首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Bagassi gold deposits are situated on the West African craton and hosted in Palaeoproterozoic rocks of the Houndé greenstone belt, southwest Burkina Faso. High-grade gold mineralisation is hosted in quartz–gold ± pyrite veins-lodes (V1A), in dilational zones and narrow shears in the Bagassi granitoid, and forms the majority of the resource–reserve portfolio in the Bagassi exploration permits, with gold grades of 18–21 g/t. Shear hosted gold-pyrite mineralisation in quartz veins in dilational jogs (V1B) occurs along narrow discontinuous shear zones that trend north-northwest in Birimian-aged metabasaltic units, and forms a secondary gold resource. Gold mineralisation is restricted to formation in the late Eburnean Orogeny and formed during a change from east-west to transcurrent compression and shearing. The Bagassi deposits demonstrate that granitoids emplaced prior to onset of the Eburnean Orogeny represent viable gold mineralisation in host rocks that are increasingly seen to be associated with significant gold resources.  相似文献   

2.
《Precambrian Research》2004,128(1-2):105-142
The Kanowna Belle Gold Mine is a Late Archaean orogenic lode-gold deposit hosted by felsic volcaniclastic and intrusive rocks (porphyries) of the Kalgoorlie Terrane, Western Australia. Rare gold occurs in fragments of veins and alteration that form clasts within the Black Flag Group volcaniclastic rocks at the Kanowna Belle mine, indicating that epithermal gold mineralisation accompanied Black Flag Group volcanism. The SHRIMP U–Pb zircon age of the volcaniclastic unit is 2668±9 Ma, and xenocrystic zircons with ∼2.68, 2.70 and 2.71 Ga age groupings are common. The Black Flag Group rocks are faulted by a D1 thrust, and ∼2670 Ma is thus an older limit for regional D1 deformation. Although SHRIMP U–Pb zircon ages of felsic porphyries commonly give the best constraints on the timing of deformation and structurally controlled gold mineralisation, the data are complex and dates from single samples can be ambiguous. Four Porphyry samples from the Kanowna Belle Gold Mine were analysed. Backscattered electron and cathodoluminescence imaging show that most magmatic zircon in the porphyries is either high-U and metamict, or restricted to rims on older xenocrysts that are too narrow to be dated by SHRIMP. Some porphyries appear to have been saturated with zircon at source and contain only xenocrystic zircons. Zircons that are interpreted to be magmatic in a sample of the mineralised Kanowna Belle Porphyry gives a mean age of 2655±6 Ma. The Kanowna Belle Porphyry is cross cut by regional D2 fabrics and ∼2655 Ma is thus the maximum age for regional D2 deformation. This is a maximum age for epigenetic lode-gold mineralisation. The age of resetting of high-U zircon grains (2.63 Ga) and the age of ore-related Pb–Pb galenas (2.63 Ga) serves as an approximate date for lode-gold mineralisation. If the complex zircon history of the felsic porphyries at Kanowna Belle is typical of this suite throughout the Eastern Goldfields Province, it is clear that existing single zircon dates from this Province require reevaluation, backed up by careful backscattered and cathodoluminescence imaging and textural studies.  相似文献   

3.
The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo–Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U–Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M’Papa gold fields, dominantly N–S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE–SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re–Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite–chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ~483 Ma assemblage yields a chondritic initial 187Os/188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW–NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW–SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.  相似文献   

4.
Gold deposits in the Syama and Tabakoroni goldfields in southern Mali occur along a north-northeast trending mineralised litho-structural corridor that trends for approximately 40 km. The deposits are interpreted to have formed during a craton-wide metallogenic event during the Eburnean orogeny. In the Syama goldfield, gold mineralisation in 9 deposits is hosted in the hanging-wall of the Syama-Bananso Shear Zone in basalt, greywacke, argillite, lamprophyre, and black shale. Gold is currently mined primarily from the oxidised-weathered zone of the ore bodies. In the Syama deposit, mineralisation hosted in altered basalt is associated with an intense ankerite–quartz–pyrite stockwork vein systems, whereas disseminated style mineralisation is also present in greywackes. In contrast, the Tellem deposit is hosted in quartz–porphyry rocks.In the Tabakoroni goldfield, gold mineralisation is hosted in quartz veins in tertiary splay shears of the Syama-Bananso Shear Zone. The Tabakoroni orebody is associated with quartz, carbonate and graphite (stylolite) veins, with pyrite and lesser amounts of arsenopyrite. There are four main styles of gold mineralisation including silica-sulphide lodes in carbonaceous fault zones, stylolitic quartz reefs in fault zones, quartz–Fe–carbonate–sulphide lodes in mafic volcanics, and quartz–sulphide stockwork veins in silicified sediments and porphyry dykes. The several deposit styles in the goldfield thus present a number of potential exploration targets spatially associated with the regional Syama-Bananso Shear Zone and generally classified as orogenic shear-hosted gold deposits.  相似文献   

5.
The Urals is a complex fold belt, which underwent long geological evolution. The formation of most gold deposits in the Urals is related to the collision stage. In this paper, we review some relatively small listvenite-related gold deposits, which are confined to the large Main Uralian fault zone and some smaller faults within the Magnitogorsk zone. The Mechnikovskoe, Altyn-Tash, and Ganeevskoe deposits are studied in detail in this contribution. They comprise the ore clusters along with other numerous small gold deposits, and constituted the sources for the gold placers exploited in historical time. The gold is hosted by metasomatites (listvenites, beresites) and quartz veins with economic gold grades (up to 20 g/t Au). Listvenites are developed after serpentinites and composed of quartz, fuchsite, and carbonates (magnesite, dolomite) ± albite. Volcanic and volcanoclastic rocks are altered to beresites, consisting of sericite, carbonates (dolomite, ankerite), quartz and albite. Pyrite and chalcopyrite are major ore minerals associated with gold; pyrrhotite, Ni sulfides, galena, sphalerite, arsenopyrite and Au-Ag tellurides are subordinate and rare. Gold in these deposits is mostly high-fineness (>900‰). The lower fineness (∼800‰) is typical of gold in assemblage with polymetallic sulfides and tellurides. The ores have been formed from the NaCl–CO2–H2O ± CH4 fluids of low (∼2 wt% NaCl-equiv.) to moderate (8–16 wt% NaCl-equiv.) salinity at temperatures of 210–330 °C. The oxygen isotopic composition of quartz (δ18O) varies from 14.7 to 15.4‰ (Mechnikovskoe deposit), 13.2 to 13.6‰ (Altyn-Tash deposit) and 12.0 to 12.7‰ (Ganeevskoe deposit). The oxygen isotopic composition of albite from altered rocks of the Ganeevskoe deposit is 10.1‰. The calculated δ18OH2O values of the fluid in equilibrium with quartz are in a range of 5.7–6.3, 4.2–4.6 and 6.3–6.7‰ respectively, and most likely indicate a magmatic fluid source.  相似文献   

6.
The Guelb Moghrein copper–gold deposit in the Islamic Republic of Mauritania reopened in 2006 and has produced copper concentrate and gold since then. The deposit is hosted in Neoarchaean–Palaeoproterozoic Fe–Mg carbonate-dominated metamorphic rocks interpreted as carbonate-facies iron formation. It forms tabular orebodies controlled by shear zones in the hanging wall and footwall of this meta-iron formation. Copper and gold are hosted in a complex sulfide ore in tectonic breccia replacing Fe–Mg carbonate and magnetite. Hydrothermal monazite dates the mineralization at 2492 ± 9 Ma. Two types of aqueous fluid inclusions suggest fluid mixing at 0.75–1.80 kbar and ~ 410 °C as the mineralization and precipitation mechanism, which is temporally coincident with regional retrograde metamorphism at 410 ± 30 °C (garnet-biotite). Distal alteration zones are enriched in K, Rb and Cu, whereas orebodies are depleted in K, Rb, Sr and Ba. The copper–gold mineralization at Guelb Moghrein formed during retrograde shearing in metamorphic rocks and contemporaneous hydrothermal alteration. The stable isotope signature of alteration and ore minerals suggest an external crustal fluid source. Fluids were focused in the reactive and competent meta-iron formation. Potassium alteration, magnetite and copper–gold mineralization suggest an IOCG mineral system akin similar deposits in Australia and Brazil.  相似文献   

7.
The Song Hien rift basin is an important metallogenic area in NE Vietnam. This domain consists mainly of Triassic sulfide-rich black shale beds, which play a role as a sedimentary host for various mineral systems such as antimony, mercury and gold-sulfide deposits. Most of gold deposits are hosted in carbonaceous sedimentary rocks, however some deposits, which have similar characteristics, are hosted in fine-grained mafic magmatic rocks. An Ar-Ar isotopic dating of hydrothermal sericite from the sedimentary hosted Bo Va and Khung Khoang gold deposits and intrusion hosted orogenic Hat Han gold deposit yields plateau ages of 184.8 ± 2.1 Ma, 211.63 ± 2.3 Ma, and 209.12 ± 2.3 Ma, respectively. The obtained Ar-Ar ages convincingly show that the orogenic gold deposits in the Song Hien domain were formed in Late Triassic to Early Jurassic, while the age of the Bo Va deposit is at least older than 184.8 ± 2.1 Ma. Loss of argon by volume diffusion, supported by previously reported mineralogical and isotopic features of the Bo Va deposit may suggest that the Jurassic-Cretaceous (Yanshanian) tectonothermal events overprinted some deposits in the Song Hien domain. Formation of gold deposits in the Song Hien domain is linked to the same tectonic event as the Carlin-like gold deposits in SW China and is associated with an extensional tectonic regime that followed continental collision between the Indochina and South China Blocks. The similarity in geology setting and mineral composition of gold deposits of the Song Hien domain and the Golden Triangle region, as well as timing and kinematics of deformation, magmatic features, and stratigraphic sequence and bulk architecture, lead to conclusion that NE Vietnam and SW China is a single metallogenic zone. The study of gold deposits in Vietnam will provide a new data on the metallogenic history of this important part of SE Asia.  相似文献   

8.
The Inata gold deposit is hosted in the Bouroum greenstone belt of northern Burkina Faso and contains ca. 5 Moz of gold resource. The greenstone belt is divided into 4 distinct domains: The Pali West, Pali-Minfo and Fété Kolé domains comprised of variable proportions of mafic to intermediated volcanic, volcaniclastic and sedimentary rocks, and the Sona Basin comprised of feldspathic sandstones and turbidites. Potential Tarkwaian-like conglomerates are rarely observed on the eastern margin of the basin. The stratigraphy is crosscut by a series of intrusions between 2172 ± 15 Ma and 2122 ± 4 Ma. A complex deformation sequence is recorded in the rocks and has been interpreted in a five stage scheme: early syn-depositional basin margin faults reactivated through time and partitioning all subsequent regional deformation (DeB); N–S compression (D1B > 2172 Ma); E-W compression (D2B, < ca 2122 Ma); NW–SE compression (D3B), and a late N–S compression (D4B). D2B-D4B overprint all rocks, including those of the Sona Basin and Tarkwaian-like conglomerates. Peak metamorphism is mid- to upper-greenschist facies.Mineralisation at Inata is hosted in black shales and volcaniclastic rocks of the Pali-Minfo domain and comprises shear-zone hosted quartz-tourmaline-ankerite veins with associated sulphides dominated by pyrite and arsenopyrite. Three generations of pyrite (py1, py2, py3) and one generation of arsenopyrite (apy2) have been identified. Py1 is parallel to bedding and early D1B foliation and not associated with gold. Py2 and apy2 are coeval, contain up to 1 ppm gold and are spatially associated with auriferous quartz veins. Py3 locally overprints previous assemblages and is also associated with Au. Fluid inclusions in quartz indicate H2O to H2O–CO2–NaCl fluids in auriferous quartz veins.Microscopic to macroscopic observation of fabric-mineral-vein crosscutting relationships indicate that mineralisation is syn-D2B, disrupted and remobilised during D3B. All observations and data are consistent with Inata representing an orogenic style of gold mineralisation formed relatively late in the evolution of the host terrane.  相似文献   

9.
Northern Sweden is currently experiencing active exploration within a new gold ore province, the so called Gold Line, situated southwest of the well-known Skellefte VMS District. The largest known deposit in the Gold Line is the hypozonal Fäboliden orogenic gold deposit. Mineralization at Fäboliden is hosted by arsenopyrite-rich quartz veins, in a reverse, mainly dip-slip, high-angle shear zone, in amphibolite facies supracrustal host rocks. The timing of mineralization is estimated, from field relationships, at ca. 1.8 Ga.The gold mineralization is hosted by two sets of mineralized quartz veins, one steep fault–fill vein set and one relatively flat-lying extensional vein set. Ore shoots occur at the intersections between the two vein sets, and both sets could have been generated from the same stress field, during the late stages of the Svecofennian orogen.The tectonic evolution during the 1.9–1.8 Ga Svecofennian orogen is complex, as features typical of both internal and external orogens are indicated. The similarity in geodynamic setting between the contemporary Svecofennian and Trans-Hudson orogens indicates a potential for world-class orogenic gold provinces also in the Svecofennian domain.The Swedish deposits discussed in this paper are all structurally associated with roughly N–S striking shear zones that were active at around 1.8 Ga, when gold-bearing fluids infiltrated structures related to conditions of E–W shortening.  相似文献   

10.
《Ore Geology Reviews》2010,37(4):333-349
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

11.
The Tonglushan ore district in the Middle–Lower Yangtze River Valley metallogenic belt includes the Tonglushan Cu–Fe, the Jiguanzui Au–Cu, and the Taohuazui Au–Cu skarn deposits. They are characterized by NE-striking ore bodies and hosted at the contact of Triassic carbonate rocks and Late Mesozoic granitoid deposits. New Sensitive High-Resolution Ion Microprobe (SHRIMP) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP-MS) zircon U–Pb, molybdenite Re–Os, and phlogopite 40Ar–39Ar ages indicate that these skarn deposits formed between 140.3 ± 1.1 and 137.3 ± 2.4 Ma. These dates are identical to the zircon U–Pb ages for host quartz diorites ranging from 140 ± 2 to 139 ± 1 Ma. These results confirm that both skarn mineralization and related intrusions were initiated during the Early Cretaceous. The high rhenium contents (261.4–1152 μg/g) of molybdenites indicate that a metasomatic mantle fluid was involved in the ore-forming process of these skarn ore systems. This conclusion is consistent with previously published constraints from sulfur, deuterium, and oxygen isotope compositions, and the geochemical signatures, and Sr–Nd isotopic data of the mineralization-hosting intrusions. Geological and geochronological evidence demonstrates that there were two igneous events in the Tonglushan ore district. The first resulted in the emplacement of quartz diorite during the Early Cretaceous (140 ± 2 to 139 ± 1 Ma), and the second is characterized by the eruption of volcanic rocks during the mid-Early Cretaceous (130 ± 2 to 124 ± 2 Ma). The former is spatially, temporally and genetically associated with skarn gold-bearing mineralization (140.3 ± 1.1 to 137.3 ± 2.4 Ma). The recognition of these two igneous events invalidates previous models that proposed continuous magmatism and associated mineral deposits in the Middle–Lower Yangtze River Valley metallogenic belt.  相似文献   

12.
South Greenland has been the site of historic mining of cryolite, copper, graphite and gold, hosts mineral deposits with gold, uranium, zinc, niobium, tantalum, zirconium, hafnium, REE, iron, titanium, vanadium, fluorite and graphite, and has additional potential for lithium, beryllium, phosphorus, gallium and thorium. Data from stream sediment geochemical surveys document that South Greenland is enriched in a range of these elements relative to the rest of Greenland and to estimates of the upper crust composition. Distribution patterns for individual elements within south Greenland exhibit enriched regions that are spatially related to lithological units, crustal structure and known mineralisation.The Northern Domain of South Greenland includes the southernmost part of the orthogneiss-dominated North Atlantic craton. Orogenic gold mineralisation is hosted by quartz veins and hydrothermally altered rocks associated with shear zones intersecting the Mesoarchaean Tartoq Group of mafic metavolcanic rocks. Geochemical exploration indicates that additional potential for gold mineralisation exists within Palaeoproterozoic supracrustal rocks overlying the Archaean basement.Rocks formed during the Palaeoproterozoic Ketilidian orogeny occupy a major part of South Greenland and has been divided into two domains. The Central Domain is underlain by the Julianehåb igneous complex forming a 100 km wide ENE–WSW zone centrally across South Greenland. Intrusive and extrusive, mostly felsic magmatic rocks were emplaced in two main stages (1850–1830 and 1800–1780 Ma) in a continental arc setting. Positive anomalies in aeromagnetic data indicate that mafic plutons are common in the late igneous complex. Intra-arc mafic metavolcanic rocks contain syngenetic stratabound copper sulphide and epigenetic shear zone-hosted copper–silver–gold mineralisation at Kobberminebugt and Kangerluluk, whereas metasedimentary and metapyroclastic rocks contain stratabound uraninite mineralisation. Orthomagmatic iron–titanium–vanadium mineralisation is hosted by a gabbro. A potential for porphyry-type mineralisation related to the late intrusive stages of the Julianehåb igneous complex is suggested by showings with copper, molybdenum and gold together with stream sediment anomalies for these elements. Vein-type uranium mineralisation occurs in fault zones in the Julianehåb igneous complex related to Mesoproterozoic rifting.The Southern Domain contains an assemblage of Palaeoproterozoic metasedimentary and metavolcanic rocks that underwent moderate to strong deformation, peak HT–LP metamorphism and partial melting with subsequent retrograde exhumation at 1790–1765 Ma. The supracrustal rocks contain syngenetic Au, As, Sb, U, and Zn mineralisation in volcanic or graphite- and sulphide-rich sedimentary environments; graphite was mined historically at two sites. Many stream sediment gold anomalies are located in a NE-trending belt along the boundary between the early Julianehåb complex and the supracrustal rocks to the south. They reflect a number of auriferous quartz vein occurrences, including the Nalunaq gold deposit, hosted in a system of shear zones and probably generated as orogenic gold during Ketilidian accretion. The 1755–1730 Ma, A-type Ilua plutonic suite is the latest magmatic event in the Ketilidian orogen.The 1300–1140 Ma Gardar period involved continental rifting, sedimentation and alkaline magmatism. Numerous dykes and 10 ring-shaped intrusion complexes were formed across South Greenland. An orthomagmatic iron–titanium–vanadium deposit is hosted by troctolitic gabbro. Residual magmas and fluids resulting from extreme magmatic differentiation, possibly combined with assimilation of older crust, created mineral deposits including cryolite that was mined at Ivigtut, large low-grade deposits of uranium–rare earth elements–zinc at Kvanefjeld and tantalum–niobium–rare earth element–zirconium at Kringlerne, in the Ilímaussaq complex, as well as tantalum–niobium–rare earth elements at Motzfeldt Sø in the Igaliko complex.The South Greenland crustal evolution records effects of mantle processes, such as lithospheric extension, subduction and underplating, which resulted in recurrent magma emplacement in tectonically active environments. As such, the geology of South Greenland reflects events and circumstances that are favourable to the generation and preservation of hydrothermal ore-forming fluid systems during the Ketilidian orogeny as well as to the development of extreme rock compositions within the Gardar alkaline igneous province.  相似文献   

13.
The Northern Norrbotten Ore Province in northernmost Sweden includes the type localities for Kiruna-type apatite iron deposits and has been the focus for intense exploration and research related to Fe oxide-Cu-Au mineralisation during the last decades. Several different types of Fe-oxide and Cu-Au ± Fe oxide mineralisation occur in the region and include: stratiform Cu ± Zn ± Pb ± Fe oxide type, iron formations (including BIF's), Kiruna-type apatite iron ore, and epigenetic Cu ± Au ± Fe oxide type which may be further subdivided into different styles of mineralisation, some of them with typical IOCG (Iron Oxide-Copper-Gold) characteristics. Generally, the formation of Fe oxide ± Cu ± Au mineralisation is directly or indirectly dated between ~ 2.1 and 1.75 Ga, thus spanning about 350 m.y. of geological evolution.The current paper will present in more detail the characteristics of certain key deposits, and aims to put the global concepts of Fe-oxide Cu-Au mineralisations into a regional context. The focus will be on iron deposits and various types of deposits containing Fe-oxides and Cu-sulphides in different proportions which generally have some characteristics in common with the IOCG style. In particular, ore fluid characteristics (magmatic versus non-magmatic) and new geochronological data are used to link the ore-forming processes with the overall crustal evolution to generate a metallogenetic model.Rift bounded shallow marine basins developed at ~ 2.1–2.0 Ga following a long period of extensional tectonics within the Greenstone-dominated, 2.5–2.0 Ga Karelian craton. The ~ 1.9–1.8 Ga Svecofennian Orogen is characterised by subduction and accretion from the southwest. An initial emplacement of calc-alkaline magmas into ~ 1.9 Ga continental arcs led to the formation of the Haparanda Suite and the Porphyrite Group volcanic rocks. Following this early stage of magmatic activity, and separated from it by the earliest deformation and metamorphism, more alkali-rich magmas of the Perthite Monzonite Suite and the Kiirunavaara Group volcanic rocks were formed at ~ 1.88 Ga. Subsequently, partial melting of the middle crust produced large volumes of ~ 1.85 and 1.8 Ga S-type granites in conjunction with subduction related A −/I-type magmatism and associated deformation and metamorphism.In our metallogenetic model the ore formation is considered to relate to the geological evolution as follows. Iron formations and a few stratiform sulphide deposits were deposited in relation to exhalative processes in rift bounded marine basins. The iron formations may be sub-divided into BIF- (banded iron formations) and Mg-rich types, and at several locations these types grade into each other. There is no direct age evidence to constrain the deposition of iron formations, but stable isotope data and stratigraphic correlations suggest a formation within the 2.1–2.0 Ga age range. The major Kiruna-type ores formed from an iron-rich magma (generally with a hydrothermal over-print) and are restricted to areas occupied by volcanic rocks of the Kiirunavaara Group. It is suggested here that 1.89–1.88 Ga tholeiitic magmas underwent magma liquid immiscibility reactions during fractionation and interaction with crustal rocks, including metaevaporites, generating more felsic magmatic rocks and Kiruna-type iron deposits. A second generation of this ore type, with a minor economic importance, appears to have been formed about 100 Ma later. The epigenetic Cu-Au ± Fe oxide mineralisation formed during two stages of the Svecofennian evolution in association with magmatic and metamorphic events and crustal-scale shear zones. During the first stage of mineralisation, from 1.89–1.88 Ga, intrusion-related (porphyry-style) mineralisation and Cu-Au deposits of IOCG affinity formed from magmatic-hydrothermal systems, whereas vein-style and shear zone deposits largely formed at c. 1.78 Ga.The large range of different Fe oxide and Cu-Au ± Fe oxide deposits in Northern Norrbotten is associated with various alteration systems, involving e.g. scapolite, albite, K feldspar, biotite, carbonates, tourmaline and sericite. However, among the apatite iron ores and the epigenetic Cu-Au ± Fe oxide deposits the character of mineralisation, type of ore- and alteration minerals and metal associations are partly controlled by stratigraphic position (i.e. depth of emplacement). Highly saline, NaCl + CaCl2 dominated fluids, commonly also including a CO2-rich population, appear to be a common characteristic feature irrespective of type and age of deposits. Thus, fluids with similar characteristics appear to have been active during quite different stages of the geological evolution. Ore fluids related to epigenetic Cu-Au ± Fe oxides display a trend with decreasing salinity, which probably was caused by mixing with meteoric water. Tentatively, this can be linked to different CuAu ore paragenesis, including an initial (magnetite)-pyrite-chalcopyrite stage, a main chalcopyrite stage, and a late bornite stage.Based on the anion composition and the Br/Cl ratio of ore related fluids bittern brines and metaevaporites (including scapolite) seem to be important sources to the high salinity hydrothermal systems generating most of the deposits in Norrbotten. Depending on local conditions and position in the crust these fluids generated a variety of Cu-Au deposits. These include typical IOCG-deposits (Fe-oxides and Cu-Au are part of the same process), IOCG of iron stone type (pre-existing Fe-oxide deposit with later addition of Cu-Au), IOCG of reduced type (lacking Fe-oxides due to local reducing conditions) and vein-style Cu-Au deposits. From a strict genetic point of view, IOCG deposits that formed from fluids of a mainly magmatic origin should be considered to be a different type than those deposits associated with mainly non-magmatic fluids. The former tend to overlap with porphyry systems, whereas those of a mainly non-magmatic origin overlap with sediment hosted Cu-deposits with respect to their origin and character of the ore fluids.  相似文献   

14.
Turbidite hosted orogenic gold mineralization in the Archean Gadag greenstone belt of the Western Dharwar Craton, forms a major auriferous zone (Central Auriferous Zone) extending over a strike length of about 12 km in the Gadag duplex. The turbidite sequence comprises thick inter-bedded, medium to coarse grained lithic graywacke and thin laminated layers of fine grained carbonaceous phyllite. Gold bearing quartz veins impregnate preferentially along the en-echelon shear planes, fractures and schistosity planes. Auriferous quartz veins are enveloped by the altered wall rocks.Mineralogy of the auriferous zone is dominated by gangue minerals like quartz, ankerite, chlorite, sericite and carbonaceous matter, with subordinate plagioclase. Monazite and xenotime are the important accessory minerals. Arsenopyrite and pyrite are the major sulfide minerals, but pyrrhotite, chalcopyrite, sphalerite, galena and scheelite are also present. Gold in native state occurs within quartz, silicates and arsenopyrite.Notable distinctions in mineral assemblage, texture and in chemical compositions of altered wall rocks compared to the precursor host rock in the study area implies that the metasomatism and wall rock alterations are the results of pervasive infiltration and intense interaction between hydrothermal fluids and the surrounding host rocks over a prolonged period.Sulfides, carbonates, carbonaceous matter, K2O, MgO, CaO, Cr, Ni, Cu, Pb, Zn, As and higher values of gold (0.98–4.72 ppm) are added into the altered wall rocks, immediately enveloping the auriferous quartz vein bodies. The chondrite normalized REE pattern of altered wall rocks exhibits enriched LREE (LaN/YbN = av. 9.54), with prominent negative Eu anomaly. The observed variation in geochemical characteristics and mineral assemblages in the alteration zones indicates differential response of the host rock and intensity of alteration depending on the composition of host rocks and hydrothermal fluids.The auriferous hydrothermal fluids were of low salinity (2.0 to 6.6 wt.% NaCl), dominated by CO2–H2O (about 30 mol% CO2) with moderate densities (0.7 to 1.04 g/cm3), and gold deposition occurred over a wide temperature range between 175 °C and 325 °C. Gold deposition was influenced by fluid mixing, phase separation and redox reactions. Mixing between CO2–H2O fluids and more reduced fluids, which evolved during fluid reaction with adjacent carbonaceous wall rocks, was the key factor causing gold deposition.The formation of the Gadag duplex, deformation, folds and reverse strike slip faults (discontinuities) was caused by the compression associated with subduction related tectonic processes. During the initial period of intrusive magmatism (2,555 ± 6 Ma), regional metamorphism occurred in the entire greenstone belt, while during later period, hydrothermal fluids responsible for gold mineralization probably were derived from metamorphic processes as well as from intrusive granites. Such fluids channeled through the thrust in host turbidite sequence carrying dissolved gold, associated metals and sulfur, ultimately were precipitated in a reducing environment in the splays to the thrust in the Gadag duplex at about 2,522 ± 6 Ma, resulting in retrograde alteration assemblages.  相似文献   

15.
Formation of the Urals Volcanic-Hosted Massive Sulphide (VHMS) deposits is considered to be related with the intra-oceanic stage of the island arc(s) development in Late Ordovician – Middle Devonian time (ca. 460–385 Ma) based on the biostratigraphic record of ore-hosting sedimentary rocks. However, the known radiometric ages of ore hosting volcanics are very limited. Here we present direct dating results of sulphide mineralisation from the Yaman-Kasy and Kul-Yurt-Tau VHMS deposits using Re-Os isotope systematics showing similar mineralisation ages of 362 ± 9 Ma and 363 ± 1 Ma. These ages coincide with the previous Re-Os dating of the Alexandrinskoe (355 ± 15 Ma) and Dergamysh (366 ± 2 Ma) VHMS deposits. This Late Devonian (Famennian) age corresponds to the late stage of the ‘Magnitogorsk arc – Laurussia continent’ collision event and coincides with a beginning of large scale subduction-related granitoid magmatism. The younger mineralisation age relative to the biostratigraphic ages of host rocks is interpreted as one of the latest episodes of the multi-stage history of VHMS deposits development. Ar-Ar ages of sericites from metasomatic rocks of Barsuchi Log and Babaryk deposits show even younger ages clustering around 345 Ma, and testify another late hydrothermal event in the history of the Urals VHMS deposits.  相似文献   

16.
The Laowan metallogenic belt in China is an important metallogenic belt within the Tongbai orogenic belt, and contains the medium-sized Laowan and Shangshanghe gold deposits, the small Huangzhuyuan lead–zinc–silver–gold deposit and some gold and Cu–Pb occurrences. These deposits are hosted in Mesoproterozoic plagioclase amphibolite (or schist) and mica-quartz schist. The gold ores are mainly quartz veins and veinlets and disseminated altered ores. Subordinate ore types include massive sulfides and breccias. The Laowan gold deposit is characterized by three right-stepping en-echelon fracture-controlled alteration zones that dip gently to the south and includes disseminated, sheeted and stockwork ores. These lodes were formed by the interaction of ore-forming fluid with foliated-to laminated cataclasite within the transpressional faults. The Shangshanghe gold deposit is characterized by parallel ore lodes that dip steeply to the north, and includes quartz veins and breccias in addition to ores in altered wallrocks. These lodes were formed by focusing of fluids into transtensional faults. These ore controlling faults displaced early barren quartz veins 10 m horizontally with a dextral sense of motion. The ore-hosting structures at the Laowan and Shangshanghe deposits correspond to the P and R-type shears of a brittle dextral strike-slip fault system, respectively, which make angles of about 15° and − 15° to the Laowan and Songpa boundary faults. The ore-controlling fault system post-dated formation of a ductile shear zone, and peak regional metamorphism. This precludes a genetic relationship between hydrothermal mineralization and regional metamorphism and ductile shear deformation. These gold deposits are not typical orogenic gold deposits. The metallogenic belt displays district-scale-zoning of Mo  Cu–Pb–Zn–Ag  Au relative to Songpa granite porphyry dike zone, suggesting the mineralization may be closely related to the granite porphyry. Measured δ34S of sulfides and δ18O and δD of fluid inclusion waters in auriferous quartz also are consistent with a magmatic source for sulfur and ore fluids. The similarity of Pb isotope ratios between the ores and Yanshanian granitoids suggests a similar source. As the age (139 ± 3 Ma) of granite porphyry obtained by zircon U–Pb isotope overlaps the mineralization age (138 ± 1 Ma: Zhang et al., 2008a), the gold and polymetallic metallogenesis of the Laowan gold belt has close spatial, temporal and possibly genetic relationships with Yanshanian high level magmatism.  相似文献   

17.
Two epithermal gold deposits (Kartaldağ and Madendağ) located in NW Turkey have been characterized through the detailed examinations involving geologic, mineralogical, fluid inclusion, stable isotope, whole-rock geochemistry, and geochronology data.The Kartaldağ deposit (0.01–17.65 ppm Au), hosted by Eocene dacite porphyry, is associated with four main alteration types with characteristic assemblage of: i) chlorite/smectite–illite ± kaolinite, ii) quartz–kaolinite, iii) quartz–alunite–pyrophyllite, iv) quartz–pyrite, the last being characterized by three distinct quartz generations comprising massive/vuggy (early), fine–medium grained, vug-lining (early), and banded, colloform, comb (late) textures. Observed sulfide minerals are pyrite, covellite, and sphalerite. Oxygen and sulfur isotope analyses, performed on quartz (δ18O(quartz): 7.93 to 8.95‰ and calculated δ18O(H2O): − 7.95 to 1.49‰) and pyrite (δ34S(pyrite): − 4.8‰ and calculated δ34S(H2S): − 6.08 to − 7.20‰) separates, suggest a meteoric water source for water in the hydrothermal fluid, and an igneous source for the sulfur dissolved in ore-related fluids. Microthermometric analyses of primary fluid inclusion assemblages performed on quartz (late quartz generation) yield temperatures (Th) dominantly in the range of 245–285 °C, and generally low salinity values at 0 to 1.7 wt.% NaCl eq. Based on the quartz textures and the associated base metal concentrations, along with fluid inclusion petrography, the early vug-lining quartz is considered to have been associated with the mineralization possibly through a boiling and a late mixing process at > 285 °C.The Madendağ deposit (0.27–20.60 ppm Au), hosted by Paleozoic mica schists, is associated with two main alteration types: sericite–illite–kaolinite, and quartz–pyrite dominated by two distinct quartz generations i) early colloform, comb and banded quartz and ii) late quartz, forming the cement in hydrothermal breccia. Whereas oxygen isotope analyses of quartz (δ18O(quartz): 9.55 to 18.19‰ and calculated δ18O(H2O): − 2.97 to 5.54‰) suggest varying proportions of meteoric and magmatic sources for the ore bearing fluid, sulfur isotope ratios (δ34S(pyrite): − 2.2‰ and calculated δ34S(H2S): (− 3.63) to (− 3.75) ‰) point to an essentially magmatic source for sulfur with or without contribution from sedimentary sources. Microthermometric analysis carried out on primary fluid inclusion populations of a brecciated sample (early quartz), give a temperature (Th) range of 235–255 °C and 0.0 to 0.7 wt.% NaCl eq. salinity. Based on the textural relationship, base metal and high gold contents, the ore precipitation stage is associated with late stage quartz formation via a possible boiling process.The presence of alunite, pyrophyllite and kaolinite, vuggy quartz and covellite suggest a high-sulfidation type of epithermal deposit for Kartaldağ. On the other hand, Madendağ is identified as an adularia-sericite type owing to the presence of significant sericite, neutral pH clays (mostly illite, chlorite/smectite, and kaolinite), low temperature quartz textures (e.g., colloform, comb, and banded quartz), and limited sulfide minerals.Given the geographical proximity of Kartaldağ and Madendağ deposits, the similar temperature and salinity ranges obtained from their fluid inclusions, and the similar ages of igneous rocks in both deposits (Kartaldağ: 40.80 ± 0.36 to 42.19 ± 0.45 Ma, Madendağ: 43.34 ± 0.85 Ma) the mineralizing systems in both deposits are considered to be genetically related.  相似文献   

18.
The Jiehe gold deposit, containing a confirmed gold reserve of 34 tonnes (t), is a Jiaojia-type (disseminated/stockwork-style) gold deposit in Jiaodong Peninsula. Orebodies are hosted in the contact zone between the Jurassic Moshan biotite granite and the Cretaceous Shangzhuang porphyritic granodiorite, and are structurally controlled by the NNE- to NE-striking Wangershan-Hedong Fault. Sulphide minerals are composed predominantly of pyrite with lesser amounts of chalcopyrite, galena, and sphalerite. Hydrothermal alteration is strictly controlled by fracture zones, in which disseminated sulfides and native gold are spatially associated with pervasive sericitic alteration. Mineralogical, textural, and field relationships indicate four stages of alteration and mineralization, including pyrite-bearing milky and massive quartz (stage 1), light-gray granular quartz–pyrite (stage 2), quartz–polysulfide (stage 3) and quartz–carbonate (stage 4) stages. Economic gold is precipitated in stages 2 and 3.The Jiehe deposit was previously considered to form during the Eocene (46.5 ± 2.3 Ma), based on Rb-Sr dating of sericite. However, 40Ar/39Ar dating of sericite in this study yields well-defined, reproducible plateau ages between 118.8 ± 0.7 Ma and 120.7 ± 0.8 Ma. These 40Ar/39Ar ages are consistent with geochronological data from other gold deposits in the region, indicating that all gold deposits in Jiaodong formed in a short-term period around 120 Ma. The giant gold mineralization event has a tight relationship with the extensional tectonic regime, and is a shallow crustal metallogenic response of paleo-Pacific slab subduction and lithospheric destruction in the eastern NCC.  相似文献   

19.
The Macraes deposit (> 10 Moz resource) is a Cretaceous orogenic system hosted in the Hyde-Macraes Shear Zone (HMSZ) which was mineralised under lower greenschist facies during later stages of lower greenschist facies metamorphism of host metasedimentary schists. Gold is encapsulated primarily in sulphides that have replaced silicates in ductile shears that are focussed in micaceous rocks. The shears anastomose around structurally competent lenses, and were enhanced by hydrothermal graphite deposition and alteration of albite to muscovite. In contrast, scheelite with minor auriferous sulphides occurs in multigenerational quartz veins that filled fractures in competent lithologies. Hence, scheelite was deposited coevally with gold, from the same hydrothermal fluid, but in different structural settings from most gold at all scales from millimetres to hundreds of metres. Consequentially, there is weak correlation between Au and W at all scales in the deposit. Multigenerational gold and scheelite mineralisation occurred during progressive deformation in the shear zone in two contrasting structural and mineralogical styles in syn-deformationally weakening gold-bearing micaceous shears, and in syn-deformationally hardened competent rocks that became silicified and veined with quartz and scheelite. Hydrothermal fluid flow in the gold-bearing shears occurred at the grain boundary, microshear, and microfracture scales, and was slow (< 1 m/year), continuous, and pervasive. In contrast, vein formation in more competent lithologies was episodic, locally rapid (> hundreds of m/year), and was controlled by fracture permeability. The Au and W enrichment in the Macraes deposit resulted from regional scale metal mobility, driven by coeval recrystallisation in higher-grade (upper greenschist to amphibolite facies) metamorphism that persisted structurally below the Macraes deposit for at least 10 Ma after mineralisation ceased.  相似文献   

20.
Including past production, current indicated and inferred resources, Wassa is a 5 Moz poly-deformed early-orogenic gold deposit located on the eastern flank of the Ashanti Belt, in southwest Ghana. It is hosted by metamorphosed volcanic, intrusive and sedimentary rocks of the Sefwi Group (ca. 2260–2160 Ma). Early mineralization has an Eoeburnean age (2164 ± 22 Ma, Re–Os on pyrite) and is characterized by quartz veins, by a carbonate alteration of the host rocks, and by deformed gold-bearing pyrite. Remobilization of this gold occurred during the late stages of the Eburnean Orogeny (~ 2.1 Ga) and is associated with quartz-carbonate veins with visible gold and euhedral pyrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号