首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).  相似文献   

2.
In the southeastern area of the Neogene-Quaternary Granada Basin, ∼E–W trending normal faults crosscut ∼80 m-thick clay-bearing conglomerates and ∼30–40 m-thick carbonate grainstones containing centimeter-thick microconglomerate and sand interbeds. Three fundamental failure modes took place during fault nucleation: (1) phyllosilicate shear banding in the conglomerates, (2) jointing, mainly in the carbonate grainstones and (3) pressure solution in the carbonate matrix and grains of the microconglomerate and sand interbeds. Within the conglomerates, normal faults developed by pronounced clay smearing and, ultimately, cataclasis. Jointing also occurred within some of the pebbles surrounding the cataclastic rocks. In contrast, in the carbonate grainstones fault growth was characterized by predominant jointing and rock fragmentation, which localized in the extensional quadrants and/or releasing jogs of the evolving slip surfaces. Brecciation and cataclasis occurred only around the well-developed slip surfaces. Based upon their inner structure, we qualitatively assign a combined barrier-conduit fluid behavior to the tens of meters-throw normal faults juxtaposing the conglomerates against the carbonate grainstones. The inner fault cores inhibit fault-orthogonal fluid flow along their entire length. Instead, fault damage zones act as fluid barriers in the conglomerates, and as composite fluid conduits in the carbonate grainstones.  相似文献   

3.
The 2009 L'Aquila sequence activated a normal fault system 50 km long in the Central Apennines, composed of two main NW-trending faults 12–16 km long: the main high angle L'Aquila segment and the Campotosto listric fault.The MW 6.1 L'Aquila mainshock nucleated on the Paganica fault at a depth of ∼8.6 km and cut through the upper crust producing coseismic surface slip of up to 10 cm observed along a strike length of ∼13 km. Analysis of historical seismicity and data collected in paleo-seismological trenches suggest that this event filled a >500-year gap. In contrast, the blind Campotosto listric fault is composed of different fault segments displaying abrupt changes in dip at a depth where major events nucleate suggesting a rheological and geometrical control on stress concentration.A foreshock sequence that started around 4 months before the L'Aquila mainshock activated the deepest portion of the Paganica fault and marked the onset of large variations in elastic properties of the crustal volume. The variations have been modelled in terms of dilatancy and diffusion processes, corroborating the hypothesis that fluids play a key role in the nucleation process of extensional faults in the crust.  相似文献   

4.
《International Geology Review》2012,54(11):1271-1283
Tiburon Basin is characterized by a thick sedimentary fill that records the evolution of one of the rift segments of the East Pacific Rise. Its structure corresponds to an echelon pull-apart basin bounded by two dextral-oblique faults. Unlike basins in the southern Gulf of California that are underlain by oceanic crust, rift basins in the northern Gulf of California contain sedimentary thickness (up to 6 km) that masks the structure of the crust. To study the architecture of the Tiburon Basin, two-dimensional, multichannel seismic reflection data collected by Petróleos Mexicanos (PEMEX) in the early 1980s were used. The data base is a grid of lines, 5–20 km apart, with 6 s of record in 48 channels. Additional seismic data of the Ulloa 99 project were also interpreted. Our results indicate that the general structural pattern of the Tiburon Basin is controlled by two dextral-oblique faults: De Mar and Tiburon. De Mar lies to the east and ends in elevated basement transferring the stress to the Desemboque fault. The latter borders the incoming basement from the Sonora and Tiburon faults to the west, ending to the north in an antiform. Four structural domains are recognized: (1) the northern Tiburon domain is a high basement that divides the Delfin Basin to the northeast and exhibits extensional folds with their axes parallel to the basement and its flanks; (2) the Libertad domain is a sheared basement high along the margin of Sonora and forms the right step of the Tepoca Basin to the north; (3) the Tiburon central domain defines a broad sag cut by a dense NE-striking pattern of normal faults with opposed dips in the depocentre and abruptly ends to the west against the Tiburon fault; and (4) the southern Tiburon domain forms a basement ramp offshore Isla Tiburon and is controlled by a pattern of NNE-striking normal faults on the south that likely connect at an oblique angle (?60°) to the De Mar fault. We propose a rhombochasm basin model with more than 6 s of sedimentary record in the depocentre, in which the basement is not recorded. The NW-trending faults in the Libertad domain possibly continue towards the Sonora coastal plain. The principal NW-trending dextral faults and the secondary NNE-striking pattern of normal faults cut the shallow strata of this domain.  相似文献   

5.
We show here that epithermal mineralization in the Guazapares Mining District is closely related to extensional deformation and magmatism during the mid-Cenozoic ignimbrite flare-up of the Sierra Madre Occidental silicic large igneous province, Mexico. Three Late Oligocene–Early Miocene synextensional formations are identified by detailed volcanic lithofacies mapping in the study area: (1) ca. 27.5 Ma Parajes formation, composed of silicic outflow ignimbrite sheets; (2) ca. 27–24.5 Ma Témoris formation, consisting primarily of locally erupted mafic-intermediate composition lavas and interbedded fluvial and debris flow deposits; (3) ca. 24.5–23 Ma Sierra Guazapares formation, composed of silicic vent to proximal ignimbrites, lavas, subvolcanic intrusions, and volcaniclastic deposits. Epithermal low-to intermediate-sulfidation, gold–silver–lead–zinc vein and breccia mineralization appears to be associated with emplacement of Sierra Guazapares formation rhyolite plugs and is favored where pre-to-synvolcanic extensional structures are in close association with these hypabyssal intrusions.Several resource areas in the Guazapares Mining District are located along the easternmost strands of the Guazapares Fault Zone, a NNW-trending normal fault system that hosts most of the epithermal mineralization in the mining district. This study describes the geology that underlies three of these areas, which are, from north to south: (1) The Monte Cristo resource area, which is underlain primarily by Sierra Guazapares formation rhyolite dome collapse breccia, lapilli-tuffs, and fluvially reworked tuffs that interfinger with lacustrine sedimentary rocks in a synvolcanic half-graben bounded by the Sangre de Cristo Fault. Deposition in the hanging wall of this half-graben was concurrent with the development of a rhyolite lava dome-hypabyssal intrusion complex in the footwall; mineralization is concentrated in the high-silica rhyolite intrusions in the footwall and along the syndepositional fault and adjacent hanging wall graben fill. (2) The San Antonio resource area, underlain by interstratified mafic-intermediate lavas and fluvial sandstone of the Témoris formation, faulted and tilted by two en echelon NW-trending normal faults with opposing dip-directions. Mineralization occurs along subvertical structures in the accommodation zone between these faults. There are no silicic intrusions at the surface within the San Antonio resource area, but they outcrop ∼0.5 km to the east, where they are intruded along the La Palmera Fault, and are located ∼120 m-depth in the subsurface. (3) The La Unión resource area, which is underlain by mineralized andesite lavas and lapilli-tuffs of the Témoris Formation. Adjacent to the La Unión resource area is Cerro Salitrera, one of the largest silicic intrusions in the area. The plug that forms Cerro Salitrera was intruded along the La Palmera Fault, and was not recognized as an intrusion prior to our work.We show here that epithermal mineralization is Late Oligocene to Miocene-age and hosted in extensional structures, younger than Laramide (Cretaceous-Eocene) ages of mineralization inferred from unpublished mining reports for the region. We further infer that mineralization was directly related to the emplacement of silicic intrusions of the Sierra Guazapares formation, when the mid-Cenozoic ignimbrite flare-up of the Sierra Madre Occidental swept westward into the study area about 24.5–23 Ma ago.  相似文献   

6.
Stratabound epigenetic sulphide Zn–Pb–Cu ore deposits of the Central African Copperbelt in the Democratic Republic of Congo and Zambia are mostly hosted in deformed shallow marine platform carbonates and associated sedimentary rocks of the Neoproterozoic Katanga Supergroup. Economic orebodies, that also contain variable amounts of minor Cd, Co, Ge, Ag, Re, As, Mo, Ga, and V, occur mainly as irregular pipe-like bodies associated with collapse breccias and faults as well as lenticular bodies subparallel to bedding. Kipushi and Kabwe in the Democratic Republic of the Congo and Zambia, respectively, are the major examples of carbonate-hosted Zn–Pb–Cu mined deposits with important by-products of Ge, Cd, Ag and V in the Lufilian Arc, a major metallogenic province famous for its world-class sediment-hosted stratiform Cu–Co deposits. The carbonate-hosted deposits range in age from Neoproterozoic to early Palaeozoic (680 to 450 Ma). The formation of the relatively older Neoproterozoic deposits is probably related to early collision events during the Lufilian Orogeny, whereas the younger Palaeozoic deposits may be related to post-collisional processes of ore formation. Fluid inclusion and stable isotope data indicate that hydrothermal metal-bearing fluids evolved from formation brines during basin evolution and later tectonogenesis. Ore fluid migration occurred mainly along major thrust zones and other structural discontinuities such as karsts, breccias and faults within the Katangan cover rocks, resulting in ore deposition within favourable structures and reactive carbonates of the Katangan Supergroup.  相似文献   

7.
In the Ribeira belt, southeastern Brazil, the Precambrian mylonitic fabric mainly formed during the Brasiliano/Pan-African orogeny (640–480 Ma) and was reactivated as fault zones in the Cretaceous and Cenozoic. The reactivation process led to the development of the System of Continental Rifts of southeastern Brazil, from the Paleogene to the Quaternary. We investigated the brittle reactivation of a mylonitic zone, which is part of a major mylonitic belt, Arcádia-Areal. We used geological and geomorphological mapping, resistivity survey, controlled source audiomagnetotelluric survey, and luminescence dating. Our results indicate that this shear zone was reactivated and formed a 15 km long and 2 km wide sedimentary-filled trough, the Rio Santana Graben. It is located on the northwest border of a major structure, the Guanabara Graben, in the State of Rio de Janeiro. The Rio Santana Graben forms an almost entirely fault-bounded, NE-elongated depression that was accommodated entirely within the Arcádia-Areal shear zone. The graben consists of two main depocenters separated by a relay ramp. The graben formed by means of multistage activity of several faults during at least two main periods. The first period formed silicified fault breccia and occurred during alkaline magmatism in the Paleogene. The second formed fault breccia and gouge in shallow conditions and occurred at least until the Quaternary. The NE-trending and NW-dipping Precambrian fabric was reactivated as dip-slip and strike-slip faults. These faults triggered clastic-sediment deposition at least 300 m thick. The upper part of the graben consists of Quaternary alluvial and colluvial sediment fill, which yielded maximum luminescence deposition ages from 49 to 13 ka in the center of the trough. An organic layer at the top of the Quaternary alluvial deposits yielded 14C ages at ~6000 years BP. The lower part of the graben may be composed of Paleogene to Neogene sedimentary deposits, which occur in other basins of the System of Continental Rifts of southeastern Brazil. We conclude that the Rio Santana Graben is an example of the direct control of a preexisting continental-scale rheological boundary on the geometry and location of fault systems and sediment deposition. Quaternary fault reactivation of the preexisting fabrics represents only the latest movement of a major structure.  相似文献   

8.
《Tectonophysics》2001,330(1-2):25-43
A detailed gravimetric study has been integrated with the most recent stratigraphic data in the area comprised between the Arno river and the foothills of the Northern Apennines, in northern Tuscany (central Italy). A Plio–Pleistocene basin lies in this area; its sedimentary succession can be subdivided from the bottom, in five allostratigraphic units: (1) Lower–Middle Pliocene shallow marine deposits; (2) Late Pliocene (?)–Early Pleistocene fluvio-lacustrine deposits; (3) late–Early Pleistocene–Middle Pleistocene alluvial to fluvial red conglomerates (Montecarlo Formation); (4) Middle Pleistocene alluvial to fluvial red conglomerates (Cerbaie and Casa Poggio ai Lecci Formations); (5) alluvial to fluvial deposits of Late Pleistocene age. The Bouguer anomaly map displays a strong minimum in the northeastern sector of the basin, and a gentle gradient from west to east. The map of the horizontal gradients permits to recognise three major fault zones, two of which along the southwestern and northeastern margins of the basin, and one along the southeastern edge of the Pisani Mountains. A 2.5D gravimetric modelling along a SW–NE section across the basin displays a thick wedge of sediments of density 2.25 g/cm3 (about 1700 m in the depocenter) overlying a layer of density 2.55 g/cm3, 1000 m thick, which rests on a basement of 2.72 g/cm3. The most of the sediment wedge is here referred to Upper Pliocene (?)–Lower Pleistocene, because borehole data show Pliocene marine deposits thinning northward close to the southern margin of the area. The layer below is referred to Ligurids and upper Tuscan Nappe units; the densest layer is interpreted as composed of Triassic evaporites, quartzites and Palaeozoic basement. According to Carmignani low-angle extensional tectonics began between Serravallian and early Messinian, thinning the Apennine nappe stack. At the end of Middle Pliocene, syn-rift deposition ceased in the Viareggio Basin (west of the investigated area) as demonstrated by Argnani and co-workers, and high-angle extensional tectonics migrated eastward up to the Monte Albano Ridge. A syn-rift continental sedimentary wedge developed in Late Pliocene–Early Pleistocene, until its hanging wall block was dismembered, during late Early Pleistocene, by NE-dipping faults, causing the uplift of its western portion (the Pisani Mountains). This breakup caused exhumation and erosion of Triassic units whose clastics where shed into the surrounding palaeo-Arno Valley in alluvial–fluvial deposits unconformably overlying the Lower Pleistocene syn-rift deposits. In the late Pleistocene SW–NE-trending fault systems created the steep southeastern edge of the Pisani Mountains and the resulting throw is recorded in Middle Pleistocene deposits across the present Arno Valley. This tectonic phase probably continues at present, offshore Livorno, as evidenced by the epicentres of earthquakes.  相似文献   

9.
The chemical and isotopic compositions of clay minerals such as illite and chlorite are commonly used to quantify diagenetic and low-grade metamorphic conditions, an approach that is also used in the present study of the Monte Perdido thrust fault from the South Pyrenean fold-and-thrust belt. The Monte Perdido thrust fault is a shallow thrust juxtaposing upper Cretaceous–Paleocene platform carbonates and Lower Eocene marls and turbidites from the Jaca basin. The core zone of the fault, about 6 m thick, consists of intensely deformed clay-bearing rocks bounded by major shear surfaces. Illite and chlorite are the main hydrous minerals in the fault zone. Illite is oriented along cleavage planes while chlorite formed along shear veins (<50 μm in thickness). Authigenic chlorite provides essential information about the origin of fluids and their temperature. δ18O and δD values of newly formed chlorite support equilibration with sedimentary interstitial water, directly derived from the local hanging wall and footwall during deformation. Given the absence of large-scale fluid flow, the mineralization observed in the thrust faults records the P–T conditions of thrust activity. Temperatures of chlorite formation of about 240°C are obtained via two independent methods: chlorite compositional thermometers and oxygen isotope fractionation between cogenetic chlorite and quartz. Burial depth conditions of 7 km are determined for the Monte Perdido thrust reactivation, coupling calculated temperature and fluid inclusion isochores. The present study demonstrates that both isotopic and thermodynamic methods applied to clay minerals formed in thrust fault are useful to help constrain diagenetic and low-grade metamorphic conditions.  相似文献   

10.
《Sedimentary Geology》2006,183(1-2):71-97
Large NW–SE oriented, Neogene–Quaternary structural depressions, up to about 200 km long and 25 km wide, have developed on the western side (hinterland) of the Northern Apennines over thrust substrate. The depressions are now, for the most part, laterally bounded by normal faults and are longitudinally separated into basins by transfer zones. A debate exists in the literature as to whether these basins have developed as half-graben under a predominantly extensional regime since late Miocene, or as thrust-top basins under a predominantly compressional regime that has continued until the Pleistocene. The Radicofani Basin is one of the best-preserved basins. It developed mainly during the late Miocene–Early Pliocene in the southern half of the Siena–Radicofani structural depression, and is now bounded on the east by normal faults that transect a thrust anticline “nose“ in the substrate, to the north by a substrate high or transfer zone, and to the south and west by Quaternary igneous/volcanic edifices. The basin experienced variable differential tectonic and associated sedimentation along linking, normal boundary faults. Along its eastern margin it shows the development of thick (∼600 m) alluvial fans that developed in relay areas between boundary faults and transverse faults and transfer zones. Well-exposed sections generally show upward transitions from conglomeratic alluvial fans, to shoreface sandstone, to offshore mudstones. Locally, the transition is marked by deltas primarily characterised by thick gravelly, sandy, stacked cross-sets The thicker, sandy-gravel to gravelly-sand cross-sets (5–8 m thick) are interpreted as Gilbert-type deltas; interstratified thinner (0.5–1 m thick), generally openwork gravelly strata are part of delta topset assemblages and probably represent prograding fluvial bars. Tectonic movements provided the accommodation space for the total, ∼2700 m thick basin fill. Sea level fluctuations that led to the repeated development of the cross-sets may also have been influenced by climatic or eustatic changes, possibly related to the effects of early Antarctic glaciations.Some features of the Radicofani Basin can be found in both extensional and compressional basins. However, the position of the basin in the mountain chain and the development of alluvial fans, fandeltas and associated deposits along the main boundary fault, combined with structural evidence from seismic lines, show that during the early Pliocene this basin best conforms to existing models of half-graben.  相似文献   

11.
The Chos Malal fold and thrust belt (FTB) is a thick-skinned mountain belt formed by Mesozoic deposits of the Neuquén Basin during the Andean orogeny. Four structural cross-sections in the entire deformed area, supported by field and subsurface data, suggest a strong link between thick and thin-skinned structures. Major Andean thrusts branching from a detachment placed 12 km into the crust created large basement wedges, which were inserted in the cover producing minor order structures. The westernmost of these wedges is exposed forming the Cordillera del Viento, while others basement slices at depth were interpreted from seismic lines. These thick-skinned structures transferred deformation to the cover along the Auquilco Formation and contributed to create all thin-skinned structures surveyed in the Chos Malal FTB. We recognized half-graben geometries in the seismic lines, preserving their extensional configuration, which suggests that the main normal faults were not inverted. Shortenings calculated from the restoration of the four cross-sections are 16.9 km (29.7%), 16.9 km (29.7%), 14.7 km (26.9%) and 14.15 km (26.3%), which evidence a slight diminution of the contraction toward the south probably associated with the plunge of the Cordillera del Viento structure in this segment of the Chos Malal FTB.  相似文献   

12.
Field investigations reveal spatial variations in fault zone width along strike-slip active faults of the Arima–Takatsuki Tectonic Line (ATTL) and the Rokko–Awaji Fault Zone (RAFZ) of southwest Japan, which together form a left-stepping geometric pattern. The fault zones are composed of damage zones dominated by fractured host rocks, non-foliated and foliated cataclasites, and a fault core zone that consists of cataclastic rocks including fault gouge and fault breccia. The fault damage zones of the ATTL are characterized by subsidiary faults and fractures that are asymmetrically developed on each side of the main fault. The width of the damage zone varies along faults developed within granitic rocks of the ATTL and RAFZ, from ∼50 to ∼1000 m. In contrast, the width of the damage zone within rhyolitic tuff on the northwestern side of the ATTL varies from ∼30 to ∼100 m. The fault core zone is generally concentrated in a narrow zone of ∼0.5–∼5 m in width, consisting mainly of pulverized cataclastic rocks that lack the primary cohesion of the host rocks, including a narrow zone of fault gouge (<0.5 m) and fault-breccia zones either side of the fault. The present results indicate that spatial variations in the width of damage zone and the asymmetric distribution of damage zones across the studied strike-slip faults are mainly caused by local concentrations in compressive stress within an overstep area between left-stepping strike-slip faults of the ATTL and RAFZ. The findings demonstrate that fault zone structures and the spatial distribution in the width of damage zone are strongly affected by the geometric patterns of strike-slip faults.  相似文献   

13.
We investigated the seismic shear-wave velocity structure of the crust beneath nine broadband seismological stations of the Shillong–Mikir plateau and its adjoining region using teleseismic P-wave receiver function analysis. The inverted shear wave velocity models show ∼34–38 km thick crust beneath the Shillong Plateau which increases to ∼37–38 km beneath the Brahmaputra valley and ∼46–48 km beneath the Himalayan foredeep region. The gradual increase of crustal thickness from the Shillong Plateau to Himalayan foredeep region is consistent with the underthrusting of Indian Plate beyond the surface collision boundary. A strong azimuthal variation is observed beneath SHL station. The modeling of receiver functions of teleseismic earthquakes arriving the SHL station from NE backazimuth (BAZ) shows a high velocity zone within depth range 2–8 km along with a low velocity zone within ∼8–13 km. In contrast, inversion of receiver functions from SE BAZ shows high velocity zone in the upper crust within depth range ∼10–18 km and low velocity zone within ∼18–36 km. The critical examination of ray piercing points at the depth of Moho shows that the rays from SE BAZ pierce mostly the southeast part of the plateau near Dauki fault zone. This observation suggests the effect of underthrusting Bengal sediments and the underlying oceanic crust in the south of the plateau facilitated by the EW-NE striking Dauki fault dipping 300 toward northwest.  相似文献   

14.
The Pinjore Garden Fault (PGF) striking NNW-SSE is now considered one of the active faults displacing the younger Quaternary surfaces in the piggyback basin of Pinjore Dun. This has displaced the older Kalka and Pinjore surfaces, along with the other younger surfaces giving rise to WSW and SW-facing fault scarps with heights ranging from 2 to 16 m. The PGF represents a younger branch of the Main Boundary Thrust (MBT) system. An ~ 4m wide trench excavated across the PGF has revealed displacement of younger Quaternary deposits along a low angle thrust fault. Either side of the trench-walls reveals contrasting slip-related deformation of lithounits. The northern wall shows displacement of lithounits along a low-angle thrust fault, while the southern wall shows well-developed fault-related folding of thick sand unit. The sudden change in the deformational features on the southern wall is an evidence of the changing fault geometry within a short distance. Out of five prominent lithounits identified in the trench, the lower four units show displacement along a single fault. The basal unit ‘A’ shows maximum displacement of aboutT o = 2.85 m, unit B = 1.8 m and unit C = 1.45 m. The displacement measured between the sedimentary units and retro-deformation of trench log suggests that at least two earthquake events have occurred along the PGF. The units A and D mark the event horizons. Considering the average amount of displacement during one single event (2 m) and the minimum length of the fault trace (~ 45 km), the behaviour of PGF seems similar to that of the Himalayan Frontal Fault (HFF) and appears capable of producing large magnitude earthquakes.  相似文献   

15.
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7?×?10?4 cm3 (STP) g–1?±?2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ~107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids.  相似文献   

16.
《Sedimentary Geology》1999,123(1-2):81-102
In strike-slip basins, proximal stratal patterns are a function of displacement on basin-bounding faults. In order to better understand factors that control changes in sedimentary facies and stratal patterns of the northeastern part of the Jinan Basin (Cretaceous), a strike-slip basin, we made a detailed analysis of sedimentary facies, depositional architecture and paleoflows. The sedimentary successions can be grouped into five facies associations representing five depositional environments: (1) facies association FA I (alluvial fan); (2) FA II (small-scale Gilbert-type delta); (3) FA III (large-scale, steep delta slope); (4) FA IV (base of large-scale, steep delta slope and prodelta); and (5) FA V (lacustrine plain). The successions are divided into two distinct sedimentary fills on the basis of facies associations, depositional architecture and paleocurrents: (1) marginal fill and (2) longitudinal fill. The marginal fill (ca. 3.2 km thick) is present along the strike-slip basin-bounding fault. The lower part of the marginal fill (ca. 1.3 km thick) consists of alluvial-fan deposits (FA I) along the bounding fault which are transitional northward to small-scale Gilbert-type delta (FA II) and lacustrine plain (FA V) deposits. The upper part of the marginal fill (ca. 1.9 km thick) contains large-scale, steep delta slope (FA III) and base of delta slope/prodelta (FA IV) deposits accompanied with a northward change in facies associations. In the marginal fill, the successive alluvial fan, small-scale Gilbert-type delta and large-scale, steep delta/prodelta deposits are overlapped (shingled) northeastward. The longitudinal fill (ca. 2 km thick) is characterized by eastward overlapped stacks of large-scale, steep delta slope (FA III) and base of delta slope/prodelta (FA IV) deposits with a westward progradation. The longitudinal fill was overstepped by the marginal fill. The northeastward shingled geometry of the marginal fill was most likely caused by sinistral strike-slip displacements on the basin-bounding fault. The slightly oblique (northward) progradation of the marginal fill was due to the northward basin-floor tilting. In the marginal fill, the progressive changes in facies and depositional architecture from the lower alluvial fan/small-scale Gilbert-type delta to the upper large-scale, steep delta/prodelta are suggestive of increase in basin subsidence along the strike-slip basin margin that was closely related to the variation in displacement on the basin-bounding fault. The sinistral strike-slip movements on the bounding fault also caused the eastward overlapping of the longitudinal fill.  相似文献   

17.
Mapping the nucleation and 3D fault tip growth of the active Osaka-wan blind thrust provides an opportunity to asses how reactivated thrusts build slip from preexisting faults and the threat they pose as sources of large earthquakes. Analysis of folded growth strata, based on 2D trishear inverse modeling allows a range of best-fit models of the evolution of slip and propagation of the fault to be defined. The depth of the fault tip at 1200 ka varies between ∼1.5–4.5 km, suggesting the fault grew upward from high in the crust, and that it is reactivated. From its onset at ∼1500 ka, the fault grew rapidly along strike in ∼300 ky, and upwards with a P/S ratio of 2.5–3.0, but variable fault slip in space and time. Shallower depths of the fault tip at initiation and thinner basin fill correlates with slower propagation with time, contradicting models that argue for sediments as inhibitors of fault growth. Results also suggest the displacement profile of the currently active thrust is offset from its predecessor, assuming shallower depths to the original fault correlate with greater displacement in its prior history. These results suggest reactivated faults may accrue slip differently than newly developed ones, based on the history of upward fault propagation.  相似文献   

18.
We localized crustal earthquakes in the Andean arc, between 35°S and 36°S, from December 2009 to May 2010. This research shows a seismicity increase, in a narrow longitudinal area, of more than nine times after the great Mw 8.8 Maule earthquake.The localized seismicity defines an area of ∼80 km long and ∼18 km wide and NNW to NNE trend. The Md magnitudes varied from 0.7 to 3.1 except for two earthquakes with Mw of 3.9 and 4.5, located in the northern end of the area. The focal mechanisms for these two last events were normal/strike-slip and strike-slip respectively.During 2011, a network of 13 temporary stations was installed in the trasarc region in Malargüe, Argentina. Sixty earthquakes were localized in the study region during an 8 month period.We explored how changes in Coulomb conditions associated with the mega-thrust earthquake triggered subsequent upper-plate events in the arc region. We assumed the major proposed structures as receiver faults and used previously published earthquake source parameters and slip distribution for the Maule quake. The largest contribution to static stress change, up to 5 bars, derives from unclamping resulting consistent with co-seismic dilatational deformation inferred from GPS observations in the region and subsidence in nearby volcanoes caused by magma migration.Three different Quaternary tectonic settings–extensional, strike-slip and compressional-have been proposed for the arc region at these latitudes. We found that the unclamping produced by the Maule quake could temporarily change the local regime to normal/strike-slip, or at least it would favor the activation of Quaternary NNE to N-trending dextral strike-slip faults with dextral transtensional movement.  相似文献   

19.
The intramontane basins of the Betic Cordilleras (SE Spain) formed subsequent to the main phase of orogenic deformation during the middle Miocene in a close genetic relation to the Trans-Alboran Shear zone. Left lateral movements along a local branch (Carboneras fault zone, CF; strike NE–SW) of this zone played a major role in controlling the formation and dynamics of the Nijar-Carboneras Basin. To the south of the fault, a major phase of strike-slip faulting is recorded during the late Tortonian. The expression of this event is the Brèche Rouge de Carboneras (BRC), which seals a deep denudational surface on top of dislocated fault blocks formed by volcanics of the Cabo de Gata complex and early Tortonian shallow marine calcarenite. The sedimentary facies of this widely distributed unit in the Carboneras-Subbasin mirror the submarine topography and the distribution of the fault zones. Along strike-slip fault zones, autoclastic breccias and neptunian dikes preferentially oriented NW–SE and NE–SW occur, which are interpreted to represent the near-surface expression of the faults. Red limestone forms the groundmass of the autoclastic breccia and infills of neptunian dikes, which exhibit multiple phases of opening of fissures, gravitational sedimentary infill, lithification, and renewed creation of cracks. Steep relief, probably along fault scarps, was mantled by epiclastic volcanic conglomerate with a red carbonate matrix. Well-lithified coarse skeletal limestone rich in planktonic foraminifera formed pavements along sediment starved rocky surfaces in deep water. Laterally, within topographic depressions, the pavement limestone grades into thick accumulations of skeletal rudstone composed of fragmented azooxanthellate corals and stylasterid hydrozoans, which were concentrated by powerful bottom currents and gravitiy flows. Within the shallow water zone of dip slope ramps, cross-bedded calcarenite and calcirudite formed. Based on textures, fabrics and biota, rocks of the BRC were grouped into nine genetic lithofacies which document cryptic, deep-aphotic and shallow-photic environments typical of a sediment starved extensional basin.  相似文献   

20.
Thrusting fault zone in foreland basins are characterized by highly foliated zones generally enriched in phyllosilicates which can play a major role on the mechanical behaviour of the fault. In this context, investigations of synkinematic clay minerals permit to determine the origin of the fluid from which they precipitated as well as the mechanisms of deformation. Our study is focused on clay mineral assemblages (illite and chlorite) in a major thrust fault located in the Monte Perdido massif (southern Pyrenees), a shallow thrust that affects upper cretaceous-paleocene platform carbonates and lower Eocene marls and turbidites. It implied 3?km of displacement of the Monte Perdido thrust unit with respect to the underlying Gavarnie unit. In this area the cleavage development by pressure-solution is linked to the Monte Perdido and Gavarnie thrust activity. The core zone of the fault, about 6?m thick, consists of an interval of intensely deformed clay-bearing rocks bounded by major shear surfaces. The deformed sediment is markedly darker than the protolith. Calcite-quartz shear veins along the shear planes are abundant. Detailed SEM and TEM observations of highly deformed fault zone samples indicate that clay mineral enrichment in the core zone of the fault is not only related to passive increase by pressure-solution mechanism but that dissolution?Crecrystallization of phyllosilicates occurs during deformation. A mineral segregation is observed in the highly deformed zone. Newly formed 2M 1 muscovite is present along the cleavage whereas IIb chlorite crystals fill SV2 shear veins suggesting syntectonic growth of phyllosilicates in the presence of fluids in low-grade metamorphic conditions. These mineralogical reactions act as weakening processes and would favour Monte Perdido fault creeping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号