首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Septarian concretions occur at several horizons within the Oxford Clay Formation, a marine mudstone containing pristine aragonite and immature biomarker molecules. They record the passage of at least four generations of pore fluids, the first of marine origin and the last still present in cavities. Concretion bodies formed, cracked, and calcite and pyrite precipitated in and around the cracks within the sulphate reduction zone, as demonstrated by C, O, S and Sr isotopic composition (Pore fluid 1). Before major compaction, sandstone dykes were intruded locally, and baryte precipitated, followed by coarse calcite cements with isotopically light oxygen and radiogenic strontium, indicating the introduction of meteoric-derived water (Pore fluid 2). Later, coarse celestine within concretions has distinct sulphur-isotopic composition and requires a further, geographically restricted, water source (Pore fluid 3). Celestine-bearing concretions contain water in tight cavities whose isotopic composition is close to that of modern precipitation. Its chemistry shows that it is equilibrating with pre-existing minerals implying a relatively recent origin (Pore fluid 4). The mineralogy of the Oxford Clay concretions shows that complex results can follow from a simple burial and uplift history, and that multiple generations of pore fluids can pass through a low-permeability clay.  相似文献   

2.
J. D. HUDSON 《Sedimentology》1978,25(3):339-370
In interpreting the results of a petrographic and isotopic study of concretions, a range of subjects is discussed including the original texture of the Oxford Clay sediment, Jurassic palaeotemperatures, the diagenetic history of pore-waters and the palaeo-hydrology of central England. The concretions are all composed predominantly of calcite. They include precompactional, pyrite-rich concretions that later suffered an eposide of brecciation, and others that only commenced to form after compaction had crushed ammonite shells included in the bituminous clay sediment. Petrographic, chemical, and especially carbon isotope data demonstrate a dominantly organic source for the carbon in the early formed concretions. Oxygen isotopes indicate formation at the same temperatures (13-16°C) at which benthic molluscs were living. Concretion growth in pelleted, anaerobic mud proceeded concurrently with bacterial sulphate reduction and pyrite precipitation. Cracking of the concretions started at this stage: in a few concretions, the cracks were also partially filled with brown calcite. During post-compactional growth, δ13C increased and pyrite content decreased, showing waning organic influence; δ18O decreased. The brecciated concretions were intruded by clay in which baryte crystals grew; finally, most remaining voids were filled with strongly-ferroan calcite of δ18O about—7 PDB and δ13C about O PDB. This must indicate strong depletion of the pore waters in 18O. Mechanisms that might lead to this are reviewed. It is concluded that the sequence of mineralogical and chemical changes is most readily explained if originally marine porewaters, first modified by bacterial activity, were flushed from the compacting clays by water of ultimately meteoric origin. This had its source in palaeo-aquifers beneath the Oxford Clay. Speculative attempts are made to relate this history to the geology of the region.  相似文献   

3.
Pyrite in ammonite-bearing shales from the Jurassic of England and Germany   总被引:2,自引:0,他引:2  
J. D. HUDSON 《Sedimentology》1982,29(5):639-667
Pyrite occurs both in normal clays and shales with a benthic fauna (Oxford Clay, England, and Lias ε, Germany) and in highly bituminous shales (Lias ε, Germany). In normal shales it is present in small quantities as early framboids, but more conspicuously as internal moulds of fossils, especially ammonites. The pyrite in these is petrographically varied; several types of internal sediments and chamber linings are described and illustrated by reflected-light and scanning electron microscopy. Most striking are pyrite stalactites, suspended from the roofs of ammonite chambers, which were later filled by calcite or baryte. Pyrite formed in reducing micro-environments, while the sediment generally was not wholly anoxic. Most pyrite pre-dates compaction of sediment, breakage of fossils and solution of shell aragonite. Variable rates and conditions of reduction of sea water sulphate are reflected in δ34S values ranging from ?55 to +44. Stalactites probably started to form when the ammonite chambers were partially gas-filled. In the bituminous Lias ε shales pyrite occurs abundantly as early framboids and micro-nodules. Larger nodules show a variety of forms, some of which post-date compaction of the sediment. Pyrite is not associated with the abundant flattened ammonites. δ34S values in shales are grouped about a mode near ?20. Pyrite formed over a long time-span, and throughout the sediment, not just in protected cavities. Contrasts in pyrite types can be related to differing depositional environments and organic contents of the shales. Pyrite is an important mineral in diagenetic mineral parageneses which can be deduced by studying fossil void-fillings and concretions, and which help define the diagenetic history of a shale.  相似文献   

4.
R. RAISWELL 《Sedimentology》1988,35(4):571-575
Estimates for the rate of concretionary growth in shales are based on models which assume that growth is diffusion-controlled. However, laboratory and field studies of CaCO3 precipitation in organic carbon-rich sediments indicate that surface reactions control growth, due to inhibition by various dissolved species. The spatial distribution of carbonate concretions in the Jet Rock (Lower Jurassic, England) is also inconsistent with diffusion-controlled precipitation of CaCO3 into concretions, and growth must have been at least partly surface reaction-controlled.  相似文献   

5.
The Sardar Formation (Carboniferous) has a lithological variation that is characterized by sandstone, shale and limestone members. Shales of the Sardar Formation from the east central Iran have been analyzed for major elements and a number of trace elements. The shales of Sardar Formation are rich in quartz minerals and clay minerals of the bulk minerals. Clay minerals of shales are composed of illite, kaolinite and slightly montmorillonite. SiO2 versus K2O/Na2O diagram shows these shales plotted in the passive continental margin or cratonic field. Geochemical data suggest high acidic source rocks similar to granite and intermediate igneous rocks. CIA and ICV suggest semi-humid climatic conditions during depositions and indicate high chemical weathering in the source area. The geochemical parameters such as V/Cr, Ni/Co and Cu/Zn ratios indicate that these shales were deposited in oxic environment.  相似文献   

6.
刘剑营  刘立  曲希玉  王玉洁  胡瑨男 《世界地质》2006,25(4):349-352,366
对鸡西盆地下白垩统城子河组—穆棱组露头砂岩中的黏土矿物进行了X-衍射分析。研究结果表明,黏土矿物主要由伊利石,高岭石和伊/蒙混层组成,组合可分为高岭石型与伊/蒙混层和伊利石型两种,根据黏土矿物组合判断露头砂岩处于中成岩阶段A期。下白垩统城子河组—穆棱组煤系地层和泥岩成岩过程中析出的有机酸是高岭石型黏土矿物组合发育的重要原因,而沉积相带水动力条件弱导致砂岩渗滤条件的变差则是伊/蒙混层和伊利石型黏土矿物组合形成的原因。  相似文献   

7.
The composition of the carbon and oxygen isotopes has been determined in about 40 carbonate concretions and surrounding clays and shales of different geological ages. Two different areas and stratigraphic levels in Northwestern Germany have been sampled: 1. concretions in shales of Lower Cretaceous age fromt he area between Hildesheim and Hannover; 2. concretions in shales of Devonian age from the Harz mountains (and the foreland).While the concretions of Group 1 generally are enriched in the light isotope 12C (13C values from –3.3 to –43.2 relative to PDB), compared to the surrounding shales (0.9 to –5.3), no significant differences could be observed between concretions and shales of Group 2 (concretions: 2.0 to –7.0; shales: –0.3 to –6.2).The average 18O/16O ratios of the Devonian samples are lower than those from the Cretaceous, because the probability of an exchange with light meteoric water in diagenetic reactions increases with geologic age.Formed under special conditions of the microenvironment, such as the presence of organic material and local alkalinity during the early stages of diagenesis, the carbon isotopic composition of concretions will probably have preserved some characteristic properties of this mioroenvironment.It is assumed that concretions with the heavy carbon contain carbon from CO2 which was in isotope equilibrium with CH4, both of them liberated during the decay of organic material. The light carbon from concretions of Group 1 is explained as fixed CO2, originating from microbiological or inorganic oxidation of organic substances, which was not in isotope equilibrium with methane (if this was present at all).After precipitation of the concretionary carbonates, no significant carbon isotope exchange seems to have occurred, otherwise the pattern of a heterogeneous carbon isotope composition found in several concretions could not be explained.Strontium concentrations (see Appendix) range from those of primary calcite precipitated in sea water to diagenetic carbonates formed from solutions with a high Ca/Sr ratio. They indicate that during the formation of concretions in abundant cases the system was closed to ocean water.  相似文献   

8.
Zircon occurs in voids and cracks in phosphatic coprolites enclosed in siderite concretions in Mississippian shales near Edinburgh, Scotland. The zircon formed during hydrothermal alteration of early-diagenetic concretions and occurs as spherical aggregates of prismatic crystals, sometimes radiating. Vitrinite reflectance measurements indicate temperatures of ~270°C for the zircon-bearing concretions and the host shales. Molecular parameter values based on dibenzothiophene and phenanthrene distribution and occurrence of di- and tetra-hydro-products of polycyclic aromatic compounds suggest that the rocks experienced relatively high-temperature aqueous conditions related to hydrothermal fluids, perhaps associated with neighboring mafic intrusions. The zircon was dissolved from the concretions, transported in fluids, and reprecipitated in voids. This is the first record of the precipitation of authigenic zircon in sedimentary rock as a new phase, not as outgrowths.  相似文献   

9.
藏南聂拉木县、岗巴县的古错-岗巴盆地呈东西向展布,位于北喜马拉雅构造分区。早白垩世沉积以碎屑物质为主,其黑色页岩主要集中于下白垩统古错四组、古错五组和东山组。黑色页岩沉积物颗粒微细,以泥质、粘土质组分为主,砂/泥比值低,局部夹有海底扇沉积的细砂岩、粉砂岩等韵律层,富含菱铁矿、钙质结核,少见菊石等生物化石。其沉积环境应为相变缓慢、水体低能且较为特殊(受火山活动影响)的海相还原环境。黑色页岩中的粘土质所反映出的稀土配分模式与玄武岩标准模式极为接近,显示出当时的沉积可能伴随有火山活动及基性物质的介入。综合地质特征显示出本区下白垩统黑色页岩厚度巨大,构造简单,具有较好的成烃条件,虽然有机质成熟度较高,但黑色页岩仍是未来本区油气资源潜力评价中值得重视的积极因素之一。  相似文献   

10.
Concretions from the Kimmeridge Clay Formation are of three types: calcareous concretions, septarian calcareous concretions and pyrite/calcite concretions and nodules, which occur within different mudstone facies. Isotopic and chemical analysis of the concretionary carbonates indicate growth in the Fe-reduction, sulphate-reduction and decarboxylation zones. The septarian concretions show a long and complex history, with early initiation of growth and development spanning several phases of burial, each often resulting in the formation of septaria. Growth apparently ceased in the transitional zone between the sulphate-reduction and the methanogenesis zones. Very early growth in the Fe-reduction zones is also seen in one sample. The non-septarian concretions began growth later within the sulphate-reduction zone and have had a simpler burial history while the pyrite/calcite concretions show carbonate cementation in the sulphate-reduction-methanogenesis transition zone. A ferroan dolomite/calcite septarian nodule with decarboxylation zone characteristics also occurs. Development of concretions appears to be indirectly controlled by the sedimentation rate and depositional environment, the latter determining the organic matter input to the sediments. Calcareous concretions predominate in swell areas and during periods of low sedimentation rate in the basins with poor organic matter preservation and deposition of calcareous mudstones. Pyrite/calcite concretions occur in organic-rich mudstones deposited under higher sedimentation rates in the basins, while the ferroan dolomite nodule grew under very high sedimentation rates.  相似文献   

11.
珠穆朗玛峰北坡下侏罗统层序地层及沉积相研究   总被引:15,自引:1,他引:15  
史晓颖  雷振宇 《地质学报》1996,70(1):73-83,T001
珠穆朗玛峰北坡下侏罗统由乌垅组、康堆组和水佳组三个岩石地层单位组成。它们分别形成于碳酸盐缓坡、断陷盆地和碳酸盐台地三种不同的沉积环境,共包括6个沉积相。本区在早侏罗世经历了强烈的继陷下,属成熟裂谷盆地。  相似文献   

12.
Carbonate concretions from the Jet Rock (Upper Lias, Lower Jurassic) of NE England grew in uncompacted sediment, close to the sediment surface. Microbiological activity created isolated microenvironments in which dissolved carbonate and sulphide species were produced more rapidly than they could be dispersed by diffusion, so establishing the localised supersaturation of calcite and metastable iron sulphides. Precipitation of these minerals in the microenvironment formed a single concretion.Mass-balance calculations demonstrate that at least two different microbiological processes participated in concretionary growth. The early growth stages had an unidentifiable microbiological source of carbonate which declined in importance relative to sulphate reduction as growth proceeded. It is suggested that the diffusion of dissolved organic material was important in sustaining microbiological activity.Mineralogical zonations in the concretions result from changes in the chemistry of the microenvironment due to variations in the rates of addition/removal Ca2+, Fe2+, HCO?3 and HS? by microbiological activity, the crystallization of authigenic minerals and diffusion between the microenvironment and surrounding pore waters. Such changes are of only local significance and the resulting mineralogical zonations in a concretion cannot be used to deduce successive stages of diagenesis in the whole sediment.  相似文献   

13.
湘西震旦—寒武纪交替时期古海洋环境的恢复   总被引:6,自引:0,他引:6  
前寒武纪至寒武纪的交替时期是地质史和生命史的重要转折。中国南方地区广泛发育了上震旦统、下寒武统的黑色岩系。文中运用沉积学和沉积地球化学的理论和方法对湘西黑色岩系的岩石类型、矿物组成、元素地球化学特征、干酪根的结构以及碳同位素的组成等方面进行了研究 ,讨论了黑色岩系的形成条件 ,恢复了震旦纪 /寒武纪地史转折期的古环境。研究认为 ,湘西地区在晚震旦世和早寒武世地史转折期的生物爆发和高有机质的产率是形成缺氧环境的重要因素之一。  相似文献   

14.
Much effort has been expended in recent years on determining the factors influencing calcite cementation of sandstones, partly out of academic curiosity and partly because of the important influence these cements have on production from hydrocarbon reservoirs. Calcite cementation may occur pervasively throughout a sandstone sequence or be concentrated in certain horizons within which growth may be as concretions. We are only now beginning to understand the factors governing the growth and distribution of carbonate concretions in sandstones.  相似文献   

15.
Iron oxide concretions are formed from post depositional, paleogroundwater chemical interaction with iron minerals in porous sedimentary rocks. The concretions record a history of iron mobilization and precipitation caused by changes in pH, oxidation conditions, and activity of bacteria. Transport limited growth rates may be used to estimate the duration of fluid flow events. The Jurassic Navajo Sandstone, an important hydrocarbon reservoir and aquifer on the Colorado Plateau, USA, is an ideal stratum to study concretions because it is widely distributed, well exposed and is the host for a variety of iron oxide concretions.Many of the concretions are nearly spherical and some consist of a rind of goethite that nearly completely fills the sandstone porosity and surrounds a central sandstone core. The interior and exterior host-rock sandstones are similar in detrital minerals, but kaolinite and interstratified illite–smectite are less abundant in the interior. Lepidocrocite is present as sand-grain rims in the exterior sandstone, but not present in the interior of the concretions.Widespread sandstone bleaching resulted from dissolution of early diagenetic hematite grain coatings by chemically reducing water that gained access to the sandstone through fault conduits. The iron was transported in solution and precipitated as iron oxide concretions by oxidation and increasing pH. Iron diffusion and advection growth time models place limits on minimum duration of the diagenetic, fluid flow events that formed the concretions. Concretion rinds 2 mm thick and 25 mm in radius would take place in 2000 years from transport by diffusion and advection and in 3600 years if transport was by diffusion only. Solid concretions 10 mm in radius would grow in 3800 years by diffusion or 2800 years with diffusion and advection.Goethite (α-FeO (OH)) and lepidocrocite (γ-FeO (OH)) nucleated on K-feldspar grains, on illite coatings on sand grains, and on pore-filling illite, but not on clean quartz grains. Model results show that regions of detrital K-feldspar in the sandstone that consume H+ more rapidly than diffusion to the reaction site determine concretion size, and spacing is related to diffusion and advection rates of supply of reactants Fe2+, O2, and H+.  相似文献   

16.
A detailed analysis of the diatoms from the sedimentary sequence exposed in Abu Qada basin, west central Sinai, was used to determine the palaeoenvironmental changes during the Lower to Middle Miocene. A total of 85 diatom species and varieties belonging to 37 genera were identified from 154 samples collected throughout the stratigraphic succession. The lithological characters of the studied samples varied between sandstone, silty interbeds, sandy shales, shales, and terminated with anhydrite and limestones. These rock units are included in two lithostratigraphic formations (Rudies and Kareem), which are separated by a marked unconformity. The distribution and preservation of fossil diatoms in the sedimentary record are examined with the aim of outlining the temporal and spatial variation in the composition of the diatom assemblages, in order to estimate the changes in depositional environments during the Lower to Middle Miocene. The distributional pattern of the recorded diatom taxa distinguished four diatom eco-zones. The environment of each eco-zone is deduced and a proposed paleobathymetric change and depositional history of the Miocene sediments in the studied area are given.  相似文献   

17.
黔东震旦-寒武系转换期碎屑锆石年龄及其地质意义   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对注溪地层剖面岩性、含矿性及接触关系进行详细考察,及对其黑色岩系中长石岩屑砂岩进行碎屑锆石LA-ICP-MS U-Pb测年,获得84组有效年龄,其中864~742 Ma年龄最集中,表明新元古代黔东地区存在大规模的岩浆活动.江南造山带为黔东早寒武世黑色岩系的主要沉积物源区,而钒等成矿元素源于基性-超基性侵入岩体.雪峰运动导致这些含矿岩体剥顶,大量金属元素注入海洋.海侵海底缺氧,富含这些成矿元素藻类死亡,钒等金属元素随同有机质进入沉积物中,在利于其沉淀富集的留茶坡和九门冲组地层成矿.536 Ma为留茶坡组最后接受沉积时限和九门冲组最大沉积年龄,震旦与寒武系界线位于留茶坡组中上部硅质岩中,清水江组地层岩性的变形、变质和角度不整合于上覆、下伏地层的现象为雪峰运动地质效应.   相似文献   

18.
19.
Replacement of originally aragonite mollusc shells by pyrite commonly occurs in the Lower Oxford Clay. Petrographic studies show the shells to have constituted complex microenvironments in the sediment. A range of replacement textures is found showing a variable amount of solution of the original aragonite. Three distinct textures were found in crushed pyrite-replaced ammonite shells from heavily pyritized concretions. (1) A texture reflecting the original shell structure due to the replacement of the organic shell-matrix by pyrite. (2) An ovoid texture seen at several stages of replacement reflecting processes occurring at discrete centres of sulphate reduction. (3) Euhedral crystals lining cracks and fractures in the shell. Three types of replacement are found in small gastropods and bivalves from shell bed, some of which may relate to those seen in the ammonites. (1) Replacement of organic shell-matrix by pyrite preserving good shell-microstructure. (2) Replacement showing outwardly good preservation of morphological features but inwardly only the gross structure, such as growth lines, is preserved. (3) Replacement of the shell in a matrix of euhedral pyrite leaving only lines of carbonate inclusions marking the margins of the shell. The replacement textures and types appear to be dependent on the initial structure of the shell and the access of iron and sulphate into the shell. Early stages of replacement appear to proceed by pyrite formation within the organic matrix of the shell, with little or no solution of the carbonate, this produces textures which faithfully mimic the original shell microstructure. It is thought that the lack of carbonate solution is due to a limited availability of iron, brought about by the less intensively reducing nature of the sediment. Later stages of replacement are promoted by the cracking and fracturing of the shell and are, generally, not as faithful to the original shell structure. This is due to the greater availability of iron as the sediment becomes more reducing with burial.  相似文献   

20.
During the search of some plant and animal fossils a variety of calcareous concretions were collected from the carbonaceous grey-black shales of Palana Formation of the Palaeocene age in a dug well section at Hadla Bhatiyan village Southwest of Bikaner in Rajasthan. The concretions range in size from a few millimetres to 30 centimetres in diameter. These structures exhibit a variety of shapes ranging from spherical, botryoidal, flattened and dumbbell shaped. The calcareous concretions observed here show an unusual internal structure. On the outer surface they show straight laminations but inside these laminations form slump structures. In many cases the central portion of the slump structures has been detached and rotated due to the gravity effect. Secondly, laminations on the outer surface exhibit continuity irrespective of the shape of the concretions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号