline estuary) where inundation dynamics exerted more influence on N2 efflux than denitrification rate. N2 efflux was highest in the upper half of the rivers following storm runoff, and under these conditions variation in denitrification rate had a larger effect on N2 efflux than variability in inundation. The frequency-magnitude analysis predicted that most N2 efflux occurred during low flow periods when tidal dynamics, not storm events, affected TFW inundation. Tidal hydrology and riparian topography are as important as denitrification rate in calculating nitrogen loss in TFW; we present a simple empirical model that links nitrogen transport in rivers with loss due to denitrification in TFW.  相似文献   

16.
We reconstruct past accretion rates of a salt marsh on the island of Sylt, Germany, using measurements of the radioisotopes 210Pb and 137Cs, as well as historical aerial photographs. Results from three cores indicate accretion rates varying between 1 and 16 mm year−1. Comparisons with tide gauge data show that high accretion rates during the 1980s and 1990s coincide with periods of increased storm activity. We identify a critical inundation height of 18 cm below which the strength of a storm seems to positively influence salt marsh accretion rates and above which the frequency of storms becomes the major factor. In addition to sea level rise, we conclude that in low marsh zones subject to higher inundation levels, mean storm strength is the major factor affecting marsh accretion, whereas in high marsh zones with lower inundation levels, it is storm frequency that impacts marsh accretion.  相似文献   

17.
李勇  田立柱  裴艳东  王福  王宏 《地质通报》2016,35(10):1638-1645
基于ROMS海洋模式,结合近年的地质实测资料,建立了渤海湾西部地区风暴潮漫滩的数值模型。对模型进行验证后,对渤海湾西部区域重现期为50a、100a、200a及500a的风暴潮漫滩进行了数值模拟,分析了不同重现期风暴潮漫滩发展的动态过程及最大漫滩淹水范围。结果表明,数值模型基本能反映风暴潮的增水趋势,能够模拟风暴潮漫滩发生发展的动态过程。随着风暴潮强度的增加,渤海湾西部地区淹水范围具有从东海岸向西部内陆区域扩展的趋势。通过曲线拟合发现,风暴潮最大漫滩面积比值与高水位之间基本呈线性关系。  相似文献   

18.
This paper estimates property loss and business interruption loss under scenarios of storm surge inundation to explore the economic impact of climate change on Ise Bay, Japan. Scenarios-based analyses are conducted with respect to Typhoon Vera, which caused the most severe storm surge in the recorded history of Japan in 1959. Four different hazard scenarios are chosen from a series of typhoon storm surge inundation simulations: Typhoon Vera’s landfall with respect to the condition of the past seawall; Typhoon Vera’s landfall with respect to the condition of the current seawall; intensifying Typhoon Vera, but retaining its original tracks; and intensifying Typhoon Vera, but choosing the worst tracks from various possible typhoon tracks. Our economic loss estimation takes advantage of fine geographical scale census and economic census data that enable us to understand the spatial distribution of property loss and business interruption loss as well as identify the most potentially affected areas and business sectors on a sub-city scale. By comparing the property loss and business interruption loss caused by different hazard scenarios, the effect of different seawalls is evaluated and the economic impact of future climate change is estimated. The results indicate that although the current seawall can considerably reduce the scale of losses, climate change can cause Ise Bay to experience more serious storm surge inundation. Moreover, the resulting economic losses would increase significantly owing to a combination of climate change and the worst track scenario. It is, therefore, necessary to consider more countermeasures to adapt to climate change in this area.  相似文献   

19.
Jiang  Xinyu  Mori  Nobuhito  Tatano  Hirokazu  Yang  Lijiao  Shibutani  Yoko 《Natural Hazards》2015,84(1):35-49

This paper estimates property loss and business interruption loss under scenarios of storm surge inundation to explore the economic impact of climate change on Ise Bay, Japan. Scenarios-based analyses are conducted with respect to Typhoon Vera, which caused the most severe storm surge in the recorded history of Japan in 1959. Four different hazard scenarios are chosen from a series of typhoon storm surge inundation simulations: Typhoon Vera’s landfall with respect to the condition of the past seawall; Typhoon Vera’s landfall with respect to the condition of the current seawall; intensifying Typhoon Vera, but retaining its original tracks; and intensifying Typhoon Vera, but choosing the worst tracks from various possible typhoon tracks. Our economic loss estimation takes advantage of fine geographical scale census and economic census data that enable us to understand the spatial distribution of property loss and business interruption loss as well as identify the most potentially affected areas and business sectors on a sub-city scale. By comparing the property loss and business interruption loss caused by different hazard scenarios, the effect of different seawalls is evaluated and the economic impact of future climate change is estimated. The results indicate that although the current seawall can considerably reduce the scale of losses, climate change can cause Ise Bay to experience more serious storm surge inundation. Moreover, the resulting economic losses would increase significantly owing to a combination of climate change and the worst track scenario. It is, therefore, necessary to consider more countermeasures to adapt to climate change in this area.

  相似文献   

20.
This paper presents a new method for coastal vulnerability assessment (CVA), which relies upon three indicators: run-up distance (as a measurement of coastal inundation), beach retreat (as a measurement of potential erosion), and beach erosion rate (obtained through the shoreline positions in different periods). The coastal vulnerability analysis of Sele Coastal Plain to storm impacts is examined along a number of beach profiles realized between 2008 and 2009. This particular study area has been selected due to its low-lying topography and high erosion propensity. Results are given in terms of an impact index, performed by combining the response due to coastal inundation, storm erosion, and beach erosion rate. This analysis is implemented on the basis of morphosedimentary characteristics of the beach, wave climate evaluation, and examination of multitemporal aerial photographs and topographic maps. The analysis of the final results evidences different coastal responses as a function of the beach width and slope, which in turn depend on the local anthropization level. The comparison of this method with a Coastal Vulnerability Index method evidences the better attitude of CVA index to take into account the different beach features to explain the experienced damages in specific stretches of the coastline considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号