首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
开展湿地的生态监测研究是理解当今气候变化背景下湿地的生态响应、动态演化和生态服务功能变化的有效途径,也是湿地保护、科学管理、合理规划和生态恢复的内在需求.以我国鄂西地区广泛分布的典型亚高山泥炭湿地为研究地点,以在湿地中大量生活且对环境变化敏感的环境指示生物——有壳变形虫为研究对象,采用了一种较新的泥炭湿地水位长期定点监测方法——"PVC印迹法"监测湿地水位的长期变化,调查了有壳变形虫的生物多样性、群落组合特征及其与水位等主要环境因子的响应关系,共记录到有壳变形虫27种和类群(type),隶属14个属.对有壳变形虫的群落组成与环境因子的关系排序分析显示,泥炭湿地的水位是有壳变形虫群落组成的主控环境因子,构建了有壳变形虫属种与水位的转换函数,该函数具有较好的预测和推导能力(R2=0.62),为该地区泥炭湿地的古水位重建提供了现代过程的数据支持.   相似文献   

2.
A 7000-year record of local fire history was reconstructed from three ombrotrophic peatlands in the James Bay lowlands (northwestern Québec, Canada) using a high-resolution analysis of macroscopic charcoal (long axis  0.5 mm). The impact of fire on vegetation changes was evaluated using detailed analysis of plant macrofossils. Compared to upland boreal forest, fire incidence in these Sphagnum-dominated bogs is rather low. Past fire occurrence seems to have been controlled primarily by internal processes associated with local hydroseral succession. Size of the peatland basin and distance from the well-drained forest soils also appear to be factors controlling fire occurrence. The impact of peatland fires on long-term vegetation succession appears negligible except in a forested bog, where it initiated the replacement of Sphagnum by mosses. In some circumstances, fire caused marked changes in the bryophyte assemblages over many decades. However, ombrotrophic peatland vegetation is generally resilient to surface fire.  相似文献   

3.
Numerous palaeoecological studies have used testate amoeba analysis to reconstruct Holocene hydrological change in peatlands, and thereby past climatic change. Current studies have been almost exclusively restricted to ombrotrophic bogs and the period since the fen–bog transition. Although the critical link between peatland surface wetness and climate is less direct in minerotrophic peatlands, such records may still be of value where there are few others, particularly if multiple records can be derived and inter‐compared. Expanding the temporal and spatial scope of testate amoeba‐based palaeohydrology to minerotrophic peatlands requires studies to establish the primacy of hydrology and the efficacy of transfer functions across a range of sites. This study analyses testate amoeba data from wetlands spanning the trophic gradient in the eastern Mediterranean region. Results demonstrate that different types of wetlands have distinctly different amoeba communities, but hydrology remains the most important environmental control (despite water table depth being measured at different times for different sites). Interestingly, Zn and Fe emerge as significant environmental variables in a subset of sites with geochemical data. Testate amoeba–hydrology transfer functions perform well in cross‐validation but frequently perform poorly when applied to other sites, particularly with sites of a different nutrient status. It may be valid to use testate amoebae to reconstruct hydrological change from minerotrophic peatlands with an applicable transfer function; however, it may not be appropriate to use testate amoebae to reconstruct hydrological change through periods of ecosystem evolution, particularly the fen–bog transition. In practice, the preservation of amoeba shells is likely to be a key problem for palaeoecological reconstruction from fens. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Peatland testate amoebae are widely used to reconstruct paleohydrological/climatic changes, but many species are also known to respond to pollutants. Peatlands around the world have been exposed to anthropogenic and intermittent natural pollution through the late Holocene. This raises the question: can pollution lead to changes in the testate amoeba paleoecological record that could be erroneously interpreted as a climatic change? To address this issue we applied testate amoeba transfer functions to the results of experiments adding pollutants (N, P, S, Pb, O3) to peatlands and similar ecosystems. We found a significant effect in only one case, an experiment in which N and P were added, suggesting that pollution-induced biases are limited. However, we caution researchers to be aware of this possibility when interpreting paleoecological records. Studies characterising the paleoecological response to pollution allow pollution impacts to be tracked and distinguished from climate change.  相似文献   

5.
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial‐scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water‐table depths were inferred using testate amoeba analyses. High‐resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present‐day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.  相似文献   

6.
Macrofossil analyses were used to reconstruct long-term vegetation successions within ombrotrophic peatlands (bogs) from the northern shorelines of the St. Lawrence Estuary (Baie-Comeau) and the Gulf of St. Lawrence (Havre-St-Pierre). Over the Holocene, the timing and the ecological context of peatland inception were similar in both regions and were mainly influenced by fluctuations in relative sea level. Peat accumulation started over deltaic sands after the withdrawal of the Goldthwait Sea from 7500 cal yr BP and above silt–clay deposits left by the Laurentian marine transgression after 4200 cal yr BP. In each region, the early vegetation communities were similar within these two edaphic contexts where poor fens with Cyperaceae and eastern larch (Larix laricina) established after land emergence. The rapid transitions to ombrotrophy in the peatlands of Baie-Comeau are associated with particularly high rates of peat accumulation during the early developmental stage. The results suggest that climate was more propitious to Sphagnum growth after land emergence in the Baie-Comeau area. Macrofossil data show that treeless Sphagnum-dominated bogs have persisted over millennia and that fires had few impacts on the vegetation dynamics. This study provides insight into peatland vegetation responses to climate in a poorly documented region of northeastern America.  相似文献   

7.
有壳变形虫是一类广泛分布在淡水潮湿环境中的根足纲原生动物,具有较窄的生态幅、较短的生命周期,对环境变化敏感等特点,因此沉积物中保存的有壳变形虫化石可以提供高分辨率的环境信息。有壳变形虫化石在古湖泊学与人类活动、古水文、古温度、第四纪海平面变化的定量重建等方面具有独特而重要的研究价值。在欧洲和北美开展的大量研究已证实有壳变形虫是古环境变化的有效指示器。我国地域辽阔,生境多样,无论是开展现代有壳变形虫的生态学研究,还是沉积物中有壳变形虫记录的古环境重建,都有巨大的研究潜力。  相似文献   

8.
气候变化是影响全球泥炭沼泽分布和演化的最重要的因子之一,而泥炭地由于自身的特点成为过去气候变化的良好地质档案。在介绍泥炭沉积过程及不同类型的泥炭沼泽的发育特点基础上,从过去气候变化的常用泥炭记录和泥炭地碳记录等方面总结了国际上针对泥炭地反演气候变化研究的若干重要进展,重点剖析了泥炭腐殖化度、植物残体、有壳变形虫、生物标志化合物、同位素和孢粉等泥炭地过去气候变化重建的代用指标的适用范围和优缺点,同时也分析了泥炭地碳累积和碳循环等热点研究问题。最后从泥炭地作为过去气候变化的记录档案、泥炭地对现在气候变化的响应与反馈及在泥炭地进行现场气候变化监测与实验等方面对泥炭地与气候变化研究进行了展望。  相似文献   

9.
The Hudson Bay Lowlands (HBL) stores a significant proportion of the northern peatland carbon pool, and constraints on the factors controlling local-scale variation are needed to better predict soil carbon stocks. We investigated two treed peatland sites, a fen and a bog, to understand how local ecohydrological factors impacted long-term carbon storage. Ecohydrological conditions were reconstructed using quantitative water table depth reconstructions from testate amoebae (TA) and broad peat type classifications. We also linked these factors and carbon storage to changes in TA community structure through the investigation of morphological and functional traits. Both sites have high rates of peat vertical accretion during the warmer Middle Holocene. A shift to a drier, Sphagnum-dominated habitat after 7400 cal a bp at the bog site, however, led to lower apparent carbon accumulation rates (aCARs) than at the fen site. aCARs decreased with the transition to a cooler Late Holocene climate at both sites. Both sites have higher total carbon masses (kg m−2) than other more open and younger HBL localities, demonstrating the potential importance of treed peatlands in regional carbon storage. Shifts in the frequency of TA traits corresponded to changing ecohydrological conditions and provided insights into the role of TA in carbon storage.  相似文献   

10.
Radiocarbon-dating and analyses of fossil testate amoebae (Protozoa) have established changes in soil moisture conditions on the developing surface of a Sphagnum -dominated peatland near Emo in northwestern Ontario.
The distribution and composition of modern testate amoebae communities were studied from peatlands in the region of Ontario and Minnesota as a guide to interpreting fossil assemblages. Although the core spans all of the Holocene, fossil testate amoebae were recovered only from the part post-dating 6500 BP. Earliest testate amoebae assemblages associated with bryophytic and cyperaceous-rich fen peat are dominated by species in the genera Cyclopyxis and Centropyxis . By 5000 BP, Amphitrema Jraaum, Assulina muscorum, Heleopera sphugni and Hyalosphenia subjaoa become important species as Sphagnum-rich peat accumulated at the site. Present-day microtopographic differentiation probably developed during historic time when the site became progressively drier, as indicated by a change of Nebela griseola, N. militaris and Trigonopyxis arcula . Although it is possible to derive quantitative estimates of changing soil moisture conditions from testate amoebae, care should be taken in interpreting results, particularly from non-Sphagnum-rich peats, until more is learned about the distribution and ecology of modern faunas.  相似文献   

11.
Niinemets, E., Pensa, M. & Charman, D. J. 2010: Analysis of fossil testate amoebae in Selisoo Bog, Estonia: local variability and implications for palaeoecological reconstructions in peatlands. Boreas, 10.1111/j.1502‐3885.2010.00188.x. ISSN 0300‐9483. Local variability in decadal water‐table changes on an ombrotrophic peatland was explored using testate amoebae analysis of near‐surface peats in an Estonian raised bog. The distribution of testate amoebae assemblages was studied along the gradient from hummock to hollow in the upper 30‐cm layer of peat. As expected, testate amoebae assemblages in different micro‐ecotypes from hummock to hollow, even as close as 10 m apart, are distinctly different. Past water‐table change was reconstructed by applying a transfer function based on modern samples from throughout Europe. Results show a decline in water level from the mid‐late 20th century on Selisoo bog in all profiles from the different micro‐ecotypes. However, the absolute water‐table depths and amplitudes of fluctuations vary between reconstructions from different sampling micro‐ecotypes. Cores were correlated using changes in non‐mire pollen concentrations down‐core, but it was not possible to correlate minor changes in water‐table owing to non‐contiguous sampling and variable accumulation rates. We conclude that different microtopes show the same decadal trends in relative water‐table change but that the absolute magnitude of change may be more variable locally. It is important that reconstructed palaeohydrological changes in bogs consider changes in bog micro‐ecotypes, and their variation over time, as this may alter the sensitivity of an individual record to drivers such as climate change. Comparison and compilation of data from parallel cores from different micro‐ecotypes and/or different sites are likely to provide more robust reconstructions.  相似文献   

12.
The mid to late‐Holocene climates of most of Scotland have been reconstructed from seven peat bogs located across north–south and east–west geographical and climatological gradients. The main techniques used for palaeoclimatic reconstruction were plant macrofossil, colorimetric humification, and testate amoebae analyses, which were supported by a radiocarbon‐based chronology, aided by markers such as tephra isochrons and recent rises in pine pollen and in spheroidal carbonaceous particles (SCPs). Field stratigraphy was undertaken at each site in order to show that the changes detected within the peat profiles were replicable. Proxy climate records were reconstructed using detrended correspondence analysis (DCA) of the plant macrofossil data and a mean water table depth transfer function on the testate amoebae data. These reconstructions, coupled with the humification data, were standardised for each site and used to produce a composite record of bog surface wetness (BSW) from each site. The results show coherent wet and dry phases over the last 5000 years and suggest regional differences in climate across Scotland, specifically between northern and southern Scotland. Distinct climatic cycles are identified, all of which record a millennial‐scale periodicity which can be correlated with previously identified marine and ice core Holocene cycles. The key role of the macrofossil remains of Sphagnum imbricatum, a taxon now extinct on many sites, is discussed in relation to the identified climatic shifts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
《Quaternary Science Reviews》2003,22(2-4):259-274
Analyses of plant macrofossils, peat humification and testate amoebae were used to reconstruct a proxy climate record spanning the last 7500 years from an ombrotrophic bog, Temple Hill Moss, in southeast Scotland. The plant macrofossil data were subjected to detrended correspondence analysis (DCA) which modelled effectively the significant wet shifts within the record. A mean water table depth transfer function was applied to the testate amoebae data to provide quantifiable changes. The three proxy records show coherent phase changes which are interpreted as variability in past effective precipitation. Two tephra horizons (Glen Garry and Lairg A) were used in conjunction with radiocarbon dates to construct an age/depth model, producing a robust geochronology from which a time series was calculated. The palaeoclimatic reconstruction identified major wet shifts throughout the Holocene, with specific events occurring around cal. 6650, 5850, 5300, 4500, 3850, 3400, 2800–2450, 1450–1350 and 250–150 BP. Spectral analysis of the plant macrofossil DCA and colorimetric humification data produced a millennial scale periodicity of 1100 years. The same periodicity has also been found in a palaeoclimatic reconstruction from a site in Cumbria (Walton Moss), and may be linked with millennial scale periodicities found in oceanic palaeoclimatic records.  相似文献   

14.
《Quaternary Science Reviews》2004,23(1-2):137-143
Peatland surface wetness records provide long Holocene palaeoclimate reconstructions at 101–102 year resolution. They reflect changes in water balance but the relative strength of precipitation and temperature signals are not known. In common with other non-annually resolved records, there has been no testing of the reconstructions against instrumental climate data. In this paper high-resolution records of palaeohydrological change reconstructed from testate amoebae analysis are used to examine critically the relationships between reconstructed water table change, instrumental water table and climate data. A 200-year record of reconstructed water table from northern England shows that the strongest control on reconstructed mean annual water table change is summer precipitation, with summer temperature becoming more important over longer time periods. A 50-year record from Estonia shows that both measured and reconstructed water table records are strongly correlated with summer precipitation. Summer temperature is also correlated with reconstructed water table. We conclude that peatland surface wetness records should be interpreted as primarily reflecting summer precipitation variability, with summer temperature increasingly important in more continental settings.  相似文献   

15.
We present a record of peatland development in relation to climate changes and human activities from the Palomaa mire, a remote site in northern Finland. We used fine‐resolution and continuous sampling to analyse several proxies including pollen (for vegetation on and around the mire), testate amoebae (TA; for mire‐wetness changes), oxygen and carbon isotopes from Sphagnum cellulose (δ18O and δ13C; for humidity and temperature changes), peat‐accumulation rates and peat‐colour changes. In spite of an excellent accumulation model (30 14C dates and estimated standard deviation of sample ages <1 year in the most recent part), the potential to determine cause–effect (or lead–lag) relationships between environmental changes and biotic responses is limited by proxy‐specific incorporation processes below the actively growing Sphagnum surface. Nevertheless, what emerges is that mire development was closely related to water‐table changes rather than to summer temperature and that water‐table decreases were associated with increasing peat‐accumulation rates and more abundant mire vegetation. A rapid fen‐to‐bog transition occurred within a few years around AD 1960 when the water table decreased beyond the historical minimum, supporting the notion that mires can rapidly shift into bogs in response to allogenic factors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Peatlands contain approximately 25% of the total soil organic carbon, despite covering only 3% of earth’s land surface. The ecological, hydrological and biogeochemical functions of peatlands are tightly coupled to climate. Therefore, both direct human impacts and indirect effects of climate change can threaten the ecological function of peatlands through changes in hydrology. However, little is known about how peatland ecosystems, and specifically their biogeochemistry, carbon cycling, and development, may respond to climatic change. In this study, the Peat Accumulation Model was adapted to investigate the response of peatland development and carbon cycling to climatic change through simulating changes in precipitation and temperature at different stages of peatland development history. The warming and wetting were imposed on this system at 10,000 years since its initialization (mid-development stage) and at 20,000 years since its initialization (late-development stage). Here, it was revealed that peatlands can switch between carbon sinks and sources suddenly, but the extent to which the change takes place depends on the developmental stage of peatland ecosystems. The simulation results for the late-development stage showed that peatlands could function as carbon sources once warming and wetting was imposed but that peatland ecosystems during the mid-development stage can still function as carbon sinks under warming and wetting conditions. Moreover, peatland ecosystems have self-regulation capabilities so that they can go back to their normal ecological and biogeochemical functions under newly stabilized climates. Also, it is the change in temperature that results in the fundamental change in peatland development and carbon cycling. This study indicates that the response of peatland ecosystems to climate change is largely determined by their developmental stages.  相似文献   

17.
Multiple proxies from a 319-cm peat core collected from the Hudson Bay Lowlands, northern Ontario, Canada were analyzed to determine how carbon accumulation has varied as a function of paleohydrology and paleoclimate. Testate amoeba assemblages, analysis of peat composition and humification, and a pollen record from a nearby lake suggest that isostatic rebound and climate may have influenced peatland growth and carbon dynamics over the past 6700 cal yr BP. Long-term apparent rates of carbon accumulation ranged between 8.1 and 36.7 g C m? 2 yr? 1 (average = 18.9 g C m? 2 yr? 1). The highest carbon accumulation estimates were recorded prior to 5400 cal yr BP when a fen existed at this site, however following the fen-to-bog transition carbon accumulation stabilized. Carbon accumulation remained relatively constant through the Neoglacial period after 2400 cal yr BP when pollen-based paleoclimate reconstructions from a nearby lake (McAndrews et al., 1982) and reconstructions of the depth to the water table derived from testate amoeba data suggest a wetter climate. More carbon accumulated per unit time between 1000 and 600 cal yr BP, coinciding in part with the Medieval Climate Anomaly.  相似文献   

18.
Rapid climate change at millennial and centennial scales is one of the most important aspects in paleoclimate study. It has been found that rapid climate change at millennial and centennial scales is a global phenomenon during both the glacial age and the Holocene with amplitudes typical of geological or astronomical time-scales. Simulations of glacial and Holocene climate changes have demonstrated the response of the climate system to the changes of earth orbital parameter and the importance of variations in feedbacks of ocean, vegetation, icecap and greenhouse gases. Modeling experiments suggest that the Atlantic thermohaline circulation was sensitive to the freshwater input into the North Atlantic and was closely related to the rapid climate changes during the last glacial age and the Holocene. Adopting the Earth-system models of intermediate complexity (EMICs), CLIMBER-2, the response of East Asian climate change to Dansgaard/Oeschger and Heinrich events during the typical last glacial period (60 ka B.P.-20 ka B.P.) and impacts of ice on the Tibetan plateau on Holocene climate change were stimulated, studied and revealed. Further progress of paleoclimate modeling depends on developing finer-grid models and reconstructing more reliable boundary conditions. More attention should be paid on the study of mechanisms of abrupt climatic changes as well as regional climate changes in the background of global climate change. __________ Translated from Advances in Earth Science, 2007, 22(10): 1054–1065 [译自: 地球科学进展]  相似文献   

19.
长白山区泥炭地现代有壳变形虫环境意义探讨   总被引:4,自引:2,他引:2       下载免费PDF全文
有壳变形虫(testate amoebae)是一种新的具有潜力的环境变化生物指标。对采集自长白山区哈泥(42°12′50″N,126°31′05″E)、金川(42°20′47″N,126°21′35″E)、赤池(42°03′16″N,128°03′22″E)和圆池(42°01′55″N,128°25′58″E)等4个泥炭地不同生境的75个有壳变形虫样品,采用冗余分析方法(RDA)研究有壳变形虫种类组合变化与7个环境变量的关系,所有采样点均以泥炭藓(Sphagnum)为优势植被。结果表明水位埋深(depth to water table),pH值和泥炭湿度是影响长白山区泥炭地有壳变形虫种类变化的主要环境因子,显著性检验达到p<0.001的水平。这一结果与国外其他地区的研究结果相一致,这3个环境因子可以作为目标变量进行有壳变形虫-环境因子转换函数的构建。  相似文献   

20.
We have developed a new approach to quantitatively reconstruct past changes in evaporation based on compound-specific hydrogen isotope ratios of vascular plant and Sphagnum biomarkers in ombrotrophic peatland sediments. We show that the contrast in H isotopic ratios of water available to living Sphagnum (top 20 cm) and in the rooting zone of peatland vascular plants can be used to estimate “?”—the fraction of water remaining after evaporation. Vascular plant leaf waxes record H isotopic ratios of acrotelm water, which carries the D/H ratio signature of precipitation and is little affected by evaporation, whereas the Sphagnum biomarker, C23n-alkane, records H isotopic ratios of the water inside its cells and between its leaves, which is strongly affected by evaporation at the bog surface. Evaporation changes can then be deduced by comparing H isotopic ratios of the two types of biomarkers. We calibrated D/H ratios of C23n-alkane to source water with lab-grown Sphagnum. We also tested our isotopic model using modern surface samples from 18 ombrotrophic peatlands in the Midwestern United States. Finally, we generated a 3000-year downcore reconstruction from Minden Bog, Michigan, USA. Our new record is consistent with records of other parameters from the same peatland derived from different proxies and allows us to differentiate precipitation supply and evaporative loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号