首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2020年长江上游和中下游先后发生特大洪水,其中干流编号洪水全部发生在上游,构成了长江流域洪水的主要部分。首先回顾2020年洪水及洪灾情况,然后根据历史上几次特大洪水过程和历年实测资料,分析长江上游洪水特征、洪灾类型及特点,最后提出新时代长江流域洪水整体防御战略及山洪灾害防治战术。研究表明:金沙江洪水是长江上游洪水基础部分,岷江、嘉陵江和干流区间是洪峰的主要来源,三者洪水遭遇是产生上游特大洪水的主因,上游洪水又是全流域特大洪水的基础和重要组成部分。目前造成洪灾死亡人数最多的是山洪以及山洪引起的地质灾害,财产损失最大的是中下游及湖泊地区。未来堤防仍然是防洪的基础,提高沿江城市防洪标准主要手段是控制性水库的联合优化调度,而减少洪涝灾害损失最有效的途径是给洪水以空间的自然解决方案等非工程措施。  相似文献   

2.
3.
By analyzing the multi-year runoff and rainfall data at 15 hydrological stations from 1980 to 2007, as well as monthly runoff data from 1964 to 1984 at the Zipingpu hydrologic station, the relationship between precipitation and runoff has been established and the trend was explored. Based on the catastrophic floods of August 13 and August 18, 2010, characteristics and control factors on the post-seismic floods are summarized. Firstly, the Wenchuan earthquake and rupture zone provides the background for post-seismic floods to develop in the upper Minjiang River, which follows a post-seismic disaster-chain pattern: earthquake collapse to landslide debris flows to floods. Secondly, heavy rainfall controlled by the orographically-enhanced precipitation after the Wenchuan earthquake is the trigger factor for the development of devastating post-seismic floods. Thirdly, the post-seismic floods contain high sediment discharge, cause abrupt and severe damages, and have a large of volume and higher frequency.  相似文献   

4.
新疆河流洪水与洪灾的变化趋势   总被引:32,自引:11,他引:21  
吴素芬  张国威 《冰川冻土》2003,25(2):199-203
在西北气候由暖干转向暖湿的过程中,新疆河流的洪水和洪灾反映明显.对新疆29条河流选取年最大洪水,统计出超标准洪水、20a一遇、50a一遇洪水的出现频次进行分析,结果显示1987年后洪水量级、洪水频次呈增加的变化趋势.通过20世纪90年代以来灾害性洪水出现的频次、灾害损失的变化比较分析,90年代以来灾害性洪水尤其是灾害性暴雨洪水和突发性洪水呈现增加的态势,1987—2000年的灾害损失与1950—1986年相比增加了30倍.  相似文献   

5.
A review of the assessment and mitigation of floods in Sindh, Pakistan   总被引:1,自引:0,他引:1  
  相似文献   

6.
Dimensions of Holocene relict channels and sedimentological characteristics of point bars associated with these relict channels were used to reconstruct a Holocene history of long-term changes in magnitudes of 1.58-yr floods in Upper Mississippi Valley watersheds of southwestern Wisconsin. The reconstructed record of floods shows relatively large and persistent (nonrandom) departures from contemporary long-term average flood magnitudes. The flood history indicates climatic changes that are broadly similar to climatic changes indicated from fossil pollen in the same region. The Holocene floods ranged from about 10–15% larger to 20–30% smaller than contemporary floods of the same recurrence frequency. Large floods were characteristic between about 6000 – 4500 and 3000 – 2000 yr B.P., and during a brief interval after 1200 yr B.P. Small floods were common between about 8000 – 6500, 4500 – 3000, and 2000 – 1200 yr B.P. These fluvial responses were found to be closely associated with a long-term episodic mobility and storage of sediments in the Wisconsin watersheds. During periods of relatively large floods, relatively rapid lateral channel migration either reworked or removed extensive tracts of valley bottom alluvium. In contrast, during periods of relatively small floods, relatively slow lateral channel migration is apparent and the channel and floodplain system appear to have been relatively stable.  相似文献   

7.
崔曼仪  周刚  张大弘  张世强 《冰川冻土》2022,44(6):1898-1911
Under the background of climate warming, the occurrence time, frequency, intensity, and impact of snowmelt flood disasters have changed significantly. Thus, establishing a global snowmelt flood disaster database is particularly important for disaster risk management. With the help of a web crawler, and based on multiple data sources such as natural disaster databases, documents, books, government agency websites, and news media, this study collected relevant information of snowmelt floods and mixed floods and established standards for identifying snowmelt flood events and their disaster impacts based on data from the different sources. Following the screening, sorting, fusion, and integration of snowmelt flood events, a global snowmelt flood disaster dataset containing 579 pieces of data with strong pertinence and reliability was constructed. The temporal and spatial distribution characteristics of global snowmelt flood disasters from 1900 to 2020 were preliminarily analyzed. The results showed that the snowmelt floods were mainly distributed between 30° N and 60° N, with more mixed floods south of 50° N and more snowmelt floods north of 50° N. Spring was the period of highest incidence of snowmelt flood disasters, followed by winter, summer, and autumn, respectively. The snowmelt floods that occurred in spring, autumn, and winter were mainly at 40°~50° N, and the snowmelt floods that occurred in summer were mainly at 30°~40° N. Compared with the snowmelt floods, the mixed floods were more frequent and more destructive, and their frequency increased with climate warming. The results provide a scientific basis for risk prevention and loss assessment of global snowmelt flood disasters. © 2022 Science Press (China).  相似文献   

8.

Large floods are among the most hazardous natural phenomena, which in many cases cause enormous losses to the economy and lead to human casualties. Along with the use of modern instrumental data, the analysis of historical information on large past floods is widely practiced in the world. This allows obtaining qualitative and quantitative characteristics of historical floods and significantly expanding the observation series. The Selenga River is one of the largest rivers of Central Asia with catchment area equal to 447,060 km2, and also it is rather flood-prone river. The hydrological regime of the Selenga River is quite well studied in the twentieth century on the basis of gauging stations data, but there is still a lack of knowledge about past floods. In this paper, we present a list of 26 known floods within the Selenga River basin from 1730 to 1900, compiled from available historical documents (newspapers, scientific reports, diaries, memoirs, etc.). We estimated peak water levels for three catastrophic floods (1830, 1869 and 1897), the historical maximum of which was 850 cm. The reliability of our estimates is confirmed by a comparative analysis of the large 1971 flood. It was revealed that the largest floods can cause a rise of the Lake Baikal water level up to 200 cm. The inflow to Lake Baikal resulting from the largest floods in the Selenga River basin is comparable to the average annual inflow of water into the lake. We can conclude that the use of historical data for the analysis of floods in Eastern Siberia is quite acceptable, but some limitations must be taken into account.

  相似文献   

9.
黄河下游漫滩高含沙洪水河床调整剧烈,多数断面洪水后形成"相对窄深河槽",洪水前后河槽宽度发生明显变化。分别以观测断面洪水前后的河槽宽度为基准,计算漫滩高含沙洪水期泥沙时空沉积分布,结果表明,漫滩高含沙洪水与非漫滩高含沙洪水相比,能将主河槽内淤积泥沙量的59.3%搬运至嫩滩或滩地,减缓主河槽淤积。在分析研究基础上,建立了洪水后漫滩河段河槽相对缩窄率与洪水前期河槽宽度的量化关系,洪水后主槽宽度缩窄率为15.5%~44.0%;分析遴选了漫滩高含沙洪水滩地淤积量与主要水力因子间关联度及物理含义,给出了漫滩高含沙洪水滩地淤积量与相应水力因子间的响应函数;初步提出漫滩洪水河道塑槽淤滩的临界水沙配置指标,临界水沙系数取值为0.025~0.040。成果对高含沙洪水调控具有一定的指导意义。  相似文献   

10.
降雨因子对湖北省山地灾害影响的分析   总被引:2,自引:0,他引:2  
毛以伟  周月华  陈正洪  谌伟  金琪  王仁乔  王珏 《岩土力学》2005,26(10):1657-1662
根据湖北省1950~2003年726个山洪地质灾害样本,分析了其时空分布特征。滑动t-检验显示,逐年灾害数在1974年、1988年前后出现两次显著性突变增多(其中山洪、滑坡增多最明显),逐年降雨量也相应有两次增加,二者相关系数可达0.3。表明我省年降雨量趋势性增加是灾害增多的主要诱因。进一步分析表明,暴雨以上强降雨是山洪、滑坡、泥石流、塌陷的主要诱因,连阴雨是崩塌的主要诱因,同时对滑坡、泥石流、塌陷有重要影响,对山洪灾害影响则较小。  相似文献   

11.
Social vulnerability to floods: a case study of Huaihe River Basin   总被引:2,自引:1,他引:1  
Since ancient times, floods occurred frequently in Huaihe River with significant casualties and economic losses. In developing measures for disaster prevention or emergency response for disaster relief, the study of social vulnerability to floods in Huaihe River Basin should be strengthened. Based on the latest socioeconomic data, the index system of social vulnerability to floods was constructed from three dimensions: population, economy, and flood prevention. Sensitive indexes were identified from the original indexes by principal component analysis, and the social vulnerability index for floods was calculated for Huaihe River Basin. The results described the characteristics of the spatial distribution. It also demonstrated that vulnerability manifests itself as a regional phenomenon, with significant changes from city to city across the Huaihe River Basin. Understanding the impacts of changes in vulnerability was crucial in developing measures to prevent floods.  相似文献   

12.
基于强度与形态指标的洪水分类研究   总被引:2,自引:1,他引:1       下载免费PDF全文
彭为  刘丙军  廖叶颖  邱江潮 《水文》2018,38(6):7-11
洪水分类是描述洪水的特性和规律、加强洪水管理的重要手段之一。以澜沧江流域旧州站为例,通过POT取样法提取了198场洪水为样本,分别从仅考虑强度指标或综合考虑强度与形态指标,研究了该区域洪水分类的基本特征,研究结果如下:(1)基于强度指标的洪水分类,不能兼顾洪水强度与形态特征,同一类洪水形态差异明显,使得洪水分类结果不合理;(2)综合考虑强度与形态指标,可将旧州站洪水划分为4类,各类洪水间洪水强度与形态指标差异明显,同类洪水相似性较强。  相似文献   

13.
Geomorphic Effects of Monsoon Floods on Indian Rivers   总被引:1,自引:0,他引:1  
The southwest summer monsoon contributesthe bulk of India's rainfall. Consequently,almost all the geomorphic work by the rivers is carried out during the monsoonseason in general and the monsoon floods in particular. Indian rivers arecharacterized by high average flood discharges and large temporal variability. Thereis also significant spatial variation in the magnitude, frequency and power of floods, on account of regional variations in monsoon rainfall, basin characteristics andchannel geometry. As a result, the channel responses and the geomorphic effects also varyspatially. This paper describes the hydrological and geomorphological aspects, as well asthe geomorphic effects of monsoon floods in the Indian rivers. The geomorphic effects of floods are most impressive only in certainareas – the Himalaya, the Thar Desert, and the Indus-Ganga-Brahmaputra Plains. There are numerous instances of flood-induced changes in the channel dimension,position and pattern in these areas. In the Ganga-Brahmaputra Plains, the annualfloods appear to be geomorphologically more effective than the occasional large floods.In comparison, the rivers of the Indian Peninsula are, by and large, stable and thegeomorphic effects of floods are modest. Only large-magnitude floods that occur at aninterval of several years to decades are competent to modify the channel morphology in asignificant way. A synthesis of the various case studies available from the Indianregion indicates that often the absolute magnitude of a flood is not as important withrespect to the geomorphic effects as the flow stress and competence.  相似文献   

14.
Gupta  Sujata  Javed  Akram  Datt  Divya 《Natural Hazards》2003,28(1):199-210
The peculiar rainfall pattern in Indiarenders the country highly vulnerable to floods. Forty million hectares of land, roughlyone-eighth of the country's geographical area, is prone to floods. Each year, floods cause extensive damage to life and property, losses being exacerbated by rapid population growth, unplanned development and unchecked environmental degradation. The country has been tackling the problem through structural and non-structural measures. While non-structural measures like flood forecasting aim at improving the preparedness to floods by seeking to keep people away from floodwaters, structural measures involve the construction of physical structures like embankments, dams, drainage channels, and reservoirs that prevent floodwaters from reaching potential damage centres. Almost 48% of the vulnerable area has been provided with reasonable protection, though floods continue to cause widespread losses year after year. This paper examines the incidence of floods and the trends in consequent losses in the eastern region of the country – one of the most vulnerable – with the objective of studying the efficacy of flood protection measures in the region. Based on a simple regression exercise for three highly vulnerable states in the region, the paper argues that flood protection measures have been inadequate in controlling losses and reducing vulnerability. Regressions for the three states over the period 1971 to 1996 indicate that the level of protection is an insignificant explanatory variable in explaining the number of people (adjusted for increases in density) affected by floods; while area affected, as an indicator of the intensity of floods remains the main loss-determining factor.  相似文献   

15.
陕西省山洪灾害特征及防治对策   总被引:5,自引:1,他引:4  
界定了山洪灾害的概念.分析了陕西省山洪灾害的形成条件和影响因素。在时域上,具有多期性和同期群发性,与泥石流、滑坡等灾害形成灾害链,每年7~9月是山洪灾害的高发季节,4~6月偶有发生;在地域上.受暴雨中心和流域地形控制,具有相对集中性和成片成带性。划分了山洪灾害易发区,分区提出了相应的防洪减灾措施。  相似文献   

16.
Robinson  Peter J. 《Natural Hazards》2003,29(2):155-172
Widespread inland floods for 20th century North Carolina, USA were defined from stream flow records as events where flow was more than one standard deviation above the mean annual peak for at least two contiguous drainage basins simultaneously. Thirty-one events were identified. One snowmelt flood was detected. For the others, synoptic causes were identified from precipitation and circulation data. Eight events were directly related to hurricanes. Each required a precursor storm, often another hurricane, to provide sufficient precipitation to overcome the dry soils and low stream flows of the autumnal hurricane season. The decadal frequencies of these floods were poorly correlated with the total number of hurricanes, with no hurricane floods between 1955 and 1999 despite frequent hurricanes. Further, most events involved slow-moving decaying systems, not intense ones. An increase in hurricane intensity, often suggested as a consequence of climate change, may lead to fewer floods. The other floods were produced by either extra-tropical storms or squall lines, and precursor systems were also needed. These floods were common in the first and last three decades of the century, virtually absent in the middle four. This corresponded to a small dip in the total number of cyclones, and to periods of rising temperature statewide. This suggests a future increase in North Carolina floods as global temperatures increase. However, the synoptic causes of the relationship are not clear, and detailed quantitative analyses of recent events are required.  相似文献   

17.
Bangladesh is highly vulnerableto floods due to its geographical location at the deltas of the Ganges, Brahmaputra and Meghna (GBM) rivers. About 92.5 per cent of the area of three basins lies outside the boundaries of the country. More than 80 per cent of the annual precipitation of Bangladesh occurs in the monsoon period between June and September. The hydro-meteorological characteristics of the three river basins are unique and they often cause large to extremely large floods in Bangladesh. It is possible that these floods could inundate 70 per cent of the country and the physical damage could be very serious for the economy of Bangladesh with its low gross domestic product (GDP). In 1987, 1988 and 1998, Bangladesh experienced three extreme floods, leaving trails of devastation and human misery. In this article it is demonstrated that these floods differed in terms of magnitude, extent, depth and duration. The external and internal hydro-meteorological dynamics were also different.  相似文献   

18.
Qinghua Feng 《GeoJournal》1991,25(2-3):255-263
Conclusions 1. The drainage of the Kyagar glacier dammed lake and the Tram Kangri glacier dammed lake at the upper Shaksgam is the main reason for glacier outburst floods in the Yarkant river. The Kyagar glacier dammed lake is characterized by subglacial drainage, while the Tram Kangri glacier dammed lake by mainly lateral drainage and, secondly, by subglacial drainage. 2. The drainage mechanism of the Tram Kangri ice dam determines the main characteristics of flood hydrography of the Kagun station, while the Kyagar glacier dammed lake plays an important role in the formation of floods. 3. Glacier outburst floods in the Yarkant river are characterized mainly by high peak discharge, big rising rate, small total volume and short duration. The floods happen mostly from late summer to early autumn. A period of 6 to 10 years in occurrence of large scale glacier outburst floods exist. The periodicity depends mainly on large scale drainage in the Kyagar ice-dammed lake. 4. Formation and dimensions of glacier dams at the upper Shaksgam were determined by long-term variations of the regional climate, whereas the changes of storage capacity in the lake reflect cold and warm changes of alpine region. Therefore, frequent glacier outburst floods indicate glacier advance and climatic variations.  相似文献   

19.
新疆军塘湖河典型融雪洪水过程研究   总被引:2,自引:0,他引:2  
隗经斌 《冰川冻土》2006,28(4):530-534
开春融雪型洪水在新疆具有多发、易发的特点.春汛对解决春旱极为有利,但在一定条件下也可造成一定危害.运用成因分析法和相关分析法,对军塘湖河量级较大的典型融雪洪水的个例分析,在融雪型洪水的制导因素、形成机理、洪水特性等方面进行研究,以便寻求融雪型洪水的一般规律,同时在趋利避害、洪水资源利用方面进行有益的尝试.  相似文献   

20.
近1 000年长江中下游旱涝与气候变化关系   总被引:7,自引:2,他引:7  
姜彤  张强  王苏民 《第四纪研究》2004,24(5):518-524
文章利用旱涝灾害历史记载与现代器测降水资料重建长江中下游旱涝灾害等级序列 ,并通过相关分析与波谱分析、交叉谱分析等分别探讨了长江中下游旱涝灾害发生与东太平洋海水表面温度 (SST)以及太阳活动 (太阳黑子数 )的关系。结果表明 ,长江中下游涝灾多发生于气候过渡期 ,即涝灾在气候由一种气候状态向另一种气候状态转变时期多发。谱分析与交叉谱分析结果表明 ,长江中下游旱涝灾害等级序列在 10~ 11年周期上与太阳黑子数存在相关 ,但两者有近 1年的滞后性。长江中下游旱涝灾害与SST的相关关系分析表明 ,SST正距平年份 ,往往对应着长江中下游的涝灾 ;而SST负距平年份往往对应着长江中下游旱灾。因而可以认为 ,SST与太阳活动变化(太阳黑子数量变化 )在不同周期频度上对长江中下游旱涝灾害具有明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号