首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 119 毫秒
1.
In this study, the behavior of thermal fronts along the fracture is studied in the presence of fracture-skin in a coupled fracture-matrix system. Cold water is injected into the fracture, which advances gradually towards production well, while extracting heat from the surrounding reservoir matrix. The heat conduction into the fracture-skin and the rock-matrix from the high permeability fracture is assumed to be one dimensional perpendicular to the axis of fluid flow along the fracture. Constant temperature cold water is injected through an injection well at the fracture inlet. The fluid flow takes place along the horizontal fracture which ensures connectivity between the injection and production wells. Since the rock-matrix is assumed to be tight, the permeability of fracture-skin as well as the rock-matrix is neglected. The present study focuses on the heat flux transfer at the fracture-skin interface as against the earlier studies on fracture-matrix interface, and the sensitivity of additional heterogeneity in the form of fracture skin in a conventional fracture-matrix coupled system is studied. The behavior of thermal fronts for various thermal conductivity values of the fracture-skin and rock-matrix is analyzed. Spatial moment analysis is performed on the thermal distribution profiles resulting from numerical studies in order to investigate the impact on mobility and dispersion behavior of the fluid in the presence of fracture-skin. The presence of fracture skin affects the heat transfer significantly in the coupled fracture-matrix system. The lower order spatial moments indicate that the effective thermal velocity increases with increase in skin thermal conductivity and a significant thermal dispersion is observed at the inlet of the fracture owing to the high thermal conductivity of the fracture-skin at the early stages. Furthermore the higher spatial moments indicate that the asymmetricity increases with decrease in skin thermal conductivity unlike the case with half fracture aperture and fluid velocity and the kurtosis is maximum with higher skin thermal conductivity which implies enhanced heat extraction from the fracture-skin into the fracture. Results suggest that the amount of heat extraction by the circulating fluid within the fracture from the reservoir not only depends on the rock-matrix module of the reservoir characteristics but also the fracture-skin characteristics of the system and subsequently influence the reservoir efficiency.  相似文献   

2.
Effect of fracture-skin on virus transport in fractured porous media   总被引:1,自引:0,他引:1  
A numerical model is developed for describing the transport of virus in a fracture-matrix coupled system with fracture-skin.An advective dispersive virus transport equation,including firstorder sorption and inactivation constant is used for simulating the movement of viruses.Implicit finite-difference numerical technique is used to solve the coupled non-linear governing equations for the triple continuum model consisting of fracture,fracture-skin and the rock-matrix.A varying grid is adopted at the fracture and fracture-skin interface to capture the mass transfer.Sensitivity analysis was performed to investigate the effect of various properties of the fracture-skin as well as viruses on the virus concentration in the fractured formation with fracture-skin.Simulation results suggest that the virus concentration in the fracture decreases with increment in the fracture-skin porosity,fracture-skin diffusion coefficient,mass transfer coefficient,inactivation constant and sorption distribution coefficient, and with reduction in the fracture aperture.  相似文献   

3.
A numerical model is developed for investigating the evolution of fracture permeability in a coupled fracture-matrix system in the presence of fracture-skin with simultaneous colloidal and bacterial tr...  相似文献   

4.
5.
We explore the tectono‐magmatic processes in the western West Philippine Basin, Philippine Sea Plate, using bathymetric data acquired in 2003 and 2004. The northwestern part of the basin formed through a series of northwestward propagating rifts. We identify at least five sequences of propagating rifts, probably triggered by mantle flow away from the mantle thermal anomaly that is responsible for the origin of the Benham and Urdenata plateaus. Gravitational forces caused by along‐axis topographic gradient and a ~30° ridge reorientation appear to also be driving the rift propagations. The along‐axis mantle flow appears to be reduced and deflected along the Luzon‐Okinawa fracture zone, because the spreading system remained stable west of this major fault zone. North‐east of the Benham plateau, a left‐lateral fracture zone has turned into a NE–SW‐trending spreading axis. As a result, a microplate developed at the triple junction.  相似文献   

6.
Analysis of contaminant transport through fractured crystalline rocks has received considerable attention, particularly with regard to subsurface nuclear waste repositories. Most of the studies have employed the dual continuum approach, with the fractures and the rock matrix as the two continuums, assuming that fractures control the overall conductivity of the rock and the porous matrix just provides storage. However, field observations of rock fractures have shown that the real situation can be very complex. Based on some recent investigations, it has been reported that the portion of the rock matrix adjacent to many open fractures is physically and chemically altered. These alterations, referred to as the fracture skin, can have different sorption and diffusion properties compared to those of the undisturbed rock matrix and this may influence the transport of solutes through such formations. In the present study, a numerical model is developed to simulate conservative solute transport in a fractured crystalline rock formation using the triple continuum approach ?? with the fracture, fracture skin and the rock matrix as the three continuums. The model is solved using a fully implicit finite difference scheme. Contaminant migration in the fractured formation with and without skin has been simulated. It is observed that contaminant penetration along the fracture is enhanced at large flow velocities. The effect of flow velocity on conservative solute transport is investigated for different fracture apertures and fracture skin thicknesses. The influence of flow velocity on contaminant transport is demonstrated to be more with change in fracture aperture than with change in skin thickness.  相似文献   

7.
The accretion of oceanic crust under conditions of oblique spreading is considered. It is shown that deviation of the normal to the strike of mid-ocean ridge from the extension direction results in the formation of echeloned basins and ranges in the rift valley, which are separated by normal and strike-slip faults oriented at an angle to the axis of the mid-ocean ridge. The orientation of spreading ranges is determined by initial breakup and divergence of plates, whereas the within-rift structural elements are local and shallow-seated; they are formed only in the tectonically mobile rift zone. As a rule, the mid-ocean ridges with oblique spreading are not displaced along transform fracture zones, and stresses are relaxed in accommodation zones without rupture of continuity of within-rift structural elements. The structural elements related to oblique spreading can be formed in both rift and megafault zones. At the initial breakup and divergence of continental or oceanic plates with increased crust thickness, the appearance of an extension component along with shear in megafault zones gives rise to the formation of embryonic accretionary structural elements. As opening and extension increase, oblique spreading zones are formed. Various destructive and accretionary structural elements (nearly parallel extension troughs; basin and range systems oriented obliquely relative to the strike of the fault zone and the extension axis; rhomb-shaped extension basins, etc.) can coexist in different segments of the fault zone and replace one another over time. The Andrew Bain Megafault Zone in the South Atlantic started to develop as a strike-slip fault zone that separated the African and Antarctic plates. Under extension in the oceanic domain, this zone was transformed into a system of strike-slip faults divided by accretionary structures. It is suggested that the De Geer Megafault Zone in the North Atlantic, which separated Greenland and Eurasia at the initial stage of extension that followed strike-slip offset, evolved in the same way.  相似文献   

8.
There have been a couple of contaminant retardation factors reported for the three-phase (aqueous, solid, and colloid) groundwater system. However, the retardation factor has often been presented by itself and not incorporated into the relevant transport equation, particularly when derived from the mass fraction approach. This may cause a misunderstanding of the retardation factor especially for the systems where multi-phases exist due to the presence of colloids and/or nonlinear sorption processes are involved. It is, therefore, necessary to clarify the form of the nonlinear retardation factor along with the relevant transport equation in the multi-phase system. Alternative forms of the retardation factor and relevant transport equation for specific conditions are presented in various combinations of the nonlinearity of involved sorption mechanisms. The retardation factors for specific conditions are compared with the ones available in the literature. The results indicate that more caution should be given in applying the retardation factor in order to explore contaminant transport in the multi-phase system where any nonlinear sorption is involved. Finally, presentation of the retardation factor along with the relevant transport equation in this study would help prevent possible misuse of the retardation factor in investigating contaminant transport in the multi-phase system.  相似文献   

9.
不流动水与非平衡吸附作用对溶质在孔隙介质中的运移有很大影响,“两点-两区”模型是目前研究不流动水与非平衡吸附作用的较为完善和实用的模型。在溶质运移的“两点-两区”模型的基础上,同时考虑了土壤对溶质的平衡和非平衡吸附作用,开发了MIENESOR数值模型,并给出了基于有限差和有限元法联合的数值解,编制了相应的计算机程序。对MIENESOR数值模型的案例验算表明:该模型能很好地揭示溶质在包气带和含水层中运移的规律,所开发的计算机程序稳定性较强,可用于实际。  相似文献   

10.
Interaction of various physical, chemical and biological transport processes plays an important role in deciding the fate and migration of contaminants in groundwater systems. In this study, a numerical investigation on the interaction of various transport processes of BTEX in a saturated groundwater system is carried out. In addition, the multi-component dissolution from a residual BTEX source under unsteady flow conditions is incorporated in the modeling framework. The model considers Benzene, Toluene, Ethyl Benzene and Xylene dissolving from the residual BTEX source zone to undergo sorption and aerobic biodegradation within the groundwater aquifer. Spatial concentration profiles of dissolved BTEX components under the interaction of various sorption and biodegradation conditions have been studied. Subsequently, a spatial moment analysis is carried out to analyze the effect of interaction of various transport processes on the total dissolved mass and the mobility of dissolved BTEX components. Results from the present numerical study suggest that the interaction of dissolution, sorption and biodegradation significantly influence the spatial distribution of dissolved BTEX components within the saturated groundwater system. Mobility of dissolved BTEX components is also found to be affected by the interaction of these transport processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号