首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissolved silica concentrations in groundwater, springwater, and streamwater were measured on an unchanneled hillslope in the Tanakami Mountains of central Japan. The effects of preferential flowpaths, including lateral and vertical flow in the soil layer and flow through bedrock fractures, on the variation in the dissolved silica concentrations in runoff and groundwater were examined, as were the effects of the mixing of water from geochemically diverse water sources on the dissolved silica concentrations. The mean dissolved silica concentrations in water sampled from 40 cm below the soil surface and in transiently formed groundwater above the soil-bedrock interface during rainfall events were relatively constant, independent of the variation in the mixing ratio of pre-event water and incoming throughfall. These waters were mostly supplied by the vertical infiltration of water in soil. The mean dissolved silica concentrations were similar, regardless of sampling depth, although the mean residence time of the water increased with depth. These results indicated that the dissolved silica concentrations in soil water and transient groundwater were independent of contact time between the water and minerals. The mean dissolved silica concentration in perennially saturated groundwater above the soil-bedrock interface, which was recharged by water infiltrating through soil, and water emerging from bedrock in an area near the spring was more than twice that of transient groundwater, and the variation was relatively large. The mean dissolved silica concentration increased significantly downslope, from perennial groundwater to spring from soil matrix to stream, and the spring and stream concentrations also showed large variations. The dissolved silica concentration was highest in the spring from a bedrock fracture and was relatively constant. The mixing of water from two geochemically diverse water sources, soil and bedrock, controlled the dissolved silica concentrations of the perennial groundwater, the spring from soil matrix, and the stream. Our results demonstrated that in most areas of this headwater catchment, the preferential flowpaths have only a small effect on the dissolved silica concentrations. In a small area, which was < 2% of the total catchment area near the spring, the dissolved silica concentration was controlled by the mixing of water from geochemically diverse water sources.  相似文献   

2.
A hydrological and geochemical investigation of the Prairie Flats surficial uranium deposit in Summerland, BC was undertaken to identify the principal controls on uranium deposition. A network of piezometers was installed and used to measure the hydraulic conductivities of the host sediments as well as the general flow direction and aqueous geochemistry of the resident groundwaters. Two hydrostratigraphic units were identified: a peat and clay unit overlying a sand and gravel unit. Measured hydraulic conductivities were on the order of 10-7 and 10-5 m/s, respectively, and the vertical hydraulic gradients indicate significant groundwater discharge upward into the peat and clay unit. Prairie Flats groundwaters are neutral to alkaline in pH, enriched in Ca2+ and HCO3-, and have dissolved uranium concentrations ranging from 10 to nearly 1,000 µg/l. Groundwater flow and geochemistry data were used to estimate the flux of uranium in groundwater at the site. A major fraction of the uranium is taken up by adsorption to organics. There is also evidence for subsequent desorption by the formation of soluble complexes with bicarbonate. Uranium that is not held by adsorption is most likely precipitated as uraninite, UO2(c). Reducing conditions in the peat and clay unit (Eh<0.1 V) relative to the underlying sand and gravel unit (Eh>0.2 V) may explain the high concentrations of uranium nearer ground surface. The current flux of uranium into the flats is significantly smaller than that calculated from the size and age of the deposit, which may be an indication of changing rates of deposition in response to varying climatic and hydrogeologic conditions over time.  相似文献   

3.
Dissolved U concentrations and activity ratios (ARs) of the U isotopes in the 238U decay series were measured in ground and surface waters as part of an investigation to delineate the water quality in a proposed uranium mining area of northwest Nebraska. In oxidizing groundwaters from 67 wells completed in the Tertiary sediments, increasing U concentrations in the direction of groundwater flow generally were associated with a maturation of the formation water as evidenced by evolutionary trends in major ion character. The increased U levels probably are associated with leaching as shown by the positive correlation between U concentrations and total dissolved solids (TDS) (r = +0.83). The inverse relationships between TDS and U ARs (r = ?0.73) and U levels and ARs (r = 0.72) indicate that the decay of excess U-234 is related to maturation of the formation water and to sediment leaching along the flowpath. The data are described by a model which incorporates etching, decay and recoil and suggests that aquifer residence time can be estimated from the TDS level.The levels of soluble U in a reducing uraniferous hydrogeologic unit near Crawford, Nebraska are affected by the proximity of the sample collection to ore. In groundwater samples having similar chemistries (Na-SO4 + Cl type), similar Ehs, and collected from a close-knit pattern, U concentrations ranged from 0.01 to 2,037 μg l?1 and ARs ranged from 0.75 to 12.6. This high variability in U levels and ARs is indicative of uranium ore in small areal studies where low ARs almost always are associated with high U concentrations.  相似文献   

4.
Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings.Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5–20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal.  相似文献   

5.
Radon in Himalayan springs: a geohydrological control   总被引:3,自引:0,他引:3  
 This paper presents the results of radon measurements in springs of the Himalayan region by using radon emanometry technique. The radon was measured in different springs, draining from different geohydrological setups, and from stream water in order to find the geohydrological control over radon concentration in groundwater emanating in the form of spring. The radon values were found to vary from 0.4 Bq/l to 887 Bq/l, being observed lowest for a turbulent stream and highest for the spring. The radon values were recorded highest in the springs draining through gneiss, granite, mylonite, etc. Radon concentrations have been related with four spring types viz. fracture-joint related spring, fault-lineament related spring, fluvial related spring and colluvial related spring, showing geohydrological characteristics of the rocks through which they are emanating. The high radon concentration in fracture-joint and fault-lineament spring is related to increased ratio of rock surface area to water volume and uranium mineralisation in the shear zones present in the close vicinity of fault and thrust. The low concentration of radon in fluvial and colluvial springs is possibly because of high transmissivity and turbulent flow within such deposits leading to natural de-emanation of gases. Received: 6 January 1998 · Accepted 11 May 1999  相似文献   

6.
According to the present concept for final storage of spent nuclear fuel in Sweden, the spent fuel, encapsulated in copper or copper/steel canisters, will be placed in tunnels in a deep rock formation. The canisters will be surrounded by compacted bentonite clay acting as a buffer material. In connection with a safety analysis of such a storage facility, the total solubility of certain elements (e.g., uranium) as well as the transport properties (e.g., retardation due to sorption on mineral surfaces) of the long-lived radionuclides released from the canister have to be predicted or measured. The chemical conditions, governing the solubility and speciation of trace elements encountered in and around the repository depend on interactions between the ground water and the engineering materials in the repository and a production of oxidants due to radiolysis in the spent fuel. In the present study the speciation and solubility of uranium and neptunium in a bentonite-ground water system and in ground waters with compositions measured at a site at äspö, SE Sweden, have been calculated. The calculations have been carried out using a recent version of the geochemical computer code PHREEQE and the database HATCHES 5.0. Predictions of the uranium and neptunium concentrations in the ground water in the vicinity of a damaged high level waste repository have also been performed. The uranium concentration in the water in the bentonite barrier is predicted to be of the same order of magnitude or lower than that found in some granitic ground waters. For neptunium the calculations are uncertain due to the small amount of experimentally determined thermodynamic data and few verifications under the conditions (pH - Eh - carbonate concentration) considered. The predicted concentrations (ca 10–12 m, corresponds to ca 0.006 Bq/l) may be regarded as high, considering the high toxicity of neptunium and its long half-life.  相似文献   

7.
Orientation surveys were conducted over five deposits to test the potential of determining helium in overburden gas as a pathfinder for uranium mineralization and other deposits containing uranium or thorium. Samples were collected via fixed tubes emplaced at depths of 6 m in backfilled holes drilled for this purpose. Compared to the atmospheric background value of 5.24 ppm v/v He, a variable weak anomaly (maximum 5.45–5.65 ppm He) was found over part of the Angela uranium deposit, N.T., in an arid area where mineralization is mostly at a depth of 60–90 m, at or below the water-table. Helium contents were mostly at background levels over a uranium deposit in the Officer Basin, W.A., where mineralization is at the water-table at 30–35 m, although radon gave a marked anomaly. Neither helium nor radon indicated the Manyingee deposit, W.A., which has uranium mineralization in a confined aquifer at 60–110 m. Similarly, no helium anomalies were found over the uranium- and thorium-rich Mt. Weld carbonatite or mineral sands at Eneabba.There appeared to be no correlation between helium distributions shown by groundwater and overburden-gas sampling at Manyingee or Mt. Weld. At Mt. Weld, groundwaters contained 0.06 to 13.60 μ/l He and overburden gases 5.24–5.47 ppm He, with the higher gas concentrations over country rock, where waters had background helium contents. It is presumed that equilibration between overburden gas and the atmosphere is far more rapid than that between overburden gas and groundwater, so that any helium released from the water is quickly dispersed.Overburden-gas helium concentrations were found to vary according to overburden type, being 5.24–5.32 ppm where sandy and porous and 5.30–5.50 ppm where clay-rich and less permeable. These background variations, which are greater than the total background-anomaly contrasts reported in the literature for shallow soil gases, have not been accounted for in most trial surveys, nor has the possibility of similar variations being due to analytical error. From the data obtained, there is little evidence that helium can be considered an effective pathfinder for blind or concealed deposits using soil gas or overburden gas as sample media. Previous work on the use of soil and soil-gas helium determinations in uranium exploration is reviewed in the light of these findings and the concept and techniques assessed.  相似文献   

8.
Past mining, processing, and waste disposal activities have left a legacy of uranium-contaminated soil and groundwater. Phosphate addition to subsurface environments can potentially immobilize U(VI) in-situ through interactions with uranium at mineral-water interfaces. Phosphate can induce the precipitation of low solubility U(VI)-phosphates, and it may enhance or inhibit U(VI) adsorption to iron(III) (oxy)hydroxide surfaces. Such surfaces may also facilitate the heterogeneous nucleation of U(VI)-phosphate precipitates. The interactions among phosphate, U(VI), and goethite (α-FeOOH) were investigated in a year-long series of experiments at pH 4. Reaction time, total U(VI), total phosphate, and the presence and absence of goethite were systematically varied to determine their effects on the extent of U(VI) uptake and the dominant uranium immobilization mechanism. Dissolved U(VI) and phosphate concentrations were interpreted within a reaction-based modeling framework that included dissolution-precipitation reactions and a surface complexation model to account for adsorption. The best available thermodynamic data and past surface complexation models were integrated to form an internally consistent framework. Additional evidence for the uptake mechanisms was obtained using scanning electron microscopy and X-ray diffraction. The formation and crystal growth of a U(VI)-phosphate phase, most likely chernikovite, UO2HPO4·4H2O(s), occurred rapidly for initially supersaturated suspensions both with and without goethite. Nucleation appears to occur homogeneously for almost all conditions, even in the presence of goethite, but heterogeneous nucleation was likely at one condition. The U(VI)-phosphate solids exhibited metastability depending on the TOTU:TOTP ratio. At the highest phosphate concentration studied (130 μM), U(VI) uptake was enhanced due to the likely formation of a ternary surface complex for low (∼1 μM) to intermediate (∼10 μM) TOTU concentrations and to U(VI)-phosphate precipitation for high TOTU (∼100 μM) concentrations. For conditions favoring precipitation, the goethite surface acted as a sink for dissolved phosphate that resulted in higher dissolved U(VI) concentrations relative to goethite-free conditions. Based on the total uranium and available sorption sites, a critical phosphate concentration between 15 μM and 130 μM was required for preferential precipitation of uranium phosphate over U(VI) adsorption.  相似文献   

9.
Ashed twigs of Picea rubens (red spruce) collected over an area of uranium mineralization in central Nova Scotia were analyzed for uranium in the course of biogeochemical prospecting for this element. Uranium levels in background samples were significantly lower than in those collected from areas with mineralization either at depth or on the surface. Scintillometric data were useful only to differentiate background and surface mineralization. Uranium levels in soils showed no correlation whatsoever with mineralization or with radiometry. There was a very high degree of correlation between the scintillometric data and uranium concentrations in ashed twigs and it is considered that twigs of Picea rubens might be successfully used for biogeochemical prospecting for uranium in this area.  相似文献   

10.
In situ arsenic removal in an alkaline clastic aquifer   总被引:1,自引:1,他引:0  
In situ removal of As from ground water used for water supply has been accomplished elsewhere in circum-neutral ground water containing high dissolved Fe(II) concentrations. The objective of this study was to evaluate in situ As ground-water treatment approaches in alkaline ground-water (pH > 8) that contains low dissolved Fe (<a few tens of μg/L). The low dissolved Fe content limits development of significant Fe-oxide and the high-pH limits As adsorption onto Fe-oxide. The chemistries of ground water in the two aquifers studied are similar except for the inorganic As species. Although total inorganic As concentrations were similar, one aquifer has dominantly aqueous As(III) and the other has mostly As(V). Dissolved O2, Fe(II), and HCl were added to water and injected into the two aquifers to form Fe-oxide and lower the pH to remove As. Cycles of injection and withdrawal involved varying Fe(II) concentrations in the injectate. The As concentrations in water withdrawn from the two aquifers were as low as 1 and 6 μg/L, with greater As removal from the aquifer containing As(V). However, Fe and Mn concentrations increased to levels greater than US drinking water standards during some of the withdrawal periods. A balance between As removal and maintenance of low Fe and Mn concentrations may be a design consideration if this approach is used for public-supply systems. The ability to lower As concentrations in situ in high-pH ground water should have broad applicability because similar high-As ground water is present in many parts of the world.  相似文献   

11.
An empirical scheme based on the concentrations of uranium and the three alpha-emitting radium isotopes 226Ra, 224Ra and 223Ra is proposed for rating the significance of ground waters with respect to uranium exploration. The scheme has been developed from the results for over 200 water samples from the vicinity of known uranium deposits and radium anomalies in areas of Australia with climates varying from arid to tropical. The scheme uses relative levels of the four factors to rate the potential of a sample as good, possible or poor. An example of the use of the system in ground-water exploration in the Frome Embayment, South Australia, is presented to illustrate the value of the scheme in rejecting falsely anomalous samples with high uranium concentrations whilst detecting nearby uranium mineralization from drill holes not intersecting mineralization.  相似文献   

12.
《Applied Geochemistry》2003,18(9):1373-1386
The Baccu Locci stream catchment (Sardinia, Italy) is affected by serious As contamination as a consequence of past mining. The presence of both point and widespread sources of contamination (waste-rock dumps and flotation tailings, respectively) strongly affects surface water chemistry, and produces high As concentrations (hundreds of μg l−1) in stream waters. Water chemistry of the Baccu Locci stream changes considerably over a distance of about 10 km as a consequence of various, locally concomitant, processes acting along the stream course: (1) mixing with metal-rich SO4 waters; (2) dissolution/precipitation of metal-bearing phases; (3) mixing with HCO3-dominated lake waters; (4) gypsum dissolution coupled with calcite precipitation; (5) mixing with dilute surface and/or ground waters. In contrast to metals (e.g. Pb, Cu, Zn and Cd), whose dissolved concentrations rapidly decrease downstream of the mined area through (co-)precipitation/adsorption mechanisms, As concentrations tend to gradually increase (up to 0.9 mg l−1) along the stream course as far as the alluvial plain, though significant variations are locally observed. This behaviour is mainly due to the higher mobility of As than metals under the near neutral-oxidative conditions occurring in the Baccu Locci stream waters. Results of a leaching test indicate that part of the As contained in the flotation tailings occurs as As(III), which is more mobile and less strongly sorbed than As(V). The As released to the waters by various mechanisms (i.e. release/desorption from the Fe(III)-hydroxides coatings of silicate grains, oxidation of residual arsenopyrite, decomposition of scorodite) tends to remain in solution and to be transported long distances. As a consequence of the widespread presence of highly As-contaminated flotation tailings all over the medium-lower Baccu Locci stream catchment, long-term As contamination is expected.  相似文献   

13.
A reconnaissance exploration survey over 14 000 km2 of Precambrian terrain in South Greenland using stream-sediment and stream-water samples delineated a central uranium district of 2000 km2 with enhanced uranium levels and smaller anomalous zones in the south of the field area.The area is underlain by Archean and Proterozoic gneisses, granites and metasediments all of which have been intruded by late Proterozoic alkaline intrusions (Gardar Province). The terrain is mountainous and the streams are either steep torrents or impeded drainages typical of glaciated terrains with boggy organic rich sediments.The central uranium district was defined by a high uranium background in both stream sediments (5–20 ppm) and stream waters (0.5–1.0 ppb) and a markedly higher frequency of very anomalous values in the order of 50–100's ppm in the stream sediments and 1–10 ppb in the stream waters. An areal correlation of uranium, in this district, with high pH and conductivity in the stream water in addition to a higher organic content noted in the stream sediment raised the question of a possible enhancement of uranium values due to secondary environmental effects. On the other hand, an areal correlation of uranium with niobium and other trace elements characteristically associated with alkaline rocks, and the geographic proximity of this uraniferous district to the alkaline intrusions suggested a genetic relationship between uranium mineralization and the alkaline igneous activity.Limited follow-up work located 8 pitchblende occurrences in this extensive district. The pitchblende is in veins which contain quartz, calcite, iron oxide, fluorite and minor sulphides. The isotopic (U-Pb) age of the pitchblende, which ranges from 1180-1090 Ma, corresponds to the late stages of Gardar alkaline igneous activity. It is concluded, therefore, that the reconnaissance geochemistry reflects a district-wide hydrothermal event related to the late volatile differentiates derived from the highly fractionated alkaline magma. A combination of primary and secondary features have complemented each other in enhancing the geochemical reconnaissance data and emphasized its importance but has not materially altered the interpretation.The south of the field area also has a relatively high uranium background in both the sample media with some discrete anomalous zones, usually with a slightly lower order of magnitude than the central area, but still with a distinct contrast of 5–10 times. Fine-grained uraninite has been found in the area occurring as disseminated grains in pegmatitic elements as in the central district. Isotopic ratios (U-Pb) suggest an age of 1728 ± 30 Ma which probably reflects the long cooling of the granite.It is concluded that the geochemical reconnaissance data delineated two uranium metallogenic districts characterized by distinctly different types of uranium mineralization. It is suggested that South Greenland may be part of a much wider uranium geochemical province which includes parts of Labrador. To the present plate-tectonic models, which suggest such a connection (Le Pichon et al., 1977), must be added the comparable reconnaissance geochemical results (G.S.C. Open Files nos. 748 and 749), and the similar 1730 Ma age of the Kitts uranium mineral occurrence in Labrador (Gandhi, S.S , 1978) to that of the uraninite found in the south of the field area in Greenland.  相似文献   

14.
金属活动态提取技术在十红滩铀矿的应用   总被引:4,自引:1,他引:3  
通过十红滩铀矿上方土壤中铀的存在形式研究发现,能指示深部隐伏矿信息的铀酰络阳离子富集在地表覆盖物弱胶结层细粒级粘土中,可占全铀比例的17%~40%。提取土壤中吸附与可交换相的铀可以有效指示矿体,在铀矿体上方,存在明显的铀、钼活动态异常。从而证明金属活动态技术可用于寻找隐伏金属矿床。  相似文献   

15.
Hydrogeochemical processes controlling surface water chemistry were examined in five small (<1.5 km 2) forested catchments that have contrasting bedrock lithologies of granite, and conglomerate, and are distributed in the southeast of Seto district, central Japan. Watersheds developed on these two bedrocks differ in their ability to neutralize atmospheric acid (pH ~4.5) deposition. The study was conducted to (1) characterize the hydrogeochemical processes controlling surface water chemistry, and (2) to elucidate acidification of spring and stream waters using data from three sampling campaigns conducted from August to October 2000. Stream and spring water solutes fall into two general groups according to concentration: alkaline, relatively high pH (5.2–7.7) and high cation concentrations (HCO 3 -, Cl -, base cations), and dilute, low pH (4.2–5.5) waters. Concentrations of trace metals (Al, Ba, Sr) showed a strong negative correlation with pH, suggesting the mobility of these metals in the dissolved load of catchments underlain by Tokai conglomerate. The strontium isotope ratio ( 87Sr/ 86Sr) of rock and soil, plant, precipitation, and surface water samples was used to identify different reservoirs within the ecosystem. Low Si concentrations in stream and spring waters from the conglomerate area, with a relatively high pool of SiO 2, >90 (wt%), suggest slow chemical weathering. The dissolved solute concentrations are generally of similar magnitude in stream waters within the catchments of similar bedrock lithology. The high inverse correlation ( r 2=0.72) between pH and SO 4 concentrations and the high positive correlation ( r 2 =0.90) between Ba and SO 4 concentrations in waters draining Tokai conglomerate suggest that barite (BaSO 4) is being dissolved in an acidic environment. The three catchments were identified as being sensitive to acidic deposition because the bedrock conglomerate provided little capacity to buffer acidic inputs. The soils from the granite area have a high cation-exchange capacity (CEC an average of 868 µmol/kg), and are nearly ten times greater than the soils from the conglomerate area. Because ion exchange, besides weathering, is the main source that counteracts soil acidification, the sensitivity to further acidification may increase.  相似文献   

16.
在很多砂岩型铀矿床中 ,可以发现铀与有机质之间有着密切关系 ,这种关系可以是数理统计意义上的、空间上的或化学的。本文以吐哈盆地十红滩地区砂岩型铀矿为研究对象 ,对有机质在后生砂岩型铀矿成矿中的作用进行了探索。研究区砂岩型铀矿含矿岩系中的有机质属腐殖型 ,其原始母质为陆生高等植物 ,有机质成熟度很低 ,处于热演化作用的褐煤阶段。铀与有机碳的相关性分析和分离实验表明铀成矿富集与有机质关系密切 ,在铀矿石中铀与有机质主要以腐殖酸吸附或腐殖酸盐形式存在。笔者认为 ,在氧化带有机质被氧化破坏 ,形成可溶性的铀腐殖酸络合物淋滤进入地下水 ,在过渡带以腐殖酸盐的形式沉淀下来 ,并造成过渡带矿石中有机碳含量的增高  相似文献   

17.
在鄂尔多斯盆地东北部,延安组第V成因单元存在着多处铀异常,这对铀的后备战略基地建设有重要意义。从沉积学的角度重建了第V成因单元的沉积体系,识别出两种沉积体系,分别是位于研究区西北部的辫状河沉积体系和东南部的曲流河沉积体系。通过对铀异常信息的成功提取及平面编图,发现延安组中铀异常呈一个又一个具有自我中心的单元出现,且与曲流河沉积体系的关系密切:通常发育于河道分岔或转弯处;普遍发育于薄砂带(区),一般砂体厚度在30 m以下,含砂率小于40%;铀异常单元与厚煤层关系密切;主要赋存于粒度较细的岩性中,部分也富集于煤中,但铀异常最高值富集于中砂岩中。  相似文献   

18.
正向构造对层间氧化带砂岩型铀矿成矿和定位的控制   总被引:1,自引:0,他引:1  
古抗衡  陈祖伊 《铀矿地质》2010,26(6):361-364
正向构造指的是与铀矿带或铀矿床产出位置相关的背斜、隆起、上升断块等矿床地质构造。伊犁盆地南缘、吐哈盆地西南缘、酒东盆地东北缘等砂岩型铀矿成矿带的产出特征表明,层间氧化带砂岩型铀矿床、矿段和矿点总是选择性地就位于正向构造之中。其原因在于层间氧化带砂岩型铀矿的成矿机理所决定。即正向构造抬升了容矿层位,使其出露或接近地表,容易接受补给区含氧含铀水的渗入,造成主砂岩层的层间氧化,铀在主砂岩层中迁移,并在氧化还原界面还原成矿。因此,正向构造对氧化带砂岩型铀矿成矿和定位的作用应引起足够重视,它可以作为产铀盆地砂岩型铀矿带成矿远景区段识别和预测的一项重要判据。  相似文献   

19.
Zinc and Cu play important roles in the biogeochemistry of natural systems, and it is likely that these interactions result in mass-dependent fractionations of their stable isotopes. In this study, we examine the relative abundances of dissolved Zn and Cu isotopes in a variety of stream waters draining six historical mining districts located in the United States and Europe. Our goals were to (1) determine whether streams from different geologic settings have unique or similar Zn and Cu isotopic signatures and (2) to determine whether Zn and Cu isotopic signatures change in response to changes in dissolved metal concentrations over well-defined diel (24-h) cycles.Average δ66Zn and δ65Cu values for streams varied from +0.02‰ to +0.46‰ and −0.7‰ to +1.4‰, respectively, demonstrating that Zn and Cu isotopes are heterogeneous among the measured streams. Zinc or Cu isotopic changes were not detected within the resolution of our measurements over diel cycles for most streams. However, diel changes in Zn isotopes were recorded in one stream where the fluctuations of dissolved Zn were the largest. We calculate an apparent separation factor of ∼0.3‰ (66/64Zn) between the dissolved and solid Zn reservoirs in this stream with the solid taking up the lighter Zn isotope. The preference of the lighter isotope in the solid reservoir may reflect metabolic uptake of Zn by microorganisms. Additional field investigations must evaluate the contributions of soils, rocks, minerals, and anthropogenic components to Cu and Zn isotopic fluxes in natural waters. Moreover, rigorous experimental work is necessary to quantify fractionation factors for the biogeochemical reactions that are likely to impact Cu and Zn isotopes in hydrologic systems. This initial investigation of Cu and Zn isotopes in stream waters suggests that these isotopes may be powerful tools for probing biogeochemical processes in surface waters on a variety of temporal and spatial scales.  相似文献   

20.
In the Pine Creek Geosyncline, fast moving, annually recharged, low-salinity ground waters dissolve uranium- and magnesium-enriched gangue minerals from mineralized aquifer rocks. The level of dissolved uranium depends on prevailing pH, Eh, salinity and degree of adsorption, which limits its effectiveness as an exploration indicator. Near each known deposit, leaching of magnesium-enriched gangue minerals produces ground waters with very similar major-element concentration plots, the shape of which constitutes a mineralized aquifer “signature”. Gangue minerals also supply high levels of Mg2+ (expressed as NMg = [Mg2+]/[Ca2+ + Mg2+ + Na+ + K+] in milliequivalents per litre) to contained ground waters, NMg > 0.8 being common in ground waters from mineralized aquifers at each Pine Creek Geosyncline deposit. Data from Ranger One No. 3 ore body illustrates how progressive mixing of waters from mineralized and unmineralized aquifers causes graded reductions in NMg, which, when plotted onto a ground plan, delineate a hydrogeochemical aureole.High NMg (> 0.8) coincides with high uranium concentration (> 20 μg/l of U) in ground waters near Nabarlek and Ranger. Because pH-Eh conditions in aquifers at Jabiluka depress uranium solution, < 10 μg/l of U is present, although NMg values are generally > 0.8. To date NMg has always been < 0.8 in nonmineralized aquifer waters, whereas uranium may be > 50 μg/l in ground waters from felsic igneous aquifers, which can be identified as uneconomic by low (< 0.4) NMg, and by a fixed relationship between uranium and co-leached species such as F- and soluble salts.Measurements of pH, Eh, salinity, Fe(II), Ca, Mg, Na, K, Cl, SO4, total carbonate, phosphate, F-, Cu, Pb, Zn and U in waters from 48 percussion holes in and near the Koongarra ore bodies have been related to mineralogy recorded in drill logs. The composition of waters from 20 holes near and along strike from known mineralization, fitted the mineralized aquifer “signature”, had NMg > 0.8 and uranium up to 4100 μ/l. These data confirm the use in this region of NMg as a hydrogeochemical indicator of uranium mineralization; they also indicate additional zones of possible mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号