首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

2.
The lower-crustal rocks of the Kohistan complex (northern Pakistan) are mostly composed of metabasic rocks such as pyroxene granulites, garnet granulites and amphibolites. We have investigated P–T trajectories of the relic two-pyroxene granulites, which are the protolith of the amphibolites within the Kamila amphibolite belt. Aluminous pyroxene retains igneous textures such as exsolution lamellae developed in the core. The significant amount of Al in clinopyroxene is buffered by breakdown reactions of plagioclase accompanied by film-like quartz as a product at grain boundaries between plagioclase and clinopyroxene. Distinct Al zoning profiles are preserved in pyroxene with exsolution lamellae in the core and in plagioclase adjacent to clinopyroxene in pyroxene granulites. In the northern part of the Kamila amphibolite belt, Al in clinopyroxene increases towards the rim and abruptly decreases at the outer rim, and anorthite in plagioclase decreases towards the rim and abruptly increases near the grain boundary between plagioclase and clinopyroxene. In the southern part of the Kamila amphibolite belt, Al in clinopyroxene and anorthite in plagioclase simply increase towards the margins of the grains. The anorthite zoning in plagioclase is in agreement with the zoning profiles of Ca-Tschermaks and jadeite components inferred from variations of Al, Na, Ti and Fe3+ in clinopyroxene. Assuming that the growth surface between them was in equilibrium, geothermobarometry based on Al zoning in clinopyroxene coexisting with plagioclase indicates that metamorphic pressures significantly increased with increasing temperature under granulite facies metamorphism. The peak of granulite facies metamorphism occurred at conditions of about 800 °C and 800–1100 MPa. These prograde P–T paths represent a crustal thickening process of the Kohistan arc during the Early to Middle Cretaceous. The crustal thickening of the Kohistan arc was caused by accretion of basaltic magma at mid-crustal depths.  相似文献   

3.
南阿尔金吐拉地区所出露的变质泥质岩和变质基性岩普遍经历了中压麻粒岩相变质作用,其中变泥质岩以出现石榴子石+夕线石+长石+黑云母+石英为特征,而基性麻粒岩则以石榴子石+单斜辉石+紫苏辉石+斜长石+石英为特征,具有典型中压相系的麻粒岩相变质作用矿物组合,即显示"巴罗式"变质作用特征。野外宏观特征显示这套变泥质岩普遍经历了原地深熔作用,并局部发生混合岩化作用。岩相学观察结果显示泥质片麻岩保留了关键的深熔作用显微结构证据:(1)石榴子石内部发育有钾长石、石英和斜长石组成的矿物集合体,可能代表了早期熔体的假象;(2)黑云母颗粒边界发育尖锐的、不规则的微斜长石,而且黑云母边界溶蚀明显,形成锯齿状不规则的边界,指示深熔作用可能与黑云母的分解密切相关,即黑云母可能为深熔作用的主要反应相;(3)石英、斜长石或石榴子石颗粒边界发育圆珠状不规则的钾长石,而且颗粒边界或三联点中尖锐状钾长石与周围矿物的形成较小的二面角,有些甚至相互连通呈网络状,这也与它们继承了熔体结构特征一致;(4)不规则钾长石(或微斜长石)分布在石榴子石和夕线石附近,指示石榴子石和夕线石可能为深熔作用的残留相。锆石U-Pb定年结果显示麻粒岩相变质作用和相关深熔作用时代基本一致,主要发生在~450Ma。因此,吐拉地区的中压麻粒岩相变质作用和深熔作用明显要晚于南阿尔金地区榴辉岩和高压麻粒岩的峰期变质时代40~50Myr,而是与榴辉岩折返过程中麻粒岩相叠加变质作用的时代较为接近。但南阿尔金~450Ma的变质作用、深熔作用和岩浆作用是否为独立的构造热事件抑或深俯冲板片折返阶段的产物,这还需要今后进一步的工作验证。  相似文献   

4.
Orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages represent the paragenetic link between plagioclase‐free eclogite facies metabasites and orthopyroxene‐bearing granulite facies metabasites. Although these assemblages are most commonly developed under P–T conditions consistent with high pressure granulite facies, they sometimes occur at lower grade in the amphibolite facies. Thus, these assemblages are characteristic but not definitive of high pressure granulite facies. Compositional factors favouring their development at amphibolite grade include Fe‐rich mineral compositions, Ca‐rich garnet and plagioclase, and Ti‐poor hornblende. The generalized reaction that accounts for the prograde development of garnet + clinopyroxene + plagioclase ± quartz from a hornblende + plagioclase + quartz‐bearing (amphibolite) precursor is Hbl + Pl + Qtz=Grt + Cpx + liquid or vapour, depending on whether the reaction occurs above or below the solidus. There are significant discrepancies between experimental and natural constraints on the P–T conditions of orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages and therefore on the P–T position of this reaction. Semi‐quantitative thermodynamic modelling of this reaction is hampered by the lack of a melt model and gives results that are only moderately successful in rationalizing the natural and experimental data.  相似文献   

5.
We report the results of a geochemical study of the Jijal andSarangar complexes, which constitute the lower crust of theMesozoic Kohistan paleo-island arc (Northern Pakistan). TheJijal complex is composed of basal peridotites topped by a gabbroicsection made up of mafic garnet granulite with minor lensesof garnet hornblendite and granite, grading up-section to hornblendegabbronorite. The Sarangar complex is composed of metagabbro.The Sarangar gabbro and Jijal hornblende gabbronorite have melt-like,light rare earth element (LREE)-enriched REE patterns similarto those of island arc basalts. Together with the Jijal garnetgranulite, they define negative covariations of LaN, YbN and(La/Sm)N with Eu* [Eu* = 2 x EuN/(SmN + GdN), where N indicateschondrite normalized], and positive covariations of (Yb/Gd)Nwith Eu*. REE modeling indicates that these covariations cannotbe accounted for by high-pressure crystal fractionation of hydrousprimitive or derivative andesites. They are consistent withformation of the garnet granulites as plagioclase–garnetassemblages with variable trapped melt fractions via eitherhigh-pressure crystallization of primitive island arc basaltsor dehydration-melting of hornblende gabbronorite, providedthat the amount of segregated or restitic garnet was low (<5wt %). Field, petrographic, geochemical and experimental evidenceis more consistent with formation of the Jijal garnet granuliteby dehydration-melting of Jijal hornblende gabbronorite. Similarly,the Jijal garnet-bearing hornblendite lenses were probably generatedby coeval dehydration-melting of hornblendites. Melting modelsand geochronological data point to intrusive leucogranites inthe overlying metaplutonic complex as the melts generated bydehydration-melting of the plutonic protoliths of the Jijalgarnet-bearing restites. Consistent with the metamorphic evolutionof the Kohistan lower arc crust, dehydration-melting occurredat the mature stage of this island arc when shallower hornblende-bearingplutonic rocks were buried to depths exceeding 25–30 kmand heated to temperatures above c. 900°C. Available experimentaldata on dehydration-melting of amphibolitic sources imply thatthickening of oceanic arcs to depths >30 km (equivalent toc. 1·0 GPa), together with the hot geotherms now postulatedfor lower island arc crust, should cause dehydration-meltingof amphibole-bearing plutonic rocks generating dense garnetgranulitic roots in island arcs. Dehydration-melting of hornblende-bearingplutonic rocks may, hence, be a common intracrustal chemicaland physical differentiation process in island arcs and a naturalconsequence of their maturation, leading to the addition ofgranitic partial melts to the middle–upper arc crust andformation of dense, unstable garnet granulite roots in the lowerarc crust. Addition of LREE-enriched granitic melts producedby this process to the middle–upper island arc crust maydrive its basaltic composition toward that of andesite, affordinga plausible solution to the ‘arc paradox’ of formationof andesitic continental-like crust in island arc settings. KEY WORDS: island arc crust; Kohistan complex; Jijal complex; amphibole dehydration-melting; garnet granulite; continental crustal growth  相似文献   

6.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


7.
Garnet growth in high‐pressure, mafic garnet granulites formed by dehydration melting of hornblende‐gabbronorite protoliths in the Jijal complex (Kohistan palaeo‐island arc complex, north Pakistan) was investigated through a microstructural EBSD‐SEM and HRTEM study. Composite samples preserve a sharp transition in which the low‐pressure precursor is replaced by garnet through a millimetre‐sized reaction front. A magmatic foliation in the gabbronorite is defined by mafic‐rich layering, with an associated magmatic lineation defined by the shape‐preferred orientation (SPO) of mafic clusters composed of orthopyroxene (Opx), clinopyroxene (Cpx), amphibole (Amp) and oxides. The shape of the reaction front is convoluted and oblique to the magmatic layering. Opx, Amp and, to a lesser extent, Cpx show a strong lattice‐preferred orientation (LPO) characterized by an alignment of [001] axes parallel to the magmatic lineation in the precursor hornblende‐gabbronorite. Product garnet (Grt) also displays a strong LPO. Two of the four 〈111〉 axes are within the magmatic foliation plane and the density maximum is subparallel to the precursor magmatic lineation. The crystallographic relationship 〈111〉Grt // [001]Opx,Cpx,Amp deduced from the LPO was confirmed by TEM observations. The sharp and discontinuous modal and compositional variations observed at the reaction front attest to the kinetic inhibition of prograde solid‐state reactions predicted by equilibrium‐phase diagrams. The PT field for the equilibration of Jijal garnet granulites shows that the reaction affinities are 5–10 kJ mol.?1 for the Grt‐in reaction and 0–5 kJ mol.?1 for the Opx‐out reaction. Petrographic and textural observations indicate that garnet first nucleated on amphibole at the rims of mafic clusters; this topotactic replacement resulted in a strong LPO of garnet. Once the amphibole was consumed in the reaction, the parallelism of [001] axes of the mafic‐phase reactants favoured the growth of garnet crystals with similar orientations over a pyroxene substrate. These aggregates eventually sintered into single‐crystal garnet. In the absence of deformation, the orientation of mafic precursor phases conditioned the nucleation site and the crystallographic orientation of garnet because of topotaxial transformation reactions and homoepitaxial growth of garnet during the formation of high‐pressure, mafic garnet‐granulite after low‐pressure mafic protoliths.  相似文献   

8.
Both high- and medium-pressure granulites have been found asenclaves and boudins in tonalitic–trondhjemitic–granodioriticgneisses in the Hengshan Complex. Petrological evidence fromthese rocks indicates four distinct metamorphic assemblages.The early prograde assemblage (M1) is preserved only in thehigh-pressure granulites and represented by quartz and rutileinclusions within the cores of garnet porphyroblasts, and omphacitepseudomorphs that are indicated by clinopyroxene + sodic plagioclasesymplectic intergrowths. The peak assemblage (M2) consists ofclinopyroxene + garnet + sodic plagioclase + quartz ±hornblende in the high-pressure granulites and orthopyroxene+ clinopyroxene + garnet + plagioclase + quartz in the medium-pressuregranulites. Peak metamorphism was followed by near-isothermaldecompression (M3), which resulted in the development of orthopyroxene+ clinopyroxene + plagioclase symplectites and coronas surroundingembayed garnet grains, and decompression-cooling (M4), representedby hornblende + plagioclase symplectites on garnet. The THERMOCALCprogram yielded peak (M2) P–T conditions of 13·4–15·5kbar and 770–840°C for the high-pressure granulitesand 9–11 kbar and 820–870°C for the medium-pressuregranulites, based on the core compositions of garnet, matrixpyroxene and plagioclase. The P–T conditions of pyroxene+ plagioclase symplectite and corona (M3) were estimated at  相似文献   

9.
The granulites of the Saxon Granulite Massif equilibrated athigh pressure and ultrahigh temperature and were exhumed inlarge part under near-isothermal decompression. This raisesthe question of whether P–T–t data on the peak metamorphismmay still be retrieved with confidence. Felsic and mafic granuliteswith geochronologically useful major and accessory phases haveprovided a basis to relate P–T estimates with isotopicages presented in a companion paper. The assemblage garnet +clinopyroxene in mafic granulite records peak temperatures of1010–1060°C, consistent with minimum estimates ofaround 967°C and 22·3 kbar obtained from the assemblagegarnet + kyanite + ternary feldspar + quartz in felsic granulite.Multiple partial overprint of these assemblages reflects a clockwiseP–T evolution. Garnet and kyanite in the felsic granulitewere successively overgrown by plagioclase, spinel + plagioclase,sapphirine + plagioclase, and biotite + plagioclase. Most ofthis overprinting occurred within the stability field of sillimanite.Garnet + clinopyroxene in the mafic granulite were replacedby clinopyroxene + amphibole + plagioclase + magnetite. Thehigh P–T conditions and the absence of thermal relaxationfeatures in these granulites require a short-lived metamorphismwith rapid exhumation. The ages of peak metamorphism (342 Ma)and shallow-level granitoid intrusions (333 Ma) constrain thetime span for the exhumation of the Saxon granulites to  相似文献   

10.
华北东南缘五河杂岩的变质演化过程研究有助于揭示研究区前寒武纪变质基底的形成与演化历史.基于对五河杂岩中镁铁质麻粒岩进行的详细岩相学观察、矿物电子探针及锆石LA-ICP-MS U-Pb定年和微量元素分析,识别出古元古代变质演化的3个阶段,重建了峰期后近等温减压及降压冷却的顺时针P-T-t轨迹.峰期高压麻粒岩相变质阶段的代表性矿物组合为石榴子石(富Ca核部)+单斜辉石(富Al)+斜长石+石英+金红石±角闪石(富Ti),所记录的峰期温压条件为850~900 ℃、1.5 GPa;峰期后近等温减压麻粒岩相变质阶段,富Ti角闪石分解在周围形成石榴子石+斜方辉石+斜长石±单斜辉石的矿物组合,所记录的温压条件为~900 ℃、1.1~1.2 GPa;晚期角闪岩相退变质阶段,石榴子石分解产生角闪石+斜长石±石英,所记录的温压条件为600~680 ℃、0.65~0.75 GPa.锆石U-Pb定年结果表明,高压麻粒岩相、中压麻粒岩相和角闪岩相变质时代分别为~1.90 Ga、~1.85 Ga和~1.78 Ga.因此,研究区镁铁质麻粒岩的变质演化过程与胶北地体可以对比,结合已有的2.1 Ga花岗质岩石的成因和锆石年代学等方面研究成果,进一步证明五河杂岩属于胶-辽-吉带的西延,二者共同构成了华北克拉通东部一条古元古代碰撞造山带.   相似文献   

11.
Ultramafic and mafic granulites from Archaean gneisses in N.W. Scotland (the Scourian) show evidence of two periods of granulite facies mineral growth. The first produced a high pressure clinopyroxene +garnet±plagioclase assemblage at an estimatedP-T of 12–15 kb and 1,000° C. Uplift of the complex caused partial breakdown of the garnet by reaction with clinopyroxene to produce orthopyroxene +plagioclase ±spinel±amphibole symplectites, at an estimatedP-T of 10–14 kb and 800°–900° C. Garnet stability is shown to depend on both whole-rock Fe/Mg ratios and onP-T conditions. The pressures imply crustal thicknesses in the Archaean of least 35–45 km.  相似文献   

12.
Basic granulites occurring as small enclaves and pods within charnockites contain predominantly orthopyroxene, clinopyroxene, hornblende, plagioclase feldspar and quartz. Chemical composition of coexisting orthopyroxene, clinopyroxene, plagioclase and hornblende has been represented in ACF and AFM diagrams. The mineral assemblages and the textural relationships of the basic granulites have been described. Garnet is notably absent in the basic granulites and this is explained as due to lower (< 8 kbar) pressure and relatively magnesian bulk composition.  相似文献   

13.
Feldspathic hornblende granulites from Doubtful Sound, New Zealand with the assemblage plagioclase+hornblende+clinopyroxene+orthopy-roxene +oxide+apatite are criss-crossed by a network of garnetiferous anorthosite veins and pegmatites. The feldspathic gneiss in contact with anorthosite has a reaction zone containing the assemblage plagioclase +garnet+clinopyroxene+quartz+rutile+apatite. The garnet forms distinctive coronas around clinopyroxene. The origin of these rocks is discussed in the light of mineral and whole rock chemical analyses and published experimental work.It is thought that under conditions leading up to 750 °C, 8 kb load pressure and 5 kb H2O pressure, partial melting occured in feldspathic hornblende granulites. The melt migrated into extensional fractures and eventually crystallised as anorthosite pegmatites and veins. The gneisses adjacent to the pegmatites from which the melt was extracted changed composition slightly, by the loss of H2O and Na2O, so that plagioclase reacted simultaneously with hornblende, orthopyroxene, and oxide to form garnet, clinopyroxene, quartz and rutile.  相似文献   

14.
Abstract The enthalpy of reaction of plagioclase and pyroxene to produce garnet and quartz has been a major source of error in granulite geobarometry because of relatively uncertain enthalpy values available from high-temperature solution calorimetry and compiled indirectly from experimental phase equilibria. Recent, improved calorimetric measurements of ΔHR are shown to yield palaeopressures which are internally consistent between orthopyroxene and clinopyroxene calibrations for many South Indian granulites from the Archaean high-grade terranes of southern Karnataka and northern Tamil Nadu. This represents a considerable improvement over previous calibrations, which gave disparate results for the two independent barometers involving orthopyroxene and clinopyroxene, requiring a 2-kbar ‘empirical adjustment’to force agreement. Palaeopressures thus calculated for 30 well-documented two-pyroxene garnet granulites from South India give internally consistent pressures with a mean of 8.1°1.1 kbar at 750°C, consistent with the presence of both kyanite and sillimanite in many areas. Those samples for which garnet–pyroxene exchange thermometers give plausible granulite-range temperatures and whose minerals are minimally zoned give the best agreement of the two barometers. Samples which yield low palaeotemperatures and different rim and core compositions of minerals yield pressures for the orthopyroxene assemblage as much as 2 kbar lower than for the assemblage with clinopyroxene. This disparity probably represents post-metamorphic-peak re-equilibration. We conclude that considerable confidence may be placed in geobarometry of two-pyroxene granulites where apparent palaeotemperatures are in the granulite facies range (>700°C) and where mineral zonation is minimal. Of the several possible sets of activity–composition relations in use, those constructed from analysis of phase equilibria give slightly higher palaeopressures and appear more consistent with analytical data from the Nilgiri Hills uplift, where kyanite is the only aluminium silicate reported to be stable in peak-metamorphic assemblages. The present results support a palaeopressure gradient, increasing generally from south to north, across the Nilgiri Hills as inferred by previous geobarometry.  相似文献   

15.
Six crystalline mixtures, picrite, olivine-rich tholeiite, nepheline basanite, alkali picrite, olivine-rich basanite, and olivine-rich alkali basalt were recrystallized at pressures to 40 kb, and the phase equilibria and sequences of phases in natural basaltic and peridotitic rocks were investigated.The picrite was recrystallized along the solidus to the assemblages (1) olivine+orthopyroxene+ clinopyroxene +plagioclase+spinel below 13 kb, (2) olivine+orthopyroxene+clinopyroxene+spinel between 13 kb and 18 kb, (3) olivine+orthopyroxene+clinopyroxene+ garnet+spinel between 18 kb and 26 kb, and (4) olivine+clinopyroxene+garnet above 26 kb. The solidus temperature at 1 atm is slightly below 1,100° and rises to 1,320° at 20 kb and 1,570° at 40 kb. Olivine is the primary phase crystallizing from the melt at all pressures to 40 kb.The olivine-rich tholeiite was recrystallized along the solidus into the assemblages (1) olivine+ clinopyroxene+plagioclase+spinel below 13 kb, (2) clinopyroxene+orthopyroxene+ spinel between 13 kb and 18 kb, (3) clinopyroxene+garnet+spinel above 18 kb. The solidus temperature is slightly below 1,100° at 1 atm, 1,370° at 20 kb, and 1,590° at 40 kb. The primary phase is olivine below 20 kb but is orthopyroxene at 40 kb.In the nepheline basanite, olivine is the primary phase below 14 kb, but clinopyroxene is the first phase to appear above 14 kb. In the alkali-picrite the primary phase is olivine to 40 kb. In the olivine-rich basanite, olivine is the primary phase below 35 kb and garnet is the primary phase above 35 kb. In the olivine-rich alkali basalt the primary phase is olivine below 20 kb and is garnet at 40 kb.Mineral assemblages in a granite-basalt-peridotite join are summarized according to reported experimental data on natural rocks. The solidus of mafic rock is approximately given by T=12.5 P Kb+1,050°. With increasing pressure along the solidus, olivine disappears by reaction with plagioclase at 9 kb in mafic rocks and plagioclase disappears by reaction with olivine at 13 kb in ultramafic rocks. Plagioclase disappears at around 22 kb in mafic rocks, but it persists to higher pressure in acidic rocks. Garnet appears at somewhat above 18 kb in acidic rocks, at 17 kb in mafic rocks, and at 22 kb in ultramafic rocks.The subsolidus equilibrium curves of the reactions are extrapolated according to equilibrium curves of related reactions in simple systems. The pyroxene-hornfels and sanidinite facies is the lowest pressure mineral facies. The pyroxene-granulite facies is an intermediate low pressure mineral facies in which olivine and plagioclase are incompatible and garnet is absent in mafic rocks. The low pressure boundary is at 7.5 kb at 750° C and at 9.5 kb at 1,150° C. The high pressure boundary is 8.0 kb at 750° C and 15.0 kb at 1,150° C. The garnet-granulite facies is an intermediate high pressure facies and is characterized by coexisting garnet and plagioclase in mafic rocks. The upper boundary is at 10.3 kb at 750° C and 18.0 kb at 1,150° C. The eclogite facies is the highest pressure mineral facies, in which jadeite-rich clinopyroxene is stable.Compositions of minerals in natural rocks of the granulite facies and the eclogite facies are considered. Clinopyroxenes in the granulite-facies rocks have smaller jadeite-Tschermak's molecule ratios and higher amounts of Tschermak's molecule than clinopyroxenes in the eclogite-facies rocks. The distribution coefficients of Mg between orthopyroxene and clinopyroxene are normally in the range of 0.5–0.6 in metamorphic rocks in the granulite facies. The distribution coefficients of Mg between garnet and clinopyroxene suggest increasing crystallization temperature of the rocks in the following order: eclogite in glaucophane schist, eclogite and granulite in gneissic terrain, garnet peridotite, and peridotite nodules in kimberlite.Temperatures near the bottom of the crust in orogenic zones characterized by kyanitesillimanite metamorpbism are estimated from the mineral assemblages of metamorphic rocks in Precambrian shields to be about 700° C at 7 kb and 800° C at 9 kb, although heat-flow data suggest that the bottom of Precambrian shield areas is about 400° C and the eclogite facies is stable.The composition of liquid which is in equilibrium with peridotite is estimated to be close to tholeiite basalt at the surface pressure and to be picrite at around 30 kb. The liquid composition becomes poorer in normative olivine with decreasing pressure and temperature.During crystallization at high pressure, olivine and orthopyroxene react with liquid to form clinopyroxene, and a discontinuous reaction series, olivine orthopyroxene clinopyroxene is suggested. By fractional crystallization of pyroxenes the liquid will become poorer in SiO2. Therefore, if liquid formed by partial melting of peridotite in the mantle slowly rises maintaining equilibrium with the surrounding peridotite, the liquid will become poorer in MgO by crystallization of olivine, and tholeiite basalt magma will arrive at the surface. On the other hand, if the liquid undergoes fractional crystallization in the mantle, the liquid may change in composition to alkali-basalt magma and alkali-basalt volcanism may be seen at a late stage of volcanic activity.Publication No. 681, Institute of Geophysics and Planetary Physics, University of California, Los Angeles.  相似文献   

16.
本文主要对沂水青龙峪出露的超镁铁质岩石和基性麻粒岩进行了锆石SHRIMP U-Pb定年研究。超镁铁质岩石以捕掳体形式存在于沂水杂岩中,不发育鬣刺结构,氧化物组成具有超镁铁质科马提岩的高MgO、富CaO、低SiO2、TiO2、K2O和Na2O含量特征;矿物组合以单斜辉石+橄榄石±斜方辉石+铬铁矿为主;变质矿物以角闪石+蛇纹石化为特征;该岩石以稀土元素总含量(∑REE)低、LREE/HREE=3.35~4.40及Ce和Eu负异常为特征。微量元素组成以Ba、Nb、Zr负异常和Nd、Sm正异常为特征。根据锆石SHRIMP U-Pb定年法对该超镁铁质岩石中捕获的早期岩浆结晶锆石和新生的变质锆石进行的研究,年龄值分别为2657~2702Ma和2551~2585Ma,表明该超镁铁质岩石形成年龄为2585~2657Ma。基性麻粒岩的氧化物组成特征表明其属高Mg的洋岛拉斑玄武岩,麻粒岩相——高角闪岩相变质作用与新太古代的深熔和岩浆侵入作用有关,矿物组合以紫苏辉石+单斜辉石±角闪石+斜长石±石榴子石为特征;晚期蚀变作用与辉长岩墙、辉绿岩脉及石英闪长岩买的侵入有关,矿物组合以滑石化+绢云母化+绿泥石化为特征;稀土元素组成以轻重稀土元素无分异和无Eu异常为特征;微量元素组成以Nb、Zr、P、Ti负异常和Sr、K正异常为特征;锆石SHRIMP U-Pb定年结果表明麻粒岩相——角闪岩相变质作用年龄为2498.4±7.6Ma,导致麻粒岩相——角闪岩相变质的深熔和岩浆结晶年龄为2551±24Ma,晚期蚀变作用的年龄分别为2231~2235Ma和1850±19Ma。  相似文献   

17.
Some mafic granulites in the Sanggan area of the northern Trans‐North China Orogen (TNCO) have a relatively simple mineralogy with low energy grain shapes that are compatible with an assumption of equilibrium, but the rock‐forming minerals show variations in composition that create challenges for thermobarometry. The mafic granulites, which occur as apparently disrupted dyke‐like bodies in tonalite–trondhjemite–granodiorite gneisses, are divided into two types based on petrography and chemical composition. Type 1 mafic granulites are fine‐ to medium‐grained with an equilibrated texture and an assemblage of plagioclase+clinopyroxene+garnet+magnetite+ilmenite and sometimes minor hornblende±orthopyroxene. Type 2 mafic granulites are coarse‐grained and hornblende bearing with a peak assemblage of garnet+clinopyroxene+plagioclase+hornblende and variably developed coronae and symplectites of plagioclase+hornblende+orthopyroxene partially replacing porphyroblastic garnet±clinopyroxene. SIMS U–Pb dating of metamorphic zircon from two type 1 mafic granulites yields metamorphic ages of c. 1.84 and 1.83 Ga, consistent with published ages of the type 2 mafic granulites. Based on phase equilibrium modelling, we use the common overlap of P–T fields defined by the mineral assemblage limits, and the mole proportion and composition isopleths of different minerals in each sample to quantify the metamorphic conditions. For type 1 granulites, overlap of the mineral proportion and composition fields for each of three samples yields similar P–T conditions of 710–880°C at 0.57–0.79 GPa, 820–850°C at 0.59–0.63 GPa and 800–860°C at 0.59–0.68 GPa. For the type 2 granulites, overlaying the peak assemblage fields for three samples yields common P–T conditions of 870–890°C at 1.1–1.2 GPa. For the retrograde assemblage, overlap of the mineral proportion and composition fields for each sample yields similar P–T conditions of 820–840°C at 0.85–0.88 GPa, 860–880°C at 0.83–0.86 GPa and 880–930°C at 0.89–0.95 GPa. The PT conditions appear distinct between the two types of mafic granulite, with the mineralogically simple type 1 mafic granulites recording the lowest pressures. However, there are significant uncertainties associated with these results. For the granulites, there are uncertainties related to the determination of modes and composition of the equilibration volume, particularly estimation of O and H2O contents, and in the phase equilibrium modelling there are uncertainties that propagate through the calculation of mole proportions and mineral compositions. The compound uncertainties on pressure and temperature for high‐T granulites are large and the results of our study show that it may be unwise to rely on PT conditions determined from the simple intersection of calculated mineral composition isopleths alone. Since the samples in this study are from a limited area—a few hundred square metres—we infer that they record a single PT path involving both decompression and cooling. However, there is no evidence of the high‐P granulite facies event at 1.93–1.90 Ga that is recorded elsewhere in the TNCO, which suggests that the precursor basic dykes were emplaced late during the assembly of the North China Craton.  相似文献   

18.
The Panrimalai area constitutes part of the granulite-facies rocks of the Madurai block in the Southern Granulite Terrain (SGT), India. Garnet-bearing mafic granulites in Panrimalai occur as small enclaves within charnockite. The common stable assemblage during peak metamorphism contains hornblende, garnet, orthopyroxene, clinopyroxene, quartz and plagioclase. The resorption of garnet in various reaction textures and the development of spectacular orthopyroxene–plagioclase and hornblende–plagioclase symplectites characterize the subsequent stages of metamorphism. Application of multi-equilibrium calculation procedures for mineral core compositions of the early assemblage yields near peak conditions at   900 °C at 9 kbar. These estimates are the highest yet reported in mafic granulites from the Madurai block. The post-peak PT path is constructed for the mafic granulites based on observed microstructural relations and thermobarometric results is characterized by a steep clockwise decompressional PT segment from   9 to  < 4.5 kbar. Constraints from model Nd ages provide evidence for Paleoproterozoic magmatism restricted to the Madurai block in the Southern Granulite Terrain. The early part of the crustal evolution of the Panrimalai granulites could be coeval with the Paleoproterozoic event. Subsequent development of symplectitic assemblages via near-isothermal decompression can be ascribed to a distinctly later tectonic event. Available U–Pb and Sm–Nd mineral dates suggest a widespread Pan-African tectonothermal event in the SGT. Given the general recognition of ultrahigh-temperature (UHT) and isothermal decompression (ITD) in Pan-African age metamorphism in the East-African–Antarctic Orogen (EAAO) , the Panrimalai UHT history is considered to be part of this record.  相似文献   

19.
A massif-type (intrusive) charnockite body in the Eastern Ghats granulite belt, India, is associated with hornblende-bearing mafic granulite, two-pyroxene granulite and enderbitic granulite. The charnockite is characterised by pervasive gneissic foliation (S1). This is axial planar to the folded layers of hornblende-bearing mafic granulite (F1 folds), indicating that the granulite protoliths were present before the development of S1. Two-pyroxene granulite and enderbitic granulite occur as lenticular patches disposed along the foliation and hence could be syngenetic to S1. The tonalitic to granodioritic, metaluminous to weakly peraluminous compositions and relatively high Sr/Rb of the charnockite are consistent with its derivation by partial melting of a mafic protolith. Strong Y depletion, lack of Sr depletion and strongly fractionated REE patterns with high (La/Yb)N ratio, but relatively lower HREE (Gd/Lu) fractionation with marked positive Eu anomalies, suggest major residual hornblende (as well as garnet), but not plagioclase, consistent with the hornblende dehydration melting in the source rocks. Such a residual mineralogy is broadly similar to those of some of the hornblende-bearing mafic granulite inclusions, which have compositional features indicative of a restitic nature. Quantitative modelling supports an origin for the charnockite melts by partial melting of a hornblende-rich mafic granulite source, although source heterogeneity is very likely given the rather variable trace element contents of the charnockite. The whole-rock and mineral compositions of the two-pyroxene granulites and enderbitic granulites are consistent with them representing peritectic phase segregations of hornblende-dehydration melting. A clockwise P-T path implies that melting could have occurred in thickened continental crust undergoing decompression.Editorial responsibility: T.L. Grove  相似文献   

20.
Abstract

Intermediate orthogranulites were collected on the western flank of the Galicia bank during the Galinaute II cruise in 1995. The petrography of these rocks reveals two types of granulites. The first type is hydrous granulites with K-feldspar + plagioclase + quartz + orthopyroxene + hornblende + garnet + biotite + opaque + zircon + apatite assemblage. Both hornblende and orthopyroxene define a weak foliation plane. A late deformation event is expressed by some fractures cross-cutting the foliation. The second is anhydrous granulites with K-feldspar + plagioclase + quartz + orthopyroxene + clinopyroxene + opaque + zircon + apatite assemblage. The rocks display a granoblastic texture and are affected by brittle deformation as testified by the development of numerous microfractures. The P-T conditions (7 ± 1 Kbar, 750 ± 50 °C) calculated from two representative samples demonstrate that the rocks equilibrated under granulite facies conditions. Ar-Ar dating gives Precambrian ages ranging between ca. 2500–2000 Ma for the amphibole from the hydrous granulite and 1600–1500 Ma for the core of the K-feldspar from the anhydrous and hydrous granulites. A younger age of 900 Ma is obtained from the recrystallized rims of the K-feldspar from the two samples. These data indicate that the granulitic rocks in the Galicia Bank had already been exhumed and cooled below ca. 140–400 °C (blocking T° for K-feldspar) in Precambrian times (900 Ma). Given the very well preserved granulitic minerals assemblage of the rocks, the granulites behaved as competent and metastable boudins during their exhumation. The granulitic samples were previously interpreted as fragments of the lower continental crust sampled by the main detachment fault during Cretaceous rifting, but they were part of an upper continental crust from the Precambrian. Geochronological data and petrological assemblages suggest that the granulite blocks in the Galicia Bank probably were derived from the North Armorican Domain (northern part of France) where a Precambrian terrain outcrops. The opening of the Bay of Biscay could be responsible for the scattering of the Precambrian terrain and may explain the presence of the granulitic blocks on both sides of the Bay of Biscay. During the subduction of Europe below the Iberian peninsula the granulite blocks were transported southward and incorporated into a Cretaceous conglomerate forming the accrecionary prism on the Northern Iberia Margin. The granulite facies blocks found on the Galicia Bank represent another example of Gondwanian relics supporting the idea that the West European plate belonged to the West African craton during the Proterozoic. © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号