首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 838 毫秒
1.
Rain Drop Size Distribution (DSD) is one of the key parameters to micro physical process and macro dynamical structure of precipitation. It provides useful information for understanding the mechanisms of precipitation formation and development. Conventional measurement techniques include momentum method, flour method, filtering paper, raindrop camera and immersion method. In general, the techniques havelarge measurement error, heavy workload, and low efficiency. Innovation of disdrometer is a remarkable progress in DSD observation. To date, the major techniques are classified into impacting, optical and acoustic disdrometers, which are automated and more convenient and accurate. The impacting disdrometer transforms the momentum of raindrops into electric impulse, which are easy to operate and quality assured but with large errors for extremely large or small raindrops. The optical disdrometer measures rainfall diameter and its velocity in the same time, but cannot distinguish the particles passing through sampling area simultaneously. The acoustic disdrometer determines DSD from the raindrop impacts on water body with a high temporal resolution but easily affected by wind. In addition, the Doppler can provide DSD with polarimetric techniques for large area while it is affected by updrafts, downdrafts and horizontal winds.DSD has meteorological features, which can be described with the Marshall Palmer (M-P), the Gamma, the lognormal or the normalized models. The M P model is suitable for steady rainfall, usually used for weak and moderate rainfall. The gamma model is proposed for DSD at high rain rate. The lognormal model is widely applied for cloud droplet analysis, but not appropriate for DSD with a broad spectrum. The normalized model is free of assumptions about the shape of the DSD. For practical application, statistical comparison is necessary for selection of a most suitable model. Meteorologically, convective rain has a relatively narrow and smooth DSD spectrum usually described by the M P model. Stratiform rain has a broad DSD spectrum described with the Gamma model. Stratocumulus mixed rain has relatively large drop diameter but small mean size usually described by the Gamma model. The continent rainfall is altitude dependent and it differs from the maritime cloud rainfalls in terms of rain rate and drop diameter. Overall, the meteorological features are useful to improve our understanding of precipitation formation but also important to development of precipitation retrieval techniques with a high accuracy.  相似文献   

2.
张敏  吴宏伟 《岩土力学》2007,28(Z1):53-57
为了在离心机试验中模拟降雨引起的滑坡,设计和使用了一套降雨模拟系统。这套系统的构成主要是针对离心试验的特殊要求进行设计的。所采用的特殊技术可以均匀分配雨水,将雨滴的尺寸效益和科氏加速度引起的雨滴偏移最小化,实现了不同强度和历时的降雨模拟。通过一个降雨条件下砂土边坡的离心模型试验,成功应用了该套降雨模拟系统,研究了边坡中的降雨入渗过程。  相似文献   

3.
In the present study, the Advanced Research WRF (ARW) version 3.2.1 has been used to simulate the heavy rainfall event that occurred between 7 and 9 October 2007 in the southern part of Bangladesh. Weather Research and Forecast (WRF–ARW version) modelling system with six different microphysics (MP) schemes and two different cumulus parameterization (CP) schemes in a nested configuration was chosen for simulating the event. The model domains consist of outer and inner domains having 9 and 3 km horizontal resolution, respectively with 28 vertical sigma levels. The impacts of cloud microphysical processes by means of precipitation, wind and reflectivity, kinematic and thermodynamic characteristics of the event have been studied. Sensitivity experiments have been conducted with the WRF model to test the impact of microphysical and cumulus parameterization schemes in capturing the extreme weather event. NCEP FNL data were used for the initial and boundary condition. The model ran for 72 h using initial data at 0000 UTC of 7 October 2007. The simulated rainfall shows that WSM6–KF combination gives better results for all combinations and after that Lin–KF combination. WSM3–KF has simulated, less area average rainfall out of all MP schemes that were coupled with KF scheme. The sharp peak of relative humidity up to 300 hPa has been simulated along the vertical line where maximum updraft has been found for all MPs coupled with KF and BMJ schemes. The simulated rain water and cloud water mixing ratio were maximum at the position where the vertical velocity and reflectivity has also been maximum. The production of rain water mixing ratio depends on MP schemes as well as CP schemes. Rainfall depends on rain water mixing ratio between 950 and 500 hPa. Rain water mixing ratio above 500 hPa level has no effect on surface rain.  相似文献   

4.
使用GBPP-100型雨滴谱仪,于2001年6月12日至7月31日在天山北坡的小渠子气象站和牧业气象试验站,对27次降雨过程进行了雨滴谱观测,共获取了4 719个雨滴谱样本。通过观测资料分析新疆中天山山区积状云、层状云、积状-层状混合云降雨的微物理结构特征。观测分析表明,天山山区降雨雨滴的平均直径0.41~0.55 mm,以积状云最大,混合云次之,层状云最小。最大平均直径0.88~1.12 mm、平均雨强1.18~2.78 mm·h-1、平均含水量5.23~11.62 g·m-3,混合云的这三个特征量均为最大。三类云的雨强与数密度呈正相关。积状云、层状云降雨的雨滴谱服从M-P分布,混合云服从Γ分布。由于山区地形的作用,使云中降雨粒子的生长时间受到限制,天山山区降雨小滴浓度高、尺度小,人工降雨潜力大。  相似文献   

5.
史晓亮  杨志勇  绪正瑞  李颖 《水文》2014,34(6):26-32
降雨输入对分布式流域水文模拟具有重要影响。针对流域降雨资料不完整的情况,以武烈河流域为例,基于反距离加权平均法对雨量站降雨资料进行插补延长,并结合SWAT模型研究了降雨输入不确定性对分布式流域水文模拟的影响。结果表明:不同降雨输入对流域平均降雨量的影响较小,但基于气象站资料的降雨数据在降雨空间差异显著的年份会明显低估面雨量,且在夏季汛期表现更为显著;不同降雨输入对分布式流域水文模拟的影响较大;在雨量站降雨资料不完整的情况下,通过对雨量站降雨数据进行插补延长,相对于直接利用气象站降雨资料,在一定程度上可以提高径流模拟精度,满足降雨资料欠缺流域分布式水文模拟的实际需求。  相似文献   

6.
暴雨作用下,东南沿海地区玄武岩残积土滑坡极易失稳,但相关的研究较为少见。文章以浙江省温州市马济头滑坡为对象,首先利用原状土土柱实验,获取中峰型和前峰型降雨工况下玄武岩残积土的雨水运移特征;然后使用Geo-studio软件反演土柱降雨实验,获取玄武岩残积土的非饱和渗透参数;接着通过数值模拟,获取两种降雨工况下马济头滑坡的渗流场及稳定性。结果表明:降雨作用下,玄武岩残积土的浅层土体含水率增长速率较快,上部及深部土体更易达到饱和;10 mm/h降雨强度下,湿润锋下渗速率较小且不随深度变化;30 mm/h降雨强度下,湿润锋下渗速率可增大2~3倍,雨水主要在峰值降雨期快速入渗;降雨作用下,马济头滑坡的滑带土饱和度迅速增大,孔隙水压力随之增大,坡脚出现大面积滞水,土体抗剪强度急剧降低,模拟降雨第三天,滑坡的稳定性系数降至最低,滑坡最终失稳;中峰型降雨工况下雨水入渗速率更快,坡脚处产生更大滞水面积,滑坡更容易失稳。本文的研究成果可为东南沿海玄武岩残积土滑坡的稳定性评价提供理论依据。  相似文献   

7.
岷县簸箕沟金矿因人类开采活动引发了矿山泥石流灾害. 采用FLO-2D软件模拟分析了降雨强度重现期50 a及100 a条件下的簸箕沟泥石流运动特征, 进行危险性评价和分区, 并结合实际发生情况做了精度验证. 结果表明: 簸箕沟泥石流的堆积扇范围、堆积深度以及平均流速等运动特征参数随着降雨重现周期的变长而增大, 堆积扇中部的堆积深度及流速明显大于两翼及前端. 泥石流的危险区集中分布于泥石流沟道以及沟口一定范围内. 随着降雨重现周期的变长, 高危险区面积比例由48%升高至54.0%. 通过精度验证得出模拟结果与实际情况基本相符, 可信度较高.  相似文献   

8.
On 30 June 1908, the Tunguska meteorite fell near the Podkamennaya (Stony) Tunguska River in Evenkysky National District (60°55' N. 100°57' E. ), at 11 seconds past 0017 hours Mean Greenwich Time. Eyewitnesses reported a bolide flight from southeast to northwest, followed by a violent explosion. Seismic and acoustical phenomena were reported over an area from several hundred to a thousand kilometers radius. Night-sky illumination, occurring throughout the area from mid-June gradually diminishing until its final disappearance in late August, was attributed to meteoric dust particles suspended in the atmosphere as a result of the explosion. On the Irkutsk magnetic and weather station seismograph, the impact registered as two waves (1. 2 meter amplitude) arriving approximately 5 minutes apart. Travel time from point of impact to station 893 kilometers distant, was computed at 24 hours 17 minutes 11 seconds; and wave velocity, at 330 meters per second. These and explosion-velocity data have been used in attempts to establish initial (approach) velocity and trajectory of the meteor with respect to earth movement. Investigation of the meteorite fall site began nineteen years after the meteorite fell to earth: L. A. Kulik led the first expedition to the fall site in 1927; and subsequent expeditions (undertaken by the U. S. S. R. Academy of Sciences) in 1928, in 1929-1930, and in 1939. In 1929, a geodetic section directed by S. Ya. Belych established three astro-radio points in the area. Aerial photographs were taken of the fall site during the 1929 expedition. Topographic features possibly indicating meteoric impact had been obscured by action of frost, standing water, and Sphagnum moss overgrowth in an area of permanently frozen (permafrost) mud. Phenomena caused by the explosion, e. g. orientation of uprooted trees, were used to locate the fall site during the first expedition. During a subsequent expedition, two holes were drilled in a craterlike formation (Suslov crater) on the site. Although no meteorite fragments have been found, an expedition was planned for 1958 to search for fragments at the fall site and to the southeast, along the trajectory. Other investigations will include observation and study of topographic effects on shock-wave expansion, and more accurate contouring the area relief. --D. D. Fisher.  相似文献   

9.
Quantifying rock fall hazards requires information about their frequency and volumes. Previous studies have focused on quantifying rock fall volume–frequency relationships or the weather conditions antecedent to rock fall occurrences, and their potential use as prediction tools. This paper is focused on quantifying rock fall occurrence probabilities and presents approaches for quantifying rock fall temporal distributions. In particular, von Mises distributions allow direct correlation between seasonal weather variations and rock fall occurrences. The approaches are illustrated using a rock fall database along a railway corridor in the Canadian Cordillera, in which rock fall occurrences were correlated to the morphology and lithology. A Binomial probability distribution applied to the annual rock fall frequency suggests an average daily rock fall probability of 1 × 10?2 across the study area. However, circular (von Mises) distributions associated with weather trends in the area, and fitted to monthly rock fall records, allow estimation of daily rock fall probabilities in different months. This approach allows a direct correlation between rock fall frequencies and seasonal variations in weather conditions. The results suggest daily rock fall probabilities between 4 × 10?3 and 8 × 10?3 for April through July and up to 2.1 × 10?2 in October. Moreover, local peaks in rock fall monthly records are quantitatively explained through the seasonality of weather conditions. Similar values are obtained when applying the Binomial distribution to monthly records. However, this last approach does not show strong distribution fits and does not allow a correlation between rock fall frequencies and seasonal weather variations.  相似文献   

10.
Lightning can threaten human and equipment safety. An indicator of sever convective weather, it plays an important role in atmospheric chemistry. The intensive studies have advanced the lightning forecast in the mesoscale weather models and its application in global climate models. There are three methods to forecast lightning by using numerical weather models: Numerical diagnosis prediction based on synoptic background filed statistical relations; Flash rate parameterization developed with the relationship between dynamical, microphysical and electrification processes, and The numerical weather model coupled with the explicit electrification and lightning parameterization schemes. In this paper, the research progress in lightning forecast with three above-mentioned methods were reviewed, and the future research issues on lightning forecast were also discussed.  相似文献   

11.
Based on the NCEP/NCAR daily reanalysis data and the daily rainfall data of ground observation at 164 weather stations in the middle and lower reaches of the Yangtze River from 1960 to 2013, the relationship between South Asia high low frequency oscillation and the drought and flood in the middle and lower reaches of the Yangtze River were analyzed using a composite analysis, wavelet analysis and band-pass filtering analysis method. The results indicated that in the typical drought and flood years, the Qinghai-Tibet Plateau 200 hPa atmosphere u, v low-frequency primary cycle and the summer rainfall cycle over the middle and lower reaches of the Yangtze River were the same. In more summer rainfall, from the Qinghai-Tibet Plateau to east China and west Pacific coast, there existed a cycle-anticyclone-cycle low frequency wave train. Low-frequency anticyclone controlled eastern China and the low-frequency cyclone controlled the northern Qinghai-Tibet Plateau. In drought years, results were opposite. In flood years, the precipitation of low frequency over the middle and lower reaches of the Yangtze River and that of 200 hPa atmospheric low frequency change of the Qinghai-Tibet Plateau was closely related. When the northerly wind in the northeast part of the the Qinghai-Tibet Plateau and in the middle and lower reaches of the Yangtze River was strong, and Lake Baikal southerly wind was strong, there was more precipitation. On the contrary, precipitation was less. The low frequency oscillation wave train was mainly spread from the northeast of China and Japan's southern to China’s southwest. However, in drought years, the relationship between them was not clear and needed to be further studied.  相似文献   

12.
基于滑坡区地质环境,通过区域地质调查,大比例尺平面图测绘,滑坡微地貌和变形破坏特征测量籍调查,室内岩土体试验等手段,对康县十字坡滑坡的特征和形成机制进行了系统研究。研究成果表明,该滑坡为小型碎石堆积土滑坡,降雨、不合理的人工活动及滑坡区高陡的地形是诱发滑坡变形的主要因素。在认识滑坡形成机制的基础上,采用多种极限平衡计算方法,并结合滑坡所处的地质环境,评价该滑坡在天然、降雨、地震及降雨和地震耦合作用下的稳定性,为该滑坡的治理提供理论指导。  相似文献   

13.
Spatial variations in the relationship between topography and mean annual and seasonal rainfalls in southwestern Saudi Arabia are examined using Kruskal–Wallis one-way analysis of variance. The topographic factors include physiographic features (topography), altitude, slope, proximity to a ridge or crest of mountains, and proximity to the Red Sea. There is a statistically significant effect of topographic factors on the mean annual rainfall, but the results are more significant for the mean seasonal rainfall. The largest amount of mean rainfall in the study area occurs during spring, when rainfall displays a significant relationship with topographic factors, in which more orographic rainfall patterns are associated with higher altitude, greater proximity to a ridge and steeper slopes. Higher altitudes do not necessarily receive more rain; some low altitude locations (i.e., the southern part of the study area) receive more rain during summer and fall because they are located on the windward side of the Asir Mountains and are exposed to the moist air masses brought by the southwest monsoonal system in summer and by the northwest air flow from the Mediterranean and Red Sea in the fall in addition to local convective rainfall patterns. Rainfall in winter increases in the foothills of the Asir Mountains above the coastal plain of the Red Sea. The steep western slopes (windward side) receive more rainfall than the gentle eastern slopes (leeward side): this may be due to the Asir Mountains forcing moist air masses carried by the westerly and northwest winds to rise and cool before they descend and warm on the leeward side.  相似文献   

14.
温州地处浙江东南沿海,降雨充沛。台风等极端气候灾害引起的强降雨次数繁多,并可能引发地区周边泥石流等地质灾害。收集相关地区、时段的气象、水文资料,并对研究区降雨数据进行处理,在野外实地调查、遥感解译的基础上,根据研究区地质灾害调查结果,总结群发性坡面泥石流特征,分析其形成的地质环境条件。针对致灾因子降雨量与温州地区群发性泥石流灾害的因果关系,获取坡面泥石流发生周期内的各时段降雨量,并利用相关性分析确定最大1h、3h雨强为研究变量,在二维坐标平面上投影近百个案例点,拟合得出临界雨量方程,并根据泥石流发生与否划分区域计算超越概率和误报概率,得出温州地区泥石流爆发前期雨强满足"两倍关系"的经验结论,寻求解决温州地区实际泥石流地质灾害预警问题的可行性。  相似文献   

15.
Extreme weather events such as cloudburst and thunderstorms are great threat to life and property. It is a great challenge for the forecasters to nowcast such hazardous extreme weather events. Mesoscale model (ARPS) with real-time assimilation of DWR data has been operationally implemented in India Meteorological Department (IMD) for real-time nowcast of weather over Indian region. Three-dimensional variational (ARPS3DVAR) technique and cloud analysis procedure are utilized for real-time data assimilation in the model. The assimilation is performed as a sequence of intermittent cycles and complete process (starting from reception, processing and assimilation of DWR data, running of ARPS model and Web site updation) takes less than 20 minutes. Thus, real-time nowcast for next 3 h from ARPS model is available within 20 minutes of corresponding hour. Cloudburst event of September 15, 2011, and thunderstorm event of October 22, 2010, are considered to demonstrate the capability of ARPS model to nowcast the extreme weather events in real time over Indian region. Results show that in both the cases, ARPS3DVAR and cloud analysis technique are able to extract hydrometeors from radar data which are transported to upper levels by the strong upward motion resulting in the distribution of hydrometeors at various isobaric levels. Dynamic and thermodynamic structures of cloudburst and thunderstorm are also well simulated. Thus, significant improvement in the initial condition is noticed. In the case of cloudburst event, the model is able to capture the sudden collisions of two or more clouds during 09–10 UTC. Rainfall predicted by the model during cloudburst event is over 100 mm which is very close to the observed rainfall (117 mm). The model is able to predict the cloudburst with slight errors in time and space. Real-time nowcast of thunderstorm shows that movement, horizontal extension, and north–south orientation of thunderstorm are well captured during first hour and deteriorate thereafter. The amount of rainfall predicted by the model during thunderstorm closely matches with observation with slight errors in the location of rainfall area. The temporal and spatial information predicted by ARPS model about the sudden collision/merger and broken up of convective cells, intensification, weakening, and maintaining intensity of convective cells has added value to a human forecast.  相似文献   

16.
Abstract: Advanced techniques are examined to observe microstructure of rocks using image analysis combined with methods such as the fluorescent approach and the application of optical characteristics of minerals. Analyzed are discrimination of grains in rocks, distribution patterns of grain orientation in sandstone, changes of grain shape as weathering advances and distribution patterns of microcracks in granite. In Shirahama sandstone, relatively large and flat grains are orientated parallel to the bedding on the plane perpendicular to the bedding, while grains on the plane parallel to the bedding show random patterns. In weathered granite, it is clarified that the grain surface becomes complex as weathering advances and differences among three major mineral species are identified. In Inada granite, intracrystalline cracks predominate over intercrystalline cracks and grain boundary cracks both in total length and number. Furthermore, three types of microcracks show different orientations; the intercrystalline cracks show a dominant orientation which coincides with the orientation of the rift plane, the easiest plane to split, while the intracrystalline cracks and grain boundary cracks show no preferred orientation.  相似文献   

17.
中巴经济走廊内的中巴公路奥布段泥石流频发且类型复杂,严重影响着安全出行和贸易流通。在对中巴公路奥布段沿线泥石流沟谷纵剖面形态分析的基础上,揭示其形态指数特征和活动程度,并从区域地形、地质和气象等因素方面探讨了泥石流的活动性差异成因及危害性。研究发现:公路沿线泥石流类型主要包括冰川型和降雨型两种,冰川型泥石流为27条,降雨型为26条。冰川型泥石流活动性强烈,形态指数N ≥ 1的沟谷占冰川型沟谷总数的81%,多数沟谷形态呈下凹状;降雨型泥石流活动性相对较弱,形态指数N ≥ 1的沟谷占其总数的50%,沟谷形态多呈上凸状。研究区大落差地形、不同物源供给和充沛水源条件等对泥石流的发育和活动具有重要影响,也是不同类型泥石流活动性差异的控制因素。研究结果可为研究区泥石流预测和防治提供指导,也可为中巴经济走廊区内交通工程选线和泥石流防治提供参考。  相似文献   

18.
Viorel Ilinca 《Landslides》2014,11(3):505-512
This paper focuses on characteristics of debris flows from the lower part of the Lotru River basin (South Carpathians, Romania). The damage produced by these debris flows has included burial of agricultural land, roads covered by debris flows, and even the obstruction of the Lotru River. Simple statistical analysis has been used to emphasize the characteristics of the debris flow sites. The collected data show that heavy rainfall is the main triggering mechanism of debris flow events in the Lotru hydrographic basin. The daily rainfall data for this region show that important debris flow events generally occur when rainfall exceeds 40 mm in 24 h, while rainfall levels between 25 and 40 mm in 24 h result in hyperconcentrated flows. For 11 of 14 studied debris flow sites, the fan area is greater than the source area, probably due to the thickness of the regolith, which is up to 5–10 m deep. Both source area and deposition area are very dynamic. The retreat rate calculated for five debris flow sites ranges from 5 to 30 m in 30 years (from 1975 to 2005). Channel cross section measurements on one of the debris flows show that velocity values vary from 1.31 to 2.64 m/s; corresponding discharge values vary from 4 to 10.03 m3/s.  相似文献   

19.
Ibadan experiences violent, tropical convectional storms of small areal extent. Hence, it is common observation that whilst very heavy rainfall can occur in one part of the city, another part can be totally dry. The annual average rainfall among stations in Ibadan do not differ significantly.The characteristics of the storms in Ibadan are not well documented. This study was carried out to evaluate and compute some of the characteristics of the Ibadan storm from the normal conventional rainfall autographs.It was found that there are 30 storms in a year accounting for over 70 % of total annual rainfall. It was also found that whilst rain may fall continuously for one or two hours in Ibadan, most of it is concentrated in only 20 minutes of fall which often coincides with the middle portion of the rain period.  相似文献   

20.
岩体工程特性研究中弹性波速参数取值方法探讨   总被引:9,自引:0,他引:9  
丁梧秀  姚增  蒋振 《岩土力学》2004,25(9):1353-1356
工程岩体的各向异性特征导致了弹性波速的各向异性。因此,在岩体工程特性研究、岩体质量评价等方面,应注意合理地应用岩体弹性波速资料。笔者分析了岩体波速的各向异性特征,并指出:由于波速各向异性的存在,在岩体完整性系数计算中,岩体波速应取不同方向波速的几何平均值。当利用文中所给公式进行岩体孔隙率计算时,建议波速取最小值;在进行节理、裂隙发育的优势方向判断时,则取不同方向的波速值分别进行计算;当计算弹性模量时,必须取与岩体受力方向相一致的波速值。并给出了利用波速进行有关参数计算的实例。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号