首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 79 毫秒
1.
The Slyudyanka crystalline complex is located within the composite Khamar-Daban metamorphic terrane, the part of the Central Asian fold belt. Geochemical composition of the basic crystalline schists of the Slyudyanka Group (subterrane) metamorphosed under the high-temperature subfacies of the granulite facies suggests that their protoliths were tholeiitic basalts. Their geochemical signatures are intermediate between mid-ocean ridges and island arc basalts, best approximating back-arc basin basalts. The types of the metamorphic rocks of the Slyudyanka Group and their combination in sequences also most correspond to accumulation in back-arc basins. It was concluded that the high-grade metavolcanic rocks retain main geochemical signatures of protoliths, which allows the reconstruction of their paleogeodynamic settings, including back-arc basins.  相似文献   

2.
The metamorphic Raspas Complex of southwest Ecuador consists of high-pressure mafic, ultramafic, and sedimentary rocks. The Lu–Hf ages of a blueschist, a metapelite, and an eclogite overlap at around 130 Ma and date high-pressure garnet growth. Peak metamorphic conditions in the eclogites reached 1.8 GPa at 600°C, corresponding to a maximum burial depth of ~60 km. The geochemical signatures of the eclogites suggest that their protoliths were typical mid-ocean ridge basalts (MORB), whereas the blueschists exhibit seamount-like characteristics, and the eclogite-facies peridotites seem to represent depleted, MORB-source mantle. That these rocks were subjected to similar peak PT conditions contemporaneously suggests that they were subducted together as an essentially complete section within the slab. We suggest that this section became dismembered from the slab during burial at great depth—perhaps as a consequence of scraping off the seamounts. The spatially close association of MORB-type eclogite, seamount-type blueschist, serpentinized peridotite, and metasediments points to an exhumed high-pressure ophiolite sequence.  相似文献   

3.
Detailed geological mapping, structural, petrological and chronological investigation allow us to place new constraints on the tectono‐thermal evolution of the North Qilian high pressure/low temperature (HP/LT) metamorphic belt. The North Qilian HP/LT metamorphic belt manly consists of eclogite, blueschist, metasedimentary rocks and serpentinite. Most of eclogites and mafic blueschists occur as lenses within metasedimentary rocks, and minor eclogites within serpentinite. Petrological and geochemistical data indicate that the protoliths of eclogite and mafic blueschist includes E‐, N‐MORB, OIB and arc basalt. Geochronology and Lu‐Hf isotope of detrital zircons from metasedimentary rocks indicate the detritus materials are derived from Qilian block and likely deposit in continental margin or fore‐arc basin. Zircon U‐Pb datings show that the protolith ages of eclogites vary between 500 Ma and 530 Ma, and the metamorphic age of eclogite between 460 and 489 Ma. The detrital zircon ages of metasedimentary rocks distribute between 532 and 2700 Ma. The structural data show that the deformation related to the subduction during prograde is recorded in eclogite blocks. In contrast, the dominant deformation structures are characterized by tight fold, sheath fold and penetrative foliation and lineation, which are recorded in various rocks, reflecting a top‐to‐the‐south shear sense and representing the deformation related to the exhumation. The petrological data suggest that the different rocks in the North Qilian HP/LT metamorphic belt equilibrated at different peak metamorphic conditions and recorded different P‐T path. Synthesizing the structural, petrological, geochemical and geochronological data suggest a subduction channel model related to oceanic subduction during Paleozoic in the North Qilian Mountains. The different HP/LT metamorphic rocks formed in different settings with various protolith ages were carried by the subducted oceanic crust into different depth in subduction channel, and experienced independent tectono‐thermal evolution inside subduction channel. The North Qilian HP/LT mélange reflects a fossil oceanic subduction channel.  相似文献   

4.
本文以三江南段景洪大勐龙地区新发现的退变榴辉岩和蓝片岩为研究对象,对其进行了系统的地球化学、原岩性质及锆石U-Pb定年的综合研究。大勐龙地区退变榴辉岩呈透镜状产于白云钠长石英片岩、白云母片岩和斜长角闪(片)岩中,其原岩为亚碱性拉斑玄武岩,球粒陨石标准化稀土元素配分曲线呈轻稀土弱亏损、重稀土平坦型的分布特征,不具有Nb、Ta、Ti的亏损,与典型的N-MORB(正常型洋中脊玄武岩)地球化学特征一致,表明其原岩可能来源于亏损的地幔区,形成于洋中脊环境;变质锆石SHRIMP U-Pb年龄为230.3±1.7Ma,可能代表榴辉岩峰期的变质时代。蓝片岩的原岩为亚碱性拉斑玄武岩,具有较高Ti玄武岩的特征(TiO2含量2.55%~2.88%,均大于2%),稀土元素总量变化范围小,比典型的N-MORB稀土总量偏高,轻稀土元素(LREE)亏损,无明显负Eu异常,地球化学性质与N-MORB类似。结合以往区域研究成果,进一步确定研究区退变榴辉岩和蓝片岩的原岩属于典型N-MORB型,该项研究不仅在昌宁-孟连缝合带的南段发现典型的特提斯洋壳残片,而且为进一步深入探讨滇西地区特提斯洋消减-闭合的动力学背景及其复杂的构造演化过程提供了重要的科学依据。  相似文献   

5.
The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud  相似文献   

6.
"罗田穹隆"中的下地壳俯冲成因榴辉岩及其地质意义   总被引:12,自引:0,他引:12  
在“罗田穹隆”中发现了下地壳俯冲成因榴辉岩.榴辉岩呈透镜状或板状产于含石榴子石条带状片麻岩中.新鲜的榴辉岩主要由石榴子石、绿辉石、金红石等组成.含少量退变质的角闪石、斜长石、紫苏辉石、透辉石、(钛)磁铁矿和石英等.研究区榴辉岩以保留早期麻粒岩相变质矿物残留体以及经受晚期麻粒岩相和角闪岩相退变为特征.指示它们由扬子镁铁质下地壳麻粒岩相岩石俯冲到深部发生变质并形成榴辉岩.然后折返至下地壳发生麻粒岩相退变,由于麻粒岩相退变质阶段仅以后成合晶形式出现.因而它们可能在下地壳停留时间不长.就又进一步被构造抬升至中上地壳而发生角闪岩相退变.大别山造山带乃至扬子板块北缘现今缺乏厚层镁铁质下地壳.它们也很少出露地表.推测这些俯冲的镁铁质下地壳可能已拆离再循环进人地幔.从而为“罗田穹隆”的形成和演化以及大别山高压-超高压岩石的形成与折返机制等研究提供了关键性的岩石学证据。  相似文献   

7.
The Changning–Menglian orogenic belt (CMOB) in the southeastern Tibetan Plateau, is considered as the main suture zone marking the closure of the Palaeo‐Tethys Ocean between the Indochina and Sibumasu blocks. Here, we investigate the recently discovered retrograded eclogites from this suture zone in terms of their petrological, geochemical and geochronological features, with the aim of constraining the metamorphic evolution and protolith signature. Two types of metabasites are identified: retrograded eclogites and mafic schists. The igneous precursors of the retrograded eclogites exhibit rare earth element distribution patterns and trace element abundance similar to those of ocean island basalts, and are inferred to have been derived from a basaltic seamount in an intra‐oceanic tectonic setting. In contrast, the mafic schists show geochemical affinity to arc‐related volcanics with the enrichment of Rb, Th and U, and depletion of Nb, Ta, Zr, Hf and Ti, and their protoliths possibly formed at an active continental margin tectonic setting. Retrograded eclogites are characterized by peak metamorphic mineral assemblages of garnet, omphacite, white mica, lawsonite and rutile, and underwent five‐stage metamorphic evolution, including pre‐peak prograde stage (M1) at 18–19 kbar and 400–420°C, peak lawsonite‐eclogite facies (M2) at 24–26 kbar and 520–530°C, post‐peak epidote–eclogite facies decompression stage (M3) at 13–18 kbar and 530–560°C, subsequent amphibolite facies retrogressive stage (M4) at 8–10 kbar and 530–600°C, and late greenschist facies cooling stage (M5) at 5–8 kbar and 480–490°C. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb spot analyses of zircon show two distinct age groups. The magmatic zircon from both the retrograded eclogite and mafic schist yielded protolith ages of 451 ± 3 Ma, which is consistent with the ages of Early Palaeozoic ophiolitic complexes and ocean island sequences in the CMOB reported in previous studies. In contrast, metamorphic zircon from the retrograded eclogite samples yielded consistent Triassic metamorphic ages of 246 ± 2 and 245 ± 2 Ma, which can be interpreted as the timing of closure of the Palaeo‐Tethys Ocean. The compatible peak metamorphic mineral assemblages, P–T–t paths and metamorphic ages, as well as the similar protolith signatures for the eclogites in the CMOB and Longmu Co–Shuanghu suture (LCSS) suggest that the two belts formed part of a cold oceanic subduction system in the Triassic. The main suture zone of the Palaeo‐Tethyan domain extends at least 1,500 km in length from the CMOB to the LCSS in the Tibetan Plateau. The identification of lawsonite‐bearing retrograded eclogites in the CMOB provides important insights into the tectonic framework and complex geological evolution of the Palaeo‐Tethys.  相似文献   

8.
中国西部祁连山柴北缘地区和南阿尔金地区存在一条被阿尔金断裂错开 4 0 0km ,但构造上相连的早古生代超高压变质带。通过对柴北缘地区大柴旦、锡铁山、都兰和南阿尔金地区且末一带榴辉岩的岩石地球化学研究 ,发现榴辉岩原岩主要由玄武岩和苦橄岩两类岩石组成 ,进一步分为高Ti型 (w(TiO2 ) =2 %~ 5 % ) ,中Ti型 (1%~ 2 % )和低Ti型 (<1% ) 3种类型 ,识别出榴辉岩的原岩类型有洋脊玄武岩、岛弧拉斑玄武岩和洋岛玄武岩类等产在不同环境的岩石类型。榴辉岩的Nd同位素组成与现代洋脊玄武岩类相似 ,ε(Nd ,0 )主要为正值 ,少量为轻微负值 ,表明榴辉岩的原岩曾是海底玄武岩 ,并且经过了消减俯冲作用 ,混入了部分的地壳物质。榴辉岩的超高压变质年龄为 5 0 0~ 4 4 0Ma,原岩年龄分别为 80 0~ 75 0Ma和~ 10 0 0Ma。研究表明 ,柴北缘滩涧山群中存在两套时代不同的基性超基性岩 ,一套为产在绿梁山的新元古代时期形成的蛇绿岩组合 ,新获得的年龄值为 (76 8±39)Ma(Rb Sr)和 (780± 2 2 )Ma(Sm Nd) ,另一套主要为产在赛什腾山的晚寒武世岛弧火山岩 ,形成时代约在 5 15~ 4 86Ma。榴辉岩的岩石化学成分和Nd同位素组成 ,以及 80 0~ 75 0Ma的原岩时代与其中的新元古代基性岩类可以对比。初步认为它们是同一套岩石?  相似文献   

9.
刘利双  刘福来  王伟 《岩石学报》2017,33(9):2899-2924
苏鲁超高压变质带是扬子板块与华北板块在三叠纪俯冲-碰撞的产物。变基性岩是苏鲁超高压变质带内出露最广泛的岩石类型之一,研究其岩石学、年代学、地球化学属性及成因机制,对于揭示扬子板块与华北板块之间的俯冲-碰撞-折返的动力学过程具有重要的科学意义。以(退变)榴辉岩为代表的超高压变质岩石广泛出露在威海-荣成一带,少量出露在乳山地区。锆石LA-ICP-MS U-Pb定年结果显示,(退变)榴辉岩的原岩时代为792~760Ma,峰期榴辉岩相变质时代为243~226Ma,后期角闪岩相退变质时代为221~207Ma。非榴辉岩相变质的基性岩(麻粒岩和斜长角闪岩)主要出露在乳山地区,其原岩形成时代应不晚于古元古代(1939Ma),峰期麻粒岩相变质时代为1895~1870Ma,后期角闪岩相退变质时代为1848~1806Ma,与胶北地体变基性岩的原岩时代和变质时代十分相似。全岩地球化学研究结果表明,(退变)榴辉岩的原岩显示高Fe拉斑玄武岩的特点,根据其稀土和微量元素特征,可将(退变)榴辉岩进一步划分为A、B和C三组。在球粒陨石标准化稀土配分模式和原始地幔均一化蛛网图解上,A、B和C三组样品分别具有轻稀土弱亏损、轻稀土弱富集和轻稀土富集的特点。轻稀土富集或弱富集型(退变)榴辉岩的原岩地球化学性质与岛弧或大陆玄武岩相似,它们的源区可能与深部富集地幔或受流体交代的地幔楔存在密切的成因关系;而轻稀土亏损型(退变)榴辉岩的原岩可能来自于亏损地幔的部分熔融。由此可见,(退变)榴辉岩的原岩具有成因多样性的特点。乳山地区的基性麻粒岩和斜长角闪岩的原岩也具有高Fe拉斑玄武岩的地球化学属性,Al2O3与Mg O呈正相关变化,TiO_2、P_2O_5与MgO表现出一定程度的负相关性。绝大多数非榴辉岩相变质基性岩的球粒陨石标准化稀土配分模式和原始地幔均一化蛛网配分曲线具有微右倾或明显右倾的特点。上述特征表明,研究区绝大多数非榴辉岩相变质的基性岩原岩来自于富集地幔,少数来自于原始地幔或亏损地幔,并经历了斜长石和辉石的分离结晶以及不同程度的部分熔融过程。由此可见,乳山地区出露的非超高压变质基性岩的原岩具有与胶北地体(高压)基性麻粒岩相近的成因特点。岩石学、同位素年代学和地球化学特征的综合对比研究结果表明,在苏鲁超高压变质带东北端的威海-荣成-乳山地区,既存在与华北板块古老变质基底相关的变基性岩,也存在与华南板块北缘新元古代变质基底相关的超高压榴辉岩,表明三叠纪时期华北板块东南缘胶北地体的部分古老变质基底曾卷入到扬子板块与华北板块之间的俯冲-碰撞造山过程,随后与超高压岩石一起抬升折返,形成当今的构造混杂岩带。  相似文献   

10.
Rock complexes composing the Daribi Range were produced in Late Vendian, Early Cambrian, and Early Paleozoic suprasubduction systems. All of the studied mafic and ultramafic magmatic mantle rocks (the post-Vendian ophiolite complex, Early Cambrian pillow basalts, and Early Paleozoic picrobasalts of the sill-dike complex) have geochemical characteristics typical of early evolutionary episodes of island arcs: low LILE concentrations, horizontal REE patterns or patterns close to those of N-MORB, and HFSE minima. The magmas were derived from depleted mantle sources of variable isotopic composition with ?Nd(T) from +2.5 to +10. The Early Paleozoic rocks of the sill-dike complex were likely produced by a complicated interaction of melts derived from different sources. The rocks of group 1 resulted from the mixing of low-K picrite and tonalite melts. The picrite melts with ?Nd(T) from +6 to +8 were melted out of garnet lherzolite in the mantle wedge. The tonalite melts with ?Nd(T) = ?3 seem to have been formed by the partial melting of mafic oceanic rocks of a subducted slab or the bottom of an island arc. The trondhjemite melts of group 2 with ?Nd(T) varying from 2.5 to 7.5 could be formed via the melting of subducted metapelites or amphibolites with low sulfide concentrations. Massifs of sodic Early Paleozoic granites also occur elsewhere in western Mongolia, Tuva, and the Altai territory. The generation of sodic silicic melts was likely a common process in supra-subduction systems in CAFB. The potassic granites (group 4) could be formed by the melting of subducted pelites or by the fractionation of mantle magmas. The genesis of the basaltic andesites (group 5) was likely related to Mesozoic-Cenozoic intraplate processes.  相似文献   

11.
Nature and origin of eclogite xenoliths from kimberlites   总被引:16,自引:0,他引:16  
D.E. Jacob   《Lithos》2004,77(1-4):295-316
Eclogites from the Earth's mantle found in kimberlites provide important information on craton formation and ancient geodynamic processes because such eclogites are mostly Archean in age. They have equilibrated over a range of temperatures and pressures throughout the subcratonic mantle and some are diamond-bearing. Most mantle eclogites are bimineralic (omphacite and garnet) rarely with accessory rutiles. Contrary to their overall mineralogical simplicity, their broadly basaltic-picritic bulk compositions cover a large range and overlap with (but are not identical to) much younger lower grade eclogites from orogenic massifs. The majority of mantle eclogites have trace element geochemical features that require an origin from plagioclase-bearing protoliths and oxygen isotopic characteristics consistent with seawater alteration of oceanic crust. Therefore, most suites of eclogite xenoliths from kimberlites can be satisfactorily explained as samples of subducted oceanic crust. In contrast, eclogite xenoliths from Kuruman, South Africa and Koidu, Sierra Leone stem from protoliths that were picritic cumulates from intermediate pressures (1–2 Ga) and were subsequently transposed to higher pressures within the subcratonic mantle, consistent with craton growth via island arc collisions. None of the eclogite suites can be satisfactorily explained by an origin as high pressure cumulates from primary melts from garnet peridotite.  相似文献   

12.
大青山-乌拉山变质杂岩立甲子基性麻粒岩主要由角闪二辉麻粒岩、含榴角闪二辉麻粒岩和黑云角闪二辉麻粒岩所组成,并以变形岩墙和不规则透镜体形式赋存于富铝片麻岩和花岗质片麻岩之中.立甲子基性麻粒岩中变质锆石含有单斜辉石(Cpx)+角闪石(Amp)+斜长石(Pl)+磷灰石(Ap)的包体矿物,与寄主岩石——基性麻粒岩矿物组合及其化学成分十分一致,相应的207 pb/206 Pb表面年龄变化于1933±39Ma ~ 1834±40Ma,加权平均年龄为1892±7Ma(MSWD =0.50,n=46),应代表立甲子基性麻粒岩原岩经历中低压麻粒岩相的变质时代.在变质过程中,以大离子亲石元素(K、Na、Sr、Rb)为代表的活动元素发生了显著的改变;而高场强元素(Nb、Zr、Ti)和稀土元素基本无变化,保持稳定.立甲子基性麻粒岩原岩属于拉斑玄武质岩石系列,其SiO2集中变化于45.58% ~51.40%,Mg#值集中介于41 ~54之间;在球粒陨石标准化稀土配分图中,立甲子基性麻粒岩具有平坦型的稀土配分曲线特征((La/Yb)cN=1.30~1.51),Eu异常不明显(Eu/Eu*=0.93~1.04).与显生宙岛孤拉斑玄武岩类似,立甲子基性麻粒岩所有样品皆具有Nb、Zr、Ti负异常特征.综合分析认为,立甲子基性麻粒岩原岩形成于2450~1930Ma,并于~1900Ma经历中低压麻粒岩相变质作用的改造,其主量元素和微量元素组成具有岛弧拉斑玄武质岩石的地球化学特征,其原岩可能是板块汇聚动力学背景下,岛弧构造环境中形成的辉长岩或辉绿岩.  相似文献   

13.
《China Geology》2023,6(2):285-302
As one of the important Paleo-Tethys suture zones in eastern Tibet, the Jinshajiang orogenic belt is of great significance to study the tectonic evolution of the main suture zone of Paleo-Tethys. In this paper, eclogites developed in the Jinshajiang suture zone in Gonjo area, eastern Tibet, are selected as specific research objects, and petrological, geochemical and Ar-Ar geochronological analyses are carried out. The major element data of the whole rock reveals that the eclogite samples have the characteristics of picritic basalt-basalt and belong to the oceanic low potassium tholeiites. The results of rare earth elements and trace elements of the samples show that the protoliths of eclogites have characteristics similar to oceanic island basalt (OIB) or normal mid ocean ridge basalt (N-MORB). Muscovite (phengite) from two eclogite samples yield the Ar-Ar plateau ages of 247±2 Ma and 248±2 Ma respectively, representing the peak metamorphic age of eclogite facies and the timing of complete closure of the Jinshajiang Paleo-Tethys Ocean. Muscovite and biotite selected from the hosting rocks of eclogite yield the Ar-Ar plateau ages are 238±2 Ma and 225±2 Ma respectively, reflecting the exhumation age of eclogites and their hosting rocks. Combined with the zircon U-Pb dating data (244 Ma) of eclogites obtained in previous work, it can be concluded that the Jinshajiang Paleo-Tethys ocean was completely closed and arc-continent collision was initiated at about 248–244 Ma (T21). Subsequently, due to the large-scale arc (continent)-collision orogeney between Deqin-Weixi continental margin arc and Zhongza block (T31–T32), the eclogites were rapidly uplifted to the shallow crust.©2023 China Geology Editorial Office.  相似文献   

14.
Plagioclase-bearing garnet-omphacite (Grt-Omp) eclogites and garnet-augite eclogite-like (Grt-Aug) schists from the amphibolite and gneiss beds of the Belomorian Mobile Belt have been studied. They are spread over a large area. In most of the studied objects, these rocks have preserved primary concordant relations with the host amphibolite and gneiss strata; they are not disturbed by late tectonic processes and are not genetically related to tectonic-melange zones. Their protoliths were amphibolite lenses in gneisses or large mafic zones composed of amphibolites. The Grt-Omp eclogites formed in the low-pressure field of the eclogite facies (P = 12.5-13.0 kbar, T = 600-630 °C), and the eclogite-like Grt-Aug rocks, at the boundary between the amphibolite and eclogite facies (P = 9.6-11.1 kbar, T = 630-700 °C), under the intense impact of metamorphic fluid on the amphibolites. The compositional evolution of the rock-forming minerals during the formation of Grt-Omp eclogites and eclogite-like Grt-Aug rocks followed the same scheme. The petrographic diversity of apoamphibolite rocks (Grt-Omp eclogites and Grt-Aug schists) might be due to the difference both in the bulk composition of the metabasic protolith and in the ratios of CaO and Na2O activities in the metamorphic fluid. The relatively low content of CaO leads to the formation of Grt-Omp paragenesis in eclogites. Higher CaO contents give rise to eclogite-like Grt-Aug rocks containing jadeite-poor clinopyroxene.  相似文献   

15.
Recently, a huge ultrahigh‐pressure (UHP) metamorphic belt of oceanic‐type has been recognized in southwestern (SW) Tianshan, China. Petrological studies show that the UHP metamorphic rocks of SW Tianshan orogenic belt include mafic eclogites and blueschists, felsic garnet phengite schists, marbles and serpentinites. The well‐preserved coesite inclusions were commonly found in eclogites, garnet phengite schists and marbles. Ti‐clinohumite and Ti‐chondrodite have been identified in UHP metamorphic serpentinites. Based on the PT pseudosection calculation and combined U‐Pb zircon dating, the P‐T‐t path has been outlined as four stages: cold subduction to UHP conditions before ~320 Ma whose peak ultrahigh pressure is about 30 kbar at 500oC, heating decompression from the Pmax to the Tmax stage before 305 Ma whose peak temperature is about 600oC at 22kbar, then the early cold exhumation from amphibolite eclogite facies to epidote‐amphibolite facies metamorphism characterized by ITD PT path before 220 Ma and the last tectonic exhumation from epidote amphibolite facies to greenschist facies metamorphism. Combining with the syn‐subduction arc‐like 333‐326 Ma granitic rocks and 280‐260 Ma S‐type granites in the coeval low‐pressure and high‐temperature (LP‐HT) metamorphic belt, the tectonic evolution of Tianshan UHP metamorphic belt during late Cambrian to early Triassic has been proposed.  相似文献   

16.
The metamorphic rocks of the Khavyven Highland in eastern Kamchatka were determined to comprise two complexes of metavolcanic rocks that have different ages and are associated with subordinate amounts of metasediments. The complex composing the lower part of the visible vertical section of the highland is dominated by leucocratic amphibole-mica (±garnet) and epidote-mica (±garnet) crystalline schists, whose protoliths were andesites and dacites and their high-K varieties of the island-arc calc-alkaline series. The other complex, composing the upper part of the vertical section, consists of spilitized basaltoids transformed into epidote-amphibole and phengite-epidote-amphibole green schists, which form (together with quartzites, serpentinized peridotites, serpentinites, and gabbroids) a sea-margin ophiolitic association. The high LILE concentrations, high K/La, Ba/Th, Th/Ta, and La/Nb ratios, deep Ta-Nb minima, and low (La/Yb)N and high 87Sr/86Sr ratios of the crystalline schists of the lower unit are demonstrated to testify to their subduction nature and suggest that their protolithic volcanics were produced in the suprasubduction environment of the Ozernoi-Valaginskii (Achaivayam-Valaginskii) island volcanic arc of Campanian-Paleogene age. The green schists of the upper unit show features of depleted MOR tholeiitic melts and subduction melts, which cause the deep Ta-Nb minima, and low K/La and 87Sr/86Sr ratios suggesting that the green schists were formed in a marginal basin in front of the Ozernoi-Valaginskaya island arc. Recently obtained K-Ar ages in the Khavyven Highland vary from 32.4 to 39.3 Ma and indicate that the metamorphism of the protolithic rocks occurred in the Eocene under the effect of collision and accretion processes of the arc complexes of the Ozernoi-Valaginskii and Kronotskii island arcs with the Asian continent and the closure of forearc oceanic basins in front of them. The modern position of the collision suture that marks the fossil subduction zone of the Ozernoi-Valaginskii arc and is spatially restricted to the buried Khavyven uplift in the Central Kamchatka Depression, which is characterized by well-pronounced linear gravity anomalies.  相似文献   

17.
南苏鲁造山带的超高压变质岩及岩石化学研究   总被引:10,自引:0,他引:10  
在南苏鲁造山带核部,古老的表壳岩和花岗质侵人岩经历了三叠纪的超高压变质作用,在超高压变质岩石抬升过程中经历了强烈的角闪岩相退变质作用改造。据岩相学和岩石化学研究,可以区分出六大类典型超高压变质岩:榴辉岩、石榴石橄榄岩、石英硬玉岩、石榴石多硅白云母片岩、硬玉石英岩和石榴石绿辉石文石岩。这些岩石的角闪岩相退变质产物分别是斜长角闪岩、蛇纹岩、长英质片麻岩、长石石英云母片岩、石英岩和大理岩。地球化学研究揭示,榴辉岩的原岩很可能是形成在大陆内部构造环境的拉斑玄武岩,而石榴石橄榄岩可能是起源于亏损的残余地幔。石英硬玉岩原岩包括正变质的花岗岩和奥长花岗岩、副变质的酸性火山碎屑岩和长石石英砂岩。大面积分布的古老花岗岩很可能是形成在大陆或大陆边缘环境。长石石英云母片岩、石英岩和大理岩的原岩为沉积岩,与副变质的长英质片麻岩和基性火山岩—起构成了古老的表壳岩组合。双峰式的酸性和基性火山岩组合的存在也证明部分表壳岩是形成在大陆环境。因此,可以推测南苏鲁造山带核部的超高压变质岩原岩为形成在大陆板内环境的沉积岩—酸性和基性火山岩—花岗岩和奥长花岗岩建造。  相似文献   

18.
琼西抱板群变质沉积岩地球化学研究   总被引:15,自引:1,他引:15  
琼西中元古代抱板群变质沉积岩可分为白云母石英片岩组和石英二云母片岩组,其原岩为砂岩质泥质沉积岩夹火山物质。白云母石英片岩组和石英二云母片岩组在地球化学成分上的差异是原始沉积化学分异作用的结果。对主元素、微量元素(含稀土元素)及Sm-Nd同位素的综合研究表明,海南岛存在古元古代或更早的古老基底,抱板群变质沉积岩一部分来源于成熟度较低的古老地壳物质,另一部分来源于含地幔火山物质较多的初生地壳,或与研究区大规模造山运动、构造-岩浆活动所伴生的地幔物质加入有关。初步研究显示,琼西抱板群变质沉积岩可能是造山带岛弧和活动大陆边缘区(扩张弧后或弧间盆地)大地构造环境下的沉积产物。  相似文献   

19.
The late Paleozoic Wudaogou Group, one of the oldest metamorphic units in the eastern Yanbian area, has important tectonic and metallogenic significance. Here, we provide new insights into their protoliths, tectonic setting of the metamorphic rocks and their relationships with the gold and tungsten mineralization, using new petrographic and whole‐rock geochemical data for various lithologies within the Wudaogou Group. The protolith of the metamorphic rocks of the Wudaogou Group was intermediate–basic volcanic rocks (e.g. basaltic andesite, trachyandesite, and basalt) and sedimentary rocks including argillaceous rocks, quartz sandstone, arkose and clayish greywacke, as well as pyroclastic sedimentary rock, covering tuffaceous sandstone. Before undergoing late Paleozoic epidote–amphibolite facies regional metamorphism, these protoliths were formed during the middle–late Permian in an island arc setting within a continental margin collage zone. Combined with the regional tectonic evolution, it can be speculated that the formation and the subsequent metamorphism of the protoliths of the metamorphic rocks from the Wudaogou Group were influenced by the change from subduction to collision of the Paleo‐Asian Ocean. Similarities of the rare earth element (REE) patterns and parameters among the metamorphic rocks within the Wudaogou Group, auriferous ores from the Xiaoxi'nancha gold (copper) deposit, and scheelites from the Yangjingou tungsten deposit, together with the favorable metallogenic element contents within the metamorphic rock series, imply that the Wudaogou Group could provide parts of metallic material for the gold and tungsten mineralization in the eastern Yanbian area, as exemplified by the Yangjingou deposit and Xiaoxi'nancha deposit, respectively. Further, the metamorphic sedimentary rocks, especially the metamorphic sandstones, quartz schists and quartz mica schists within the Wudaogou Group, have closer genetic relationships with the Yangjingou tungsten mineralization. However, the specific lithologies within this group which control the gold mineralization are still uncertain, and need further research.  相似文献   

20.
Field observations, petrology, zircon geochronology, whole-rock geochemistry, and Sr-Nd isotopes were used to reveal the lithology, age, and tectonic setting of the protoliths of the Sangsang mafic schists in the Yarlung Zangbo Suture Zone (YZSZ), central southern Tibet. The mafic schists occur as exotic blocks within the accretionary complex of the YZSZ. Relic amygdaloidal features indicate the schist protoliths were volcanic rocks. The mineral assemblage mainly comprises riebeckite + magnesioriebeckite + chlorite + sericite + albite + relic clinopyroxene. The youngest group of zircon ages constrains the formation time of the protoliths to 149.2 ± 2.2 Ma (i.e., latest Jurassic). Abundant Paleozoic and older zircons suggest the protolith volcanic rocks were erupted onto a continental terrane. Whole-rock geochemical and Sr-Nd isotopic data indicate the protoliths were of ocean island basalt affinity. The mafic schists mostly have high-Ti, alkaline, basaltic compositions with 43.57–46.93 wt% SiO2, 3.27–7.24 wt% Na2O + K2O, and 4.04–4.69 wt% TiO2. The schists are enriched in light rare earth elements relative to heavy rare earth elements, and have (La/Yb)N = 5.85–8.53 and small positive Ta and negative Zr-Hf anomalies. (87Sr/86Sr)i values vary from 0.7044 to 0.7055, while (143Nd/144Nd)i ranges from 0.512670 to 0.512727, with εNd(t) values of +4.4 to +5.5. The protoliths of the mafic schists were probably formed in a within-plate extension setting associated with mantle plume upwelling and melting of continental lithosphere. This setting was related to the Late Jurassic continental breakup of Argoland off the northern margin of east Gondwana, and thus marked the paleoposition of the northern edge of Greater India before the breakup of India from east Gondwana during Early Cretaceous. The N-S extent of Greater India at that time was ~2400 km. This further indicates how the India–Eurasia continental convergence has been accommodated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号