首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
活动层内部的冻融锋面是冻融过程中冻结土层与融化土层的分界面,其上下土层的水热参数有着显著差异。在陆面过程模式中准确描述冻融锋面的移动过程将有助于提高其对多年冻土水热过程的模拟能力。本研究首先将Noah-MP陆面过程模式的模拟深度扩展到20 m,并将原模式的4层土层增加到19层土层,同时引入前人的有机质方案和植被根系方案,然后在此基础上,通过耦合Stefan方法以加强模式对冻融锋面的模拟能力,进而探究耦合Stefan方法的Noah-MP模式对西大滩多年冻土站点水热过程的模拟效果。研究中设置了不耦合Stefan方法的CTL控制试验和耦合Stefan方法的STE对照试验来分别模拟西大滩多年冻土站点2012年0~20 m的土壤温度与土壤液态含水量,模拟结果用站点0~3.2 m内10个深度的日均土壤温度、土壤液态水含量监测数据以及3 m、6 m和10 m的年均地温监测数据来做验证。研究结果表明,由土壤温度模拟值插值得到的冻融锋面(0℃等温线)有明显阶梯状特征,最大冻融深度与实测相比偏大。耦合Stefan方法增强了Noah-MP模式模拟冻融锋面的能力,使得模式能够基于Stefan方法较好地模拟出冻...  相似文献   

2.
PROGRESS IN GLOBAL PERMAFROST AND CLIMATE CHANGE STUDIES   总被引:4,自引:0,他引:4  
多年冻土热状态和土壤季节冻融过程的变化对陆地生态系统、地-气间温室气体交换、水文和地貌过程以及工程基础设施的建设和运行都具有很大的影响.活动层和多年冻土及其变化数据信息对于验证在不同尺度的陆面过程、水文、生态和气候模型至关重要.本文就目前全球多年冻土与气候变化研究现状进行概括性总结.在全球变暖的影响下,全球范围内多年冻土发生了不同程度的退化.自20世纪70年代末以来,北极高纬度低温多年冻土温度升高可达3℃.由于受相变潜热的影响,在不连续多年冻土区相对较高温度的多年冻土温度增加幅度较小.受局地条件的影响,个别站点多年冻土温度几乎没有发生变化,甚至有降温的趋势.高纬度多年冻土南界向北移动,而中纬度高山地区多年冻土下界向高海拔移动,导致全球多年冻土面积减少.活动层厚度变化具有较强的区域差异,其深度增加范围从几厘米到1m多不等.新的融区在形成,融区厚度在增加且其范围在扩大.导致全球范围内多年冻土温度升高、活动层厚度增加以及融区的形成主要是受气温升高和积雪条件变化所致.未来多年冻土研究应包括不同时-空尺度上的长期监测和数值模拟、多年冻土变化与大气、水文、生态系统、碳循环以及地貌过程的相互作用等方面.  相似文献   

3.
多年冻土区活动层冻融状况及土壤水分运移特征   总被引:14,自引:8,他引:6  
利用位于典型多年冻土区的唐古拉综合观测场2007年9月1日—2008年9月1日实测活动层剖面土壤温度和水分数据,对多年冻土区活动层的冻结融化规律进行研究;同时,对冻融过程中的活动层土壤液态水含量的变化特征进行分析,探讨了活动层内部土壤水分分布特征及其运移特点对活动层冻结融化过程的影响. 结果表明:活动层融化过程从表层开始向下层土壤发展,冻结过程则会出现双向冻结现象. 一个完整的年冻融循环中活动层冻结过程耗时要远远小于融化过程. 活动层土壤经过一个冻融循环,土壤水分整体呈现下移的趋势,土壤水分逐步运移至多年冻土上限附近积累. 同时,土壤水分含量和运移特征会对活动层冻融过程产生显著的影响.  相似文献   

4.
为从整体上认识多年冻土活动层土壤水文过程季节变异特性,以黄河源区巴颜喀拉山北坡冻土剖面为例,结合大气降水、冻土土壤水分、冻土层上水的野外观测,采用HYDRUS-1D软件冻融模块进行模拟分析,分析冻融作用对活动层土壤水文过程的影响,研究结果表明:(1)冻土层上水位与土壤水热之间存在着相互影响、相互作用的关系,依据活动层土壤温度变化,基于冻融过程,多年冻土活动层土壤水分与冻土层上水位可划分为冻结稳定、快速融化、融化稳定和快速冻结4个阶段。(2)降雨入渗是坡面尺度下活动层土壤水文过程的主要驱动力,活动层冻融锋面是主要限制性因素,受冻融过程影响,冻结期降雨减少,土壤冻结,土壤储水能力下降,土壤水分下渗停止,坡面侧向流动减弱,土壤水分和冻土层上水位处于下降趋势;融化期降雨增多,土壤融化,土壤储水能力上升,土壤水分下渗强烈,坡面侧向流动增强,土壤水分和冻土层上水位处于上升趋势。(3)受坡面地形影响,上坡活动层厚度大于下坡,上坡冻融锋面变化较下坡平缓,上坡土壤水分和冻土层上水位的变化幅度相对下坡较为平缓,而上坡土壤水分相对下坡含量较低,下坡冻土层上水位相对稳定。  相似文献   

5.
多年冻土区活动层是地表水和地下水相互转化中十分重要的交换通道,活动层土壤含水量是多年冻土区水文循环中重要的组成部分,其动态变化与寒区生态环境密切相关。在气候变化背景下,深入了解活动层土壤含水量的动态变化特征具有重要意义。本文利用ELM(Extreme Learning Machine)模型对青藏高原腹地不同海拔高度多年冻土区土壤含水量进行模拟分析,结果表明:与BP神经网络模型相比,二输入变量ELM模型的模拟精度更高;ELM模型模拟后1天土壤含水量的NSE值在0.69~0.87之间,其中坡下20 cm深度处模拟NSE取得最大值(0.87),并且模拟精度随着推后时间的增加有所提升,模拟后3天和后7天的NSE值分别在0.76~0.92和0.75~0.93之间;坡下各深度含水量的模拟效果优于坡上。在此基础上,通过设置不同的气候变化情景,研究土壤含水量在气候变化背景下的动态变化规律及响应特征。研究发现,升温导致冻结初期以及融化初期不同深度的土壤含水量均出现增大的趋势,在完全冻结期和完全融化期变化不明显。且随着气温增幅的加大,冻结初期以及融化初期的土壤含水量变化也逐渐增大,深层土壤含水量较浅层土壤含水量的增加更加显著。在降水增加的情景下,降水增加越大,土壤含水量的增加趋势越明显,但整体变化幅度较小;坡上各深度土壤含水量的增加主要发生在融化初期和完全融化期,坡下则主要集中在融化初期,相比于深层土壤,浅层土壤对降水增加的响应更加强烈。  相似文献   

6.
青藏高原多年冻土活动层厚度对气候变化的响应   总被引:12,自引:8,他引:4  
活动层厚度变化将会对多年冻土区生态系统、地气间能水平衡和碳循环等产生重要影响。利用Stefan公式模拟了1981-2010年青藏高原多年冻土区活动层厚度的分布和空间变化特征。结果表明:多年冻土区活动层厚度平均为2.39 m,活动层厚度在羌塘盆地最小,在多年冻土区边缘、祁连山、西昆仑山、念青唐古拉山活动层厚度较大。在气候变化条件下,青藏高原多年冻土区活动层厚度呈整体增大趋势,在1981-2010年,活动层厚度的变化量为-1.54~2.24 m,变化率为-5.90~10.13 cm·a-1,平均每年变化1.29 cm。活动层增厚趋势与年平均气温增大的趋势基本一致,这说明气候变化对活动层厚度变化有很大的影响。  相似文献   

7.
多年冻土区活动层的冻融过程显著影响地-气间的水热交换、地表水文过程、冰缘地貌演变及寒区工程建设。活动层厚度的空间分异规律及其空间分布的准确模拟计算是冻土学研究的基础和核心问题之一。作为青藏高原中部东西走向最大的山脉和青藏高原多年冻土的主要分布区,唐古拉地区是青藏高原南部湿润区与北部干旱区的过渡区,该地区的活动层厚度空间分异规律研究对于揭示青藏高原多年冻土区活动层厚度整体空间分布规律具有重要意义。利用唐古拉地区南、北坡两个区域野外实测活动层厚度分布数据,分析了该区域活动层厚度的空间分异特征及其主要影响因素。结果表明,活动层厚度分布的突出特点是空间分异巨大,最小值仅为1.2 m,最大值达到5.6 m。以不同植被类型区活动层的平均厚度为对比标准,其分布特征为:沼泽草甸<高寒草甸<高寒荒漠<高寒草原,高寒草原的平均活动层厚度最大。对比南、北坡,南坡活动层厚度普遍大于北坡。Stefan方程的计算结果表明,活动层厚度的变化速率随土壤含水率的变化最大,其次为土壤热导率,而随地表融化指数的变化最小。实测土壤含水率、探坑数据及地表融化指数与活动层厚度分布关系表明,影响活动层厚度空间分异的最为敏感的因素为土壤含水率,其次为土壤热导率,地表融化指数的敏感性最小。  相似文献   

8.
青藏高原多年冻土区是世界上中低纬度多年冻土面积最大的区域,气候变化引起青藏高原多年冻土区年平均地温上升、地下冰融化、多年冻土退化等问题。借助ARCGIS技术手段,通过地下冰计算模型和Stefan公式计算研究区不同气候变化情景模式下的地下冰体积含冰量和活动层厚度变化。结果表明:在未来几十年内多年冻土的分布范围将不会发生显著变化,多年冻土的主要退化形式为地下冰的消融、低温冻土向高温冻土转化;但本世纪末多年冻土将发生大范围的退化。这一过程将引起热融滑塌、热融沉陷等冻土热融灾害。将Nelson热融灾害风险性评价模式进行修正,对研究区灾害风险性进行评估区划。最大的危险区主要分布在西昆仑山南麓、青南山原中部、冈底斯山和念青唐古拉山南麓、喜马拉雅山南麓部分区域,在未来几十年内有加剧的趋势。  相似文献   

9.
兰州马衔山多年冻土活动层厚度估算及影响因素分析   总被引:2,自引:2,他引:0  
马衔山残存的多年冻土被誉为黄土高原地区多年冻土的"活化石". 自1986年发现多年冻土存在至今, 多年冻土发生了严重的退化, 活动层厚度增大, 面积由原来的0.16 km2减少到现在的 0.134 km2. 本文基于马衔山多年冻土区的实际监测资料分析了气温、地表温度和N系数随时间变化特征以及活动层温度、土壤含水量的时空特征. 根据2010-2013年马衔山多年冻土区的日平均地表温度和土壤参数实测及实验室分析资料, 利用X-G算法模拟了马衔山多年冻土的冻融过程, 并模拟得到4年的活动层厚度均比实测值小, 这可能与活动层底部较高的未冻水含量有关. 然后进一步探讨了泥炭层和含水量对活动层厚度的影响, 泥炭层越厚, 其隔热作用越强, 活动层厚度越小; 反之, 活动层厚度越大; 含水量越高, 土壤的容积热容量越大, 活动层厚度越小; 反之, 活动层厚度越大.  相似文献   

10.
基于青藏高原北麓河地区高寒草原、高寒沼泽草甸和高寒草甸生态系统下多年冻土活动层水热过程的监测数据,对活动层水热过程特征开展了相关研究。研究结果显示,在活动层厚度、冻融时间、持续时间以及活动层土壤水分含水量分布方面,不同的高寒生态系统下活动层的上述属性特征差异明显。高寒草原下多年冻土活动层厚度最大,土体开始融化的时间最早,每年持续融化的日数也最长;高寒草甸最小,高寒沼泽草甸居中。高寒草原下活动层土壤含水率从上到下逐渐增加,水分基本集中在活动层的中下部分;高寒沼泽草甸下活动层土壤水分的分布情况相对比较均衡;高寒草甸下活动层土壤含水率分布呈现从上到下逐步减少的模式,越靠近地表土壤含水率越大。对监测数据的进一步分析发现,不同的高寒生态系统下,近地表地温与气温温差累计值、近地表土壤有机质含量、n因子特征以及近地表地温标准差统计特征都具有明显的区别。研究分析表明,多年冻土活动层水热过程特征与高寒生态系统类型具有明显的关联性,高寒生态系统会影响近地表能量通量,从而使地-气热量交换产生差异,这一差异又将改变活动层土壤温度、水分分布特征及其动力学过程。  相似文献   

11.
下边界条件对多年冻土温度场变化数值模拟的影响   总被引:1,自引:1,他引:0  
在气候变暖背景下,北半球多年冻土呈现不同程度的退化趋势,冻土升温、活动层增厚、地下冰消融改变了区域工程地质条件、地形地貌,不仅对寒区环境和工程稳定性造成潜在的威胁,还影响着这些地区的气候、水文和生态过程。因此,准确评估和预估多年冻土热状况的变化具有重要科学和实践意义。现有用于模拟多年冻土热状况的各类模式重点考虑了近地表温度场变化对多年冻土的影响,主要集中于对气温和浅表层物理过程和参数化方案等改进和优化,而对于下边界条件设置对多年冻土热状况模拟的影响少有讨论。基于一维热传导冻土模型,以五道梁地区的多年冻土为研究对象,通过设置不同的下边界方案进行模拟实验,定量评估百年尺度气候变化下不同下边界条件对多年冻土温度场变化数值模拟的影响。结果表明:近地表层(<3 m)的温度场完全由年际气候变化决定,浅层(3~15 m)及中层(15~30 m)的多年冻土温度场受下边界条件的影响逐渐显著,深层(>30 m)的地温对百年尺度气候变化的响应不仅与气候变化的幅度有关,还与多年冻土相变热的多少有直接的关系。下边界条件不恰当的设置方式会对大尺度的气候变化下多年冻土消融程度的计算造成较大的影响,进而可能对深层地温乃至多年冻土区面积变化造成严重的误判。因此,开展百年尺度多年冻土温度场变化模拟时,应采用深层或多年冻土底板以下融土层的稳定地热流作为下边界条件。  相似文献   

12.
气候变化情景下青藏高原多年冻土活动层厚度变化预测   总被引:19,自引:11,他引:8  
张中琼  吴青柏 《冰川冻土》2012,34(3):505-511
在人类活动和气候变暖的共同影响下, 浅层多年冻土近地表和活动层的热状况会发生显著的变化, 从而对生态环境、 水文、 工程等产生较大的影响. 以A1B, A2, B1气候变化情景模式为基础, 运用Stefan公式计算和预测了青藏高原多年冻土区活动层厚度的变化特征. 结果表明: 以羌塘盆地为中心, 青藏高原多年冻土活动层厚度向其四周不断增加, 多年冻土活动层厚度随着气温升高而增加. A1B 、 A2模式下活动层厚度变化大, 相对人类活动强度较小的B1模式活动层厚度变化较小. 到2050年时, A1B情景活动层厚度平均约为3.07 m, 相对于2010年活动层厚度约增加0.3~0.8 m; B1情景活动层厚度增加0.2~0.5 m; A2情景增加0.2~0.55 m. 到2099年, A1B情景活动层的平均厚度将约为3.42 m; A2情景将可达3.53 m; B1情景将可达2.93 m. 气候变暖将可能加深活动层, 百年后将大范围改变多年冻土的空间分布.  相似文献   

13.
受气温变化影响,浅层冻土滑坡失稳涉及水分的固液相态转换,是一个复杂的水热力耦合过程。为揭示气温变化对多年冻土斜坡稳定性的影响,基于冻土水热力耦合数值模型,模拟了2020—2024年青海省多年冻土区斜坡水热力演化过程。研究结果表明:水分迁移速率呈周期性变化,每年5—10月活动层融化程度高,总体积含水率变化趋势显著;夏季多年冻土上限以下的高含冰量土层融化产生厚度约15 cm的富水层,孔隙水压难以消散;4年间多年冻土上限下移10.4 cm,导致活动层和富水层的厚度增大,上覆融土下滑力增大、抗滑力减小,土体抗剪强度进一步下降;活动层土体每年产生数厘米冻胀融沉变形,抗剪强度不断劣化,坡脚处最容易形成薄弱带。  相似文献   

14.
The Qinghai–Tibet Plateau is the largest permafrost region at low latitude in the world. Climate warming may lead to permafrost temperature rise, ground ice thawing and permafrost degradation, thus inducing thermal hazards. In this paper, the ARCGIS method is used to calculate the changes of ground ice content and active layer thickness under different climate scenarios on the Qinghai–Tibet Plateau, in the coming decades, thus providing the basis for hazards zonation. The method proposed by Nelson in 2002 was used for hazards zonation after revision, which was based on the changes of active layer thickness and ground ice content. The study shows that permafrost exhibits different degrees of degradation in the different climate scenarios. The thawing of ground ice and the change from low-temperature to high-temperature permafrost were the main permafrost degradation modes. This process, accompanied with thinning permafrost, increases the active layer thickness and the northward movement of the permafrost southern boundary. By 2099, the permafrost area decreases by 46.2, 16.01 and 8.5% under scenarios A2, A1B and B1, respectively. The greatest danger zones are located mainly to the south of the West Kunlun Mountains, the middle of the Qingnan Valley, the southern piedmont of the Gangdise and Nyainqentanglha Mountains and some regions in the southern piedmont of the Himalayas. The Qinghai–Tibet Plateau permafrost region is in the low-risk category. Climate warming exacerbates the development of thermal hazards. In 2099, the permafrost region is mainly in the middle-risk category, and only a small portion is in the low-risk category.  相似文献   

15.
杨成松  程国栋 《冰川冻土》2011,33(3):469-478
利用土壤表层温度计算Stefan公式中融化指数,并结合铁路沿线地下冰和土体干密度分布特征,由Stefan公式集合预报未来100 a逐年最大季节融化深度;利用铁路沿线地下冰和干密度分布特征计算冻土融化时最大沉降量空间分布,与Stefan公式计算得到的活动层厚度变化数据叠加分析,得到未来100 a逐年的沉降量空间分布及其置...  相似文献   

16.
基于2005—2016年青藏高原多年冻土区唐古拉和西大滩站的气象、涡动通量以及活动层资料,利用涡动相关法、气象梯度法和SHAW模型等方法探究了气候变化背景下高原多年冻土区地表能量通量变化规律及其对活动层的影响。结果表明:2005—2016年唐古拉和西大滩气温、地气温差有所升高,年降水量、10 cm土壤含水量及风速有所下降。2005年以来唐古拉和西大滩净辐射(Rn )与感热(H)呈增加趋势,潜热(LE)呈减小趋势,地表土壤热通量(G)变化较小。唐古拉和西大滩地表能量通量季节变化明显,但受海拔、纬度、坡向、土壤冻融过程、降水、下垫面状况等因素的影响,地表能量通量存在区域差异。研究时段内,唐古拉和西大滩地表冻结指数与土壤热通量呈负相关;融化指数、活动层厚度与土壤热通量呈正相关,融化期间土壤热通量积累量与融化深度的变化呈线性增加关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号