首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
The Madoonga iron ore body hosted by banded iron formation (BIF) in the Weld Range greenstone belt of Western Australia is a blend of four genetically and compositionally distinct types of high-grade (>55 wt% Fe) iron ore that includes: (1) hypogene magnetite–talc veins, (2) hypogene specular hematite–quartz veins, (3) supergene goethite–hematite, and (4) supergene-modified, goethite–hematite-rich detrital ores. The spatial coincidence of these different ore types is a major factor controlling the overall size of the Madoonga ore body, but results in a compositionally heterogeneous ore deposit. Hypogene magnetite–talc veins that are up to 3 m thick and 50 m long formed within mylonite and shear zones located along the limbs of isoclinal, recumbent F1 folds. Relative to least-altered BIF, the magnetite–talc veins are enriched in Fe2O3(total), P2O5, MgO, Sc, Ga, Al2O3, Cl, and Zr; and depleted in SiO2 and MnO2. Mafic igneous countryrocks located within 10 m of the northern contact of the mineralised BIF display the replacement of primary igneous amphibole and plagioclase, and metamorphic chlorite by hypogene ferroan chlorite, talc, and magnetite. Later-forming, hypogene specular hematite–quartz veins and their associated alteration halos partly replace magnetite–talc veins in BIF and formed during, to shortly after, the F2-folding and tilting of the Weld Range tectono-stratigraphy. Supergene goethite–hematite ore zones that are up to 150 m wide, 400 m long, and extend to depths of 300 m replace least-altered BIF and existing hypogene alteration zones. The supergene ore zones formed as a result of the circulation of surface oxidised fluids through late NNW- to NNE-trending, subvertical brittle faults. Flat-lying, supergene goethite–hematite-altered, detrital sediments are concentrated in a paleo-topographic depression along the southern side of the main ENE-trending ridge at Madoonga. Iron ore deposits of the Weld Range greenstone belt record remarkably similar deformation histories, overprinting hypogene alteration events, and high-grade Fe ore types to other Fe ore deposits in the wider Yilgarn Craton (e.g. Koolyanobbing and Windarling deposits) despite these Fe camps being presently located more than 400 km apart and in different tectono-stratigraphic domains. Rather than the existence of a synchronous, Yilgarn-wide, Fe mineralisation event affecting BIF throughout the Yilgarn, it is more likely that these geographically isolated Fe ore districts experienced similar tectonic histories, whereby hypogene fluids were sourced from commonly available fluid reservoirs (e.g. metamorphic, magmatic, or both) and channelled along evolving structures during progressive deformation, resulting in several generations of Fe ore.  相似文献   

2.
Enrichment iron ore of the Hamersley Province, currently estimated at a resource of over 40 billion tonnes (Gt), mainly consists of BIF (banded iron-formation)-hosted bedded iron deposits (BID) and channel iron deposits (CID), with only minor detrital iron deposits (DID). The Hamersley BID comprises two major ore types: the dominant supergene martite–goethite (M-G) ores (Mesozoic–Paleocene) and the premium martite–microplaty hematite ores (M-mplH; ca 2.0 Ga) with their various subtypes. The supergene M-G ores are not common outside Australia, whereas the M-mplH ores are the principal worldwide resource. There are two current dominant genetic models for the Hamersley BID. In the earlier 1980–1985 model, supergene M-G ores formed in the Paleoproterozoic well below normal atmospheric access, driven by seasonal oxidising electrochemical reactions in the vadose zone of the parent BIF (cathode) linked through conducting magnetite horizons to the deep reacting zone (anode). Proterozoic regional metamorphism/diagenesis at ~80–100°C of these M-G ores formed mplH from the matrix goethite in the local hydrothermal environment of its own exhaled water to produce M-mplH ores with residual goethite. Following general exposure by erosion in the Cretaceous–Paleocene when a major second phase of M-G ores formed, ground water leaching of residual goethite from the metamorphosed Proterozoic ores resulted in the mainly goethite-free M-mplH ores of Mt Whaleback and Mt Tom Price. Residual goethite is common in the Paraburdoo M-mplH-goethite ores where erratic remnants of Paleoproterozoic cover indicate more recent exposure.

Deep unweathered BIF alteration residuals in two small areas of the Mt Tom Price M-mplH deposits have been used since 1999 for new hypogene–supergene modelling of the M-mplH ores. These models involve a major Paleoproterozoic hydrothermal stage in which alkaline solutions from the underlying Wittenoom Formation dolomite traversed the Southern Batter Fault to leach matrix silica from the BIF, adding siderite and apatite to produce a magnetite–siderite–apatite ‘protore.’ A later heated meteoric solution stage oxidised siderite to mplH + ankerite and magnetite to martite. Weathering finally removed residual carbonates and apatite leaving the high-grade porous M-mplH ore. Further concepts for the Mt Tom Price North and the Southern Ridge Deposits involving acid solutions followed, but these have been modified to return essentially to the earlier hypogene–supergene model. Textural data from erratic ‘metasomatic BIF’ zones associated with the above deposits are unlike those of the typical martite–microplaty hematite ore bodies. The destiny of the massive volumes of dissolved silica gangue and the absence of massive silica aureoles has not been explained. Petrographic and other evidence indicate the Mt Tom Price metasomatism is a localised post-ore phenomenon. Exothermic oxidation reactions in the associated pyrite-rich black shales during post-ore removal by groundwater of remnant goethite in the ores may have resulted in this very localised and erratic hydrothermal alteration of BIF and its immediately associated pre-existing ore.  相似文献   

3.
Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda–Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite–martite–goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in ‘least-altered’ hematite–magnetite–metachert–BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe–Ca–Mg–Ni–Co–P–REE metasomatism that produced local Ni–REE-rich Fe–dolomite–magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle–ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni–Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite–hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)–Fe–dolomite–quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides, carbonate and quartz to form veins and breccia but did not generate significant volumes of iron ore. Ore stage 4 involved Mesozoic(?) to recent supergene oxidation and hydration in a weathering environment reaching down to depths of ~100 to maximum 200 m below surface. Supergene ore formation involved goethite replacement of dolomite and quartz as well as martitisation. Important ‘ground preparation’ for supergene modification and upgrade were mainly the formation of steep D1 to D4 structures, steep BIF/basalt margins and particularly the syn-D1 to syn-D2 carbonate alteration of BIF that is most susceptible to supergene dissolution. The Windarling deposits are structurally controlled, supergene-modified hydrothermal iron ore systems that share comparable physical, chemical and ore-forming characteristics to other iron ore deposits in the Yilgarn Craton (e.g. Koolyanobbing, Beebyn in the Weld Range, Mt. Gibson). However, the remarkable variety in pre-, syn- and post-deformational ore textures (relative to D1 and D2) has not been described elsewhere in the Yilgarn and are similar to the ore deposits in high-strain zones, such as of Brazil (Quadrilátero Ferrífero or Iron Quadrangle) and Nigeria. The overall similarity of alteration stages, i.e. the sequence of hydrothermal carbonate introduction and hypogene leaching, with other greenstone belt-hosted iron ore deposits supports the interpretation that syn-orogenic BIF alteration and upgrade was crucial in the formation of hypogene–supergene iron ore deposits in the Yilgarn Craton and possibly in other Archean/Paleoproterozoic greenstone belt settings worldwide.  相似文献   

4.
The ~2,752-Ma Weld Range greenstone belt in the Yilgarn Craton of Western Australia hosts several Fe ore deposits that provide insights into the role of early hypogene fluids in the formation of high-grade (>55 wt% Fe) magnetite-rich ore in banded iron formation (BIF). The 1.5-km-long Beebyn orebody comprises a series of steeply dipping, discontinuous, <50-m-thick lenses of magnetite–(martite)-rich ore zones in BIF that extend from surface to vertical depths of at least 250 m. The ore zones are enveloped by a 3-km-long, 150-m-wide outer halo of hypogene siderite and ferroan dolomite in BIF and mafic igneous country rocks. Ferroan chlorite characterises 20-m-wide proximal alteration zones in mafic country rocks. The magnetite-rich Beebyn orebody is primarily the product of hypogene fluids that circulated through reverse shear zones during the formation of an Archean isoclinal fold-and-thrust belt. Two discrete stages of hypogene fluid flow caused the pseudomorphic replacement of silica-rich bands in BIF by Stage 1 siderite and magnetite and later by Stage 2 ferroan dolomite. The resulting carbonate-altered BIF is markedly depleted in SiO2 and enriched in CaO, MgO, LOI, P2O5 and Fe2O3(total) compared with the least-altered BIF. Subsequent reactivation of these shear zones and circulation of hypogene fluids resulted in the leaching of existing hypogene carbonate minerals and the concentration of residual magnetite-rich bands. These Stage 3 magnetite-rich ore zones are depleted in SiO2 and enriched in K2O, CaO, MgO, P2O5 and Fe2O3(total) relative to the least-altered BIF. Proximal wall rock hypogene alteration zones in mafic igneous country rocks (up to 20 m from the BIF contact) are depleted in SiO2, CaO, Na2O, and K2O and are enriched in Fe2O3(total), MgO and P2O5 compared with distal zones. Recent supergene alteration affects all rocks within about 100 m below the present surface, disturbing hypogene mineral and the geochemical zonation patterns associated with magnetite-rich ore zones. The key vectors for identifying hypogene magnetite-rich Fe ore in weathered outcrop include textural changes in BIF (from thickly to thinly banded), crenulated bands and collapse breccias that indicate volume reduction. Useful indicators of hypogene ore in less weathered rocks include an outer carbonate–magnetite alteration halo in BIF and ferroan chlorite in mafic country rocks.  相似文献   

5.
Several iron-ore deposits hosted within Mesoarchean banded iron formations (BIFs) are mined throughout the North Pilbara Craton, Western Australia. Among these, significant goethite±martite deposits (total resources >50 Mt at 55.8 wt% Fe) are distributed in the Wodgina district within 2 km of the world-class pegmatite-hosted, tantalum Wodgina deposits. In this study, we investigate the dominant controls on iron mineralisation at Wodgina and test the potential role of felsic magma-derived fluids in early alteration and upgrade of nearby BIF units. Camp-scale distribution and geochemistry of iron ore at Wodgina argue against any significant influence of identified felsic intrusions in the upgrade of BIF. Whereas, the formation of BIF-hosted goethite±martite iron ore at Wodgina involves: (i) early (ca 2950 Ma) metamorphism of BIF causing camp-scale recrystallisation of pre-existing iron oxides to form euhedral magnetite, with local enrichment to sub-economic grades (~40 wt% Fe) within or proximal to metre-wide, bedding-parallel shear zones, and (ii) later supergene lateritic enrichment of the magnetite-bearing BIF and shear zones, forming near-surface goethite±martite ore. The supergene alteration sequence includes: (i) downward progression of the oxidation front and replacement of magnetite by martite, (ii) local development of silcrete at ~40 m below the modern surface caused by the lowering of the water-table, (iii) intensive replacement of quartz by goethite, resulting in the goethite±martite ore bodies at Wodgina, and (iv) late formation of ferricrete and ochreous goethite. Goethitisation most likely took place within the hot and very wet climate that prevailed from the Paleocene to the mid-Eocene. Goethite precipitation was accompanied by the incorporation of trace elements P, Zn, As, Ni and Co, which were likely derived from supergene fluid interaction with nearby shales. Enrichment of these elements in goethite-rich ore indicates that they are potentially useful pathfinder elements for concealed ore bodies covered by trace element-depleted pedogenic silcrete and siliciclastic rocks located throughout the Wodgina mine.  相似文献   

6.
Several major iron deposits occur in the Quadrilátero Ferrífero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Cauê Formation, regionally called itabirite, was transformed into high- (Fe >64%) and low-grade (30%?2O3, with a higher amount of detrimental impurities, especially MnO, in the soft ore. Both hard and soft ores are depleted in trace elements. The high-grade ores at the Águas Claras Mine have at least a dual origin, involving hypogene and supergene processes. The occurrence of the hard, massive high-grade ore within “fresh” dolomitic itabirite is evidence of its hypogene origin. Despite the contention about the origin of the dolomitic itabirite (if this rock is a carbonate-rich facies of the Cauê Formation or a hematite–carbonate precursor of the soft high-grade ore), mineralogical and geochemical features of the soft high-grade ore indicate that it was formed by leaching of dolomite from the dolomitic itabirite by meteoric water. The comparison of the Águas Claras, Capão Xavier and Tamanduá orebodies shows that the original composition of the itabiritic protore plays a major role in the genesis of high- and low-grade soft ores in the QF. Under the same weathering and structural conditions, the dolomitic itabirite is the more favorable to form high-grade deposits than siliceous itabirite. Field relations at the Águas Claras and Capão Xavier deposits suggest that it is not possible to form huge soft high-grade supergene deposits from siliceous itabirite, unless another control, such as impermeable barriers, had played an important role. The occurrence in the Tamanduá Mine of a large, soft, high-grade orebody formed from siliceous itabirite and closely associated with hypogene hard ore suggests that large, soft, high-grade orebodies of the Quadrilátero Ferrífero, which occur within siliceous itabirite, have a hypogene contribution in their formation.  相似文献   

7.
All the major worldwide direct-shipping iron ore deposits associated with banded iron formations (BIF) are characteristically deeply weathered. They extend to considerable depths below the water table and show well-preserved primary structures and textures, but characteristically most deposits contain no evidence of chert bands being present prior to weathering. Recent studies have found evidence of hydrothermal and/ or metamorphic influences in the development of certain ore deposits and new genesis models such as the supergene-modified hypogene model have been postulated for major high-grade iron ore deposits. Nevertheless, there are many high-grade deposits that show no evidence of hypogene alteration and for which a hypogene or metamorphic genesis is unreasonable that are automatically ascribed to supergene enrichment, commonly erroneously attributed to lateritic weathering in tropical environments. Laterite (sensu lato) is a soil formation in which primary textures are destroyed and is underlain by a pallid zone showing the preservation of chert and the depletion, not enrichment, of iron oxides and thus is totally incompatible with the formation of the high-grade ore deposits. Various theories and models that purported to explain the conditions under which such a uniquely BIF-related dissolution of quartz and residual accumulation of hematite could occur by supergene processes typically conflict with current understanding of groundwater hydrology, chemistry, weathering processes and soil formation.Supergene enrichment of ore is universal in the leaching of gangue minerals such as iron silicates, carbonates and apatite and supergene enrichment of BIF to low-grade ore is common in near surface environments above the water table such as ferrugenised BIF outcrops, detrital ore deposits, and some shallow ore deposits that have been subjected to prolonged exposure to fresh meteoric water. In all cases of supergene enrichment traces of the chert bands are visible and the dissolution or replacement processes for the removal of quartz are clear, in direct contrast to the most important deep saprolite ore deposits that show no trace of chert bands.The widespread acceptance of an inappropriate and untenable supergene enrichment model inhibits search for the true origin of the ore and our ability to predict and find concealed high-grade ore deposits.  相似文献   

8.
The Quadrilátero Ferrífero, Brazil, is presently the largest accumulation of single itabirite-hosted iron ore bodies worldwide. Detailed petrography of selected hypogene high-grade iron ore bodies at, e.g. the Águas Claras, Conceição, Pau Branco and Pico deposits revealed different iron oxide generations, from oldest to youngest: magnetite → martite (hematite pseudomorph after magnetite) → granoblastic (recrystallised) → microplaty (fine-grained, <100 μm) → specular (coarse-grained, >100 μm) hematite. Laser-fluorination oxygen isotope analyses of selected iron ore species showed that the δ18O composition of ore-hosted martite ranges between ?4.4 and 0.9?‰ and is up to 11?‰ depleted in 18O relative to hematite of the host itabirite. During the modification of iron ore and the formation of new iron oxide generations (e.g. microplaty and specular hematite), an increase of up to 8?‰ in δ18O values is recorded. Calculated δ18O values of hydrothermal fluids in equilibrium with the iron oxide species indicate: (1) the involvement of isotopically light fluids (e.g. meteoric water or brines) during the upgrade from itabirite-hosted hematite to high-grade iron ore-hosted martite and (2) a minor positive shift in δ18Ofluid values from martite to specular hematite as result of modified meteoric water or brines with slightly elevated δ18O values and/or the infiltration of small volumes of isotopically heavy (metamorphic and/or magmatic) fluids into the iron ore system. The circulation of large fluid volumes that cause the systematic decrease of 18O/16O ratios from itabirite to high-grade iron ore requires the presence of, e.g. extensive faults and/or large-scale folds.  相似文献   

9.
The Wiluna West small (~ 130 Mt) high-grade bedded hematite ore deposits, consisting of anhedral hematite mesobands interbedded with porous layers of acicular hematite, show similar textural and mineralogical properties to the premium high-grade low-phosphorous direct-shipping ore from Pilbara sites such as Mt Tom Price, Mt Whaleback, etc., in the Hamersley Province and Goldsworthy, Shay Gap and Yarrie on the northern margin of the Pilbara craton. Both margins of the Pilbara Craton and the northern margin of the Yilgarn craton were subjected to sub-aerial erosion in the Paleoproterozoic era followed by marine transgressions but unlike the Hamersley Basin, the JFGB was covered by comparatively thin epeirogenic sediments and not subjected to Proterozoic deformation or burial metamorphism. The Joyner's Find greenstone belt (JFGB) in the Yilgarn region of Western Australia was exhumed by middle to late Cenozoic erosion of a cover of unmetamorphosed and relatively undeformed Paleoproterozoic epeirogenic sedimentary rocks that preserved the JFGB unaltered for nearly 2 Ga; thus providing a unique snapshot of the early Proterozoic environment.Acicular hematite, pseudomorphous after acicular iron silicate, is only found in iron ore and BIF that was exposed to subaerial deep-weathering in early Paleoproterozoic times (pre 2.2 Ga) and in the overlying unconformable Paleoproterozoic conglomerate derived from these rocks and is absent from unweathered rocks (Lascelles, 2002). High-grade ore and BIF weathered during later subaerial erosion cycles contain anhedral hematite and acicular pseudomorphous goethite. The acicular hematite was formed from goethite pseudomorphs of silicate minerals by dehydration in the vadose zone under extreme aridity during early Paleoproterozoic subaerial weathering.The principal high-grade hematite deposits at Wiluna West are interpreted as bedded ore bodies that formed from BIF by loss of chert bands during diagenesis and have been locally enriched to massive hematite by the introduction of hydrothermal specular hematite. No trace of chert bands are present in the deep saprolitic hematite and hematite–goethite ore in direct contrast to shallow supergene ore in which the trace of chert bands is clearly defined by goethite replacement, voids and detrital fill. Abundant hydrothermal microplaty hematite at Wiluna West is readily distinguished by its crystallinity.The genesis of the premium ore from the Pilbara Region has been much discussed in the literature and the discovery at Wiluna West provides a unique opportunity to compare the features that are common to both districts and to test genetic models.  相似文献   

10.
澳大利亚西部哈默斯利铁成矿省含有世界级高品位的赤铁矿体。主要铁矿床包括芒特维尔贝克、汤姆普莱斯山、帕拉伯杜等,它们均产于元古宙早期布罗克曼BIF型含铁建造中。高品住铁矿体的空间分布明显受到元古宙区域隆起和拉张环境下形成的古老正断层系统的控制。该成矿省高品位铁矿层的形成可分为3个阶段:第1阶段为深层阶段,该阶段硅从含铁建造中淋滤出来,留下薄层状富含铁氧化物、碳酸盐岩、硅酸镁和磷灰石的残余物;第2阶段为深部大气水氧化阶段,该阶段含铁建造的磁铁矿-菱镁矿组合被氧化为赤铁矿-铁白云石,并以发育假象赤铁矿为特征;第3阶段为浅层风化作用。通过对成矿特征和成矿模式的总结,认为成矿时代、断层、褶皱等构造特征及流体和表生风化作用是富铁矿床形成的主要控矿因素。  相似文献   

11.
Giant iron-ore deposits, such as those in the Hamersley Province of northwestern Australia, may contain more than a billion tonnes of almost pure iron oxides and are the world's major source of iron. It is generally accepted that these deposits result from supergene oxidation of host banded iron formation (BIF), accompanied by leaching of silicate and carbonate minerals. New textural evidence however, shows that formation of iron ore at one of those deposits, Mount Tom Price, involved initial high temperature crystallisation of magnetite-siderite-iron silicate assemblages. This was followed by development of hematite- and ferroan dolomite-bearing assemblages with subsequent oxidation of magnetite, leaching of carbonates and silicates and crystallisation of further hematite. Preliminary fluid inclusion studies indicate both low and high salinity aqueous fluids as well as complex salt-rich inclusions with the range of fluid types most likely reflecting interaction of hydrothermal brines with descending meteoric fluids. Initial hematite crystallisation occurred at about 250 °C and high fluid pressures and continued as temperatures decreased. Although the largely hydrothermal origin for mineralisation at Mount Tom Price is in conflict with previously proposed supergene models, it remains consistent with interpretations that the biosphere contained significant oxygen at the time of mineralisation. Received: 16 February 1999 / Accepted: 14 May 1999  相似文献   

12.
This paper contributes to the understanding of the genesis of epigenetic, hypogene BIF-hosted iron deposits situated in the eastern part of Ukrainian Shield. It presents new data from the Krivoy Rog iron mining district (Skelevatske–Magnetitove deposit, Frunze underground mine and Balka Severnaya Krasnaya outcrop) and focuses on the investigation of ore genesis through application of fluid inclusion petrography, microthermometry, Raman spectroscopy and baro-acoustic decrepitation of fluid inclusions. The study investigates inclusions preserved in quartz and magnetite associated with the low-grade iron ores (31–37% Fe) and iron-rich quartzites (38–45% Fe) of the Saksaganskaya Suite, as well as magnetite from the locally named high-grade iron ores (52–56% Fe). These high-grade ores resulted from alteration of iron quartzites in the Saksaganskiy thrust footwall (Saksaganskiy tectonic block) and were a precursor to supergene martite, high-grade ores (60–70% Fe). Based on the new data two stages of iron ore formation (metamorphic and metasomatic) are proposed.The metamorphic stage, resulting in formation of quartz veins within the low-grade iron ore and iron-rich quartzites, involved fluids of four different compositions: CO2-rich, H2O, H2O–CO2 N2–CH4)–NaCl(± NaHCO3) and H2O–CO2 N2–CH4)–NaCl. The salinities of these fluids were relatively low (up to 7 mass% NaCl equiv.) as these fluids were derived from dehydration and decarbonation of the BIF rocks, however the origin of the nahcolite (NaHCO3) remains unresolved. The minimum P–T conditions for the formation of these veins, inferred from microthermometry are Tmin = 219–246 °C and Pmin = 130–158 MPa. The baro-acoustic decrepitation analyses of magnetite bands indicated that the low-grade iron ore from the Skelevatske–Magnetitove deposit was metamorphosed at T = ~ 530 °C.The metasomatic stage post-dated and partially overlapped the metamorphic stage and led to the upgrade of iron quartzites to the high-grade iron ores. The genesis of these ores, which are located in the Saksaganskiy tectonic block (Saksaganskiy ore field), and the factors controlling iron ore-forming processes are highly controversial. According to the study of quartz-hosted fluid inclusions from the thrust zone the metasomatic stage involved at least three different episodes of the fluid flow, simultaneous with thrusting and deformation. During the 1st episode three types of fluids were introduced: CO2–CH4–N2 C), CO2 N2–CH4) and low salinity H2O–N2–CH4–NaCl (6.38–7.1 mass% NaCl equiv.). The 2nd episode included expulsion of the aqueous fluids H2O–N2–CH4–NaCl(± CO2, ± C) of moderate salinities (15.22–16.76 mass% NaCl equiv.), whereas the 3rd event involved high salinity fluids H2O–NaCl(± C) (20–35 mass% NaCl equiv.). The fluids most probably interacted with country rocks (e.g. schists) supplying them with CH4 and N2. The high salinity fluids were most likely either magmatic–hydrothermal fluids derived from the Saksaganskiy igneous body or heated basinal brines, and they may have caused pervasive leaching of Fe from metavolcanic and/or the BIF rocks. The baro-acoustic decrepitation analyses of magnetite comprising the high-grade iron ore showed formation T = ~ 430–500 °C. The fluid inclusion data suggest that the upgrade to high-grade Fe ores might be a result of the Krivoy Rog BIF alteration by multiple flows of structurally controlled, metamorphic and magmatic–hydrothermal fluids or heated basinal brines.  相似文献   

13.
《Resource Geology》2018,68(3):287-302
Banded iron formations (BIFs) are the most significant source of iron in the world. In this study, we report petrographic and geochemical data of the BIF from the Meyomessi area in the Ntem Complex, southern Cameroon, and discuss their genesis and the iron enrichment process. Field investigations and petrography have revealed that the studied BIF samples are hard; compact; weakly weathered; and composed of magnetite, subordinate quartz, and geothite. The geochemical composition of the whole rock reveals that iron and silica represent more than 98 wt% of the average composition, whereas Al2O3, TiO2, and high‐field strength elements (HFSE) contents are very low, similar to detritus‐free marine chemical precipitates. The total iron (TFe) contents range from 48.71 to 65.32 wt % (average of 53.29 wt %) and, together with the low concentrations of deleterious elements (0.19 wt % P on average), are consistent with medium‐grade iron ores by global standards. This interpretation is confirmed by the SiO2/Fe2O3total versus (MgO + CaO + MnO)/Fe2O3total discrimination plot in which most of the Meyomessi BIF samples fall in the field of medium‐grade siliceous ore. Only one sample (MGT94) plots in the high‐grade magnetite–geothite ore domain. The high Fe/Ti (376.36), Fe/Al (99.90), and Si/Al (29.26) ratios of the sample are consistent with significant hydrothermal components. The rare earth elements (REE) contents of the studied BIF samples are very low (∑REE: 0.81–1.47 ppm), and the Post‐Archaean Australian Shale (PAAS)‐normalized patterns display weak positive Eu anomalies (Eu/Eu*: 1.15–1.33), suggesting a syngenetic low‐temperature hydrothermal solutions, similar to other BIF worldwide. However, the Meyomessi BIFs show high Fe contents when compared to the other BIFs. This indicates an epigenetic mineralization process affected the Meyomessi BIF. From the above results and based on the field and analytical data, we propose that the genetic model of iron ores at the Meyomessi area involves two stages of the enrichment process, hypogene enrichment of BIF protore by metamorphic and magmatic fluids followed by supergene alteration as indicated by the presence of goethite in the rocks.  相似文献   

14.
The Blue Dot gold deposit, located in the Archean Amalia greenstone belt of South Africa, is hosted in an oxide (± carbonate) facies banded iron formation (BIF). It consists of three stratabound orebodies; Goudplaats, Abelskop, and Bothmasrust. The orebodies are flanked by quartz‐chlorite‐ferroan dolomite‐albite schist in the hanging wall and mafic (volcanic) schists in the footwall. Alteration minerals associated with the main hydrothermal stage in the BIF are dominated by quartz, ankerite‐dolomite series, siderite, chlorite, muscovite, sericite, hematite, pyrite, and minor amounts of chalcopyrite and arsenopyrite. This study investigates the characteristics of gold mineralization in the Amalia BIF based on ore textures, mineral‐chemical data and sulfur isotope analysis. Gold mineralization of the Blue Dot deposit is associated with quartz‐carbonate veins that crosscut the BIF layering. In contrast to previous works, petrographic evidence suggests that the gold mineralization is not solely attributed to replacement reactions between ore fluid and the magnetite or hematite in the host BIF because coarse hydrothermal pyrite grains do not show mutual replacement textures of the oxide minerals. Rather, the parallel‐bedded and generally chert‐hosted pyrites are in sharp contact with re‐crystallized euhedral to subhedral magnetite ± hematite grains, and the nature of their coexistence suggests that pyrite (and gold) precipitation was contemporaneous with magnetite–hematite re‐crystallization. The Fe/(Fe+Mg) ratio of the dolomite–ankerite series and chlorite decreased from veins through mineralized BIF and non‐mineralized BIF, in contrast to most Archean BIF‐hosted gold deposits. This is interpreted to be due to the effect of a high sulfur activity and increase in fO2 in a H2S‐dominant fluid during progressive fluid‐rock interaction. High sulfur activity of the hydrothermal fluid fixed pyrite in the BIF by consuming Fe2+ released into the chert layers and leaving the co‐precipitating carbonates and chlorites with less available ferrous iron content. Alternatively, the occurrence of hematite in the alteration assemblage of the host BIF caused a structural limitation in the assignment of Fe3+ in chlorite which favored the incorporation of magnesium (rather than ferric iron) in chlorite under increasing fO2 conditions, and is consistent with deposits hosted in hematite‐bearing rocks. The combined effects of reduction in sulfur contents due to sulfide precipitation and increasing fO2 during progressive fluid‐rock interactions are likely to be the principal factors to have caused gold deposition. Arsenopyrite–pyrite geothermometry indicated a temperature range of 300–350°C for the associated gold mineralization. The estimated δ34SΣS (= +1.8 to +2.5‰) and low base metal contents of the sulfide ore mineralogy are consistent with sulfides that have been sourced from magma or derived by the dissolution of magmatic sulfides from volcanic rocks during fluid migration.  相似文献   

15.
The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling-Langalata iron ore deposits, Singhbhum-North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and mineralogical characterization suggests that the massive, hard laminated, soft laminated ore and blue dust had a genetic lineage from BIFs aided with certain input from hydrothermal activity. The PAAS normalized REE pattern of Jilling BIF striking positive Eu anomaly, resembling those of modern hydrothermal solutions from mid-oceanic ridge (MOR). Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The ubiquitous presence of intercalated tuffaceous shales indicates the volcanic signature in BIF. Mineralogical studies reveal that magnetite was the principal iron oxide mineral, whose depositional history is preserved in BHJ, where it remains in the form of martite and the platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Removal of silica from BIF and successive precipitation of iron by hydrothermal fluids of possible meteoric origin resulted in the formation of martite-goethite ore. The hard laminated ore has been formed in the second phase of supergene processes, where the deep burial upgrades the hydrous iron oxides to hematite. The massive ore is syngenetic in origin with BHJ. Soft laminated ores and biscuity ores were formed where further precipitation of iron was partial or absent.  相似文献   

16.
华北克拉通前寒武纪BIF铁矿研究:进展与问题   总被引:29,自引:18,他引:11  
研究表明,BIF铁矿在华北克拉通的分布具有一定规律性.大规模BIF铁矿主要发育在绿岩带分布区的鞍山-本溪、冀东、霍邱-舞阳、五台、鲁西和固阳等地;华北克拉通时代最古老的BIF形成于古太古代,最年轻BIF形成于古元古代早期,但BIF铁矿的峰期为新太古代晚期(2.52 ~2.56Ga);BIF铁矿类型可划分为阿尔戈马型和苏比利尔湖型两类,但华北以晚太古代绿岩带中的阿尔戈马型为主,仅吕梁的古元古代袁家村铁矿具典型苏比利尔湖型铁矿特征.根据BIF在绿岩带序列中的产出部位和岩石组合关系,可将华北BIF划分为:1)斜长角闪岩(夹角闪斜长片麻岩)-磁铁石英岩组合;2)斜长角闪岩-黑云变粒岩-云母石英片岩-磁铁石英岩组合;3)黑云变粒岩(夹黑云石英片岩)-磁铁石英岩组合;4)黑云变粒岩-绢云绿泥片岩-黑云石英片岩-磁铁石英岩组合;5)斜长角闪岩(片麻岩)-大理岩-磁铁石英岩组合等5种类型.华北克拉通BIF形成时代与早前寒武纪岩浆活动的时间基本一致(2.5~2.6Ga),但与华北克拉通陆壳增生的峰期(2.7~2.9Ga)有一定偏差,其原因可能与新太古代晚期华北克拉通构造-热事件十分强烈有关.华北克拉通新太古代BIF大多形成于岛弧环境,但局部地区(如固阳)BIF铁矿可能形成于深部有地幔柱叠加的岛弧环境.华北克拉通BIF富矿主要有三种类型:原始沉积、受后期构造-热液叠加改造和古风化壳等,但总体不发育富铁矿,国外发育的风化壳型富铁在我国甚为少见.本文认为在探讨BIF铁矿类型时,需要从绿岩带发育序列进行综合判别.阿尔戈马型铁矿一般产于克拉通基底(绿岩带)环境,苏比利尔湖型铁矿一般形成于稳定克拉通上的海相沉积盆地或被动大陆边缘.华北克拉通BIF铁矿地球化学研究结果表明,BIF铁矿无Ce负异常且Fe同位素为正值,从而暗示铁矿沉淀的环境为低氧或缺氧环境,而铕正异常可能指示BIFs为热水沉积成因,其机制可能为海水对流循环从新生镁铁质-超镁铁质洋壳中淋滤出F(e)和Si等元素,在海底排泄沉淀成矿,而条带状构造的形成可能归咎于成矿流体的脉动式喷溢.但对于BIF铁矿的物质来源、成矿条件和机制、富铁矿成因、华北克拉通不发育苏比利尔湖型铁矿的原因等方面,仍需深入研究.  相似文献   

17.
西澳大利亚州铁矿分布规律及矿床成因分析   总被引:2,自引:0,他引:2  
西澳大利亚州铁矿资源主要分布在北部皮尔巴拉和南部的伊尔岗两个太古宙克拉通。皮尔巴拉克拉通BIF型铁矿在汤姆普赖斯山、恰那和布鲁克曼的矿石矿物组合为假象赤铁矿一微板状赤铁矿,马拉曼巴的为赤铁矿一针铁矿,CID型铁矿在罗布河和杨迪矿石类型主要为褐铁矿;伊尔岗克拉通BIF型铁矿在库里阿诺的矿石矿物组合为针铁矿一假象赤铁,比温和曼迪尕的为磁铁矿±假象赤铁矿和针铁矿±赤铁矿。BIF型铁矿为浅生一变质成矿,而CID型铁矿则是先前形成的BIF经侵蚀、搬运、沉积和埋藏作用形成。  相似文献   

18.
Banded iron formations of the Iron Ore Group (Archean greenstone belts) of Jharkhand-Orissa region, India host a good number of large iron ore deposits (Fe wt %> 62). Iron ore mineralization of Gandhamardan hill is one of them where iron ores occur in two stratigraphic horizons. One is strictly confined within banded iron formation (stratabound mineralization) with irregular geometry, and show fracture filling and replacement vein-type mineralization along the fringes of hard massive ores of the core. This type of mineralization is exposed along the western slope of the hill. Hard massive and laminated ores dominate this mineralization. The other type occurs as low dipping sheet like body above banded iron formation and covered by laterites forming the top of the hill. Flaky ores dominate this mineralization with formation of hard goethitic crust near the top. Both the mineralizations contain mineralized banded iron formation corestones surrounded by hard massive or flaky iron ores. Hard massive ores are entirely represented by martite-microplaty hematite mineralogy. Hard laminated ores contain microplaty hematite and few martite grains representing early magnetites of the banded iron formation. Flaky ores are high porosity ores produced by leaching of silica, martite and microplaty hematite. Hard goethitic ores are developed due to replacement of martite and microplaty hematite or precipitation of goethite in the pore spaces.  相似文献   

19.
The oxygen and carbon isotopic compositions of minerals from banded iron formations (BIFs) and high-grade ore in the region of the Kursk Magnetic Anomaly (KMA) were determined in order to estimate the temperature of regional metamorphism and the nature of rock-and ore-forming solutions. Magnetite and hematite of primary sedimentary or diagenetic origin have δ18O within the range from +2 to 6‰. During metamorphism, primary iron oxides, silicates, and carbonates were involved in thermal dissociation and other reactions to form magnetite with δ18O = +6 to +11‰. As follows from a low δ18Oav = ?3.5‰ of mushketovite (magnetite pseudomorphs after hematite) in high-grade ore, this mineral was formed as a product of hematite reduction by organic matter. The comparison of δ18O of iron oxides, siderite, and quartz from BIFs formed at different stages of the evolution of the Kursk protogeosyncline revealed specific sedimentation (diagenesis) conditions and metamorphism of the BIFs belonging to the Kursk and Oskol groups. BIF of the Oskol Group is distinguished by a high δ18O of magnetite compared to other Proterozoic BIFs. Martite ore differs from host BIF by a low δ18O = ?0.2 to ?5.9‰. This implies that oxygen from infiltration water was incorporated into the magnetite lattice during the martite formation. Surface water penetrated to a significant depth through tectonic faults and fractures.  相似文献   

20.
The Nkout deposit is part of an emerging iron ore province in West and Central Africa. The deposit is an oxide facies iron formation comprising fresh magnetite banded iron formation (BIF) at depth, which weathers and oxidises towards the surface forming caps of high grade hematite/martite–goethite ores. The mineral species, compositions, mineral associations, and liberation have been studied using automated mineralogy (QEMSCAN®) combined with whole rock geochemistry, mineral chemistry and mineralogical techniques. Drill cores (saprolitic, lateritic, BIF), grab and outcrop samples were studied and divided into 4 main groups based on whole rock Fe content and a weathering index. The groups are; enriched material (EM), weathered magnetite itabirite (WMI), transitional magnetite itabirite (TMI) and magnetite itabirite (MI). The main iron minerals are the iron oxides (magnetite, hematite, and goethite) and chamosite. The iron oxides are closely associated in the high grade cap and liberation of them individually is poor. Liberation increases when they are grouped together as iron oxides. Chamosite significantly lowers the liberation of the iron oxides. Automated mineralogy by QEMSCAN® (or other similar techniques) can distinguish between Fe oxides if set up and calibrated carefully using the backscattered electron signal. Electron beam techniques have the advantage over other quantitative mineralogy techniques of being able to determine mineral chemical variants of ore and gangue minerals, although reflected light optical microscopy remains the most sensitive method of distinguishing closely related iron oxide minerals. Both optical and electron beam automated mineralogical methods have distinct advantages over quantitative XRD in that they can determine mineral associations, liberation, amorphous phases and trace phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号