首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eclogite facies metatroctolites from a variety of Western Alps localities (Voltri, Monviso, Lanzo, Allalin, Zermat–Saas, etc.) that preserve textural evidence of their original form as bimineralic olivine‐plagioclase rocks are considered in terms of calculated mineral equilibria in the system Na2O‐CaO‐FeO‐MgO‐Al2O3‐SiO2‐H2O (NCFMASH). Pseudosections, based on a new petrogenetic grid for NCFMASH presented here, are used to unravel the metamorphic history of the metatroctolites, considering the rocks to consist of different composition microdomains corresponding to the original olivine and plagioclase grains. On the basis that the preservation of the mineral assemblage in each microdomain will tend to be from where on a rock's P–T path the metamorphic fluid phase is used up via rehydration reactions, P–T pseudosections contoured for water content, and P–T path‐MH2O (amount of water) pseudosections, are used to examine fluid behaviour in each microdomain. We show that the different microdomains are likely to preserve their mineral assemblages from different places on the P–T path. For the olivine microdomain, the diagnostic mineral assemblage is chloritoid + talc (+ garnet + omphacite). The preservation of this assemblage, in the light of the closed system P–T path‐MH2O relationships, implies that the microdomain loses its metamorphic fluid as it starts to decompress, and, in the absence of subsequent hydration, the high pressure mineral assemblage is then preserved. In the plagioclase microdomain, the diagnostic assemblage is epidote (or zoisite) + kyanite + quartz suggesting a lower pressure (of about 2 GPa) than for the olivine microdomain. In the light of P–T path‐MH2O relationships, development of this assemblage implies breakdown of lawsonite across the lawsonite breakdown reaction, regardless of the maximum pressure reached. It is likely that the plagioclase microdomain was mainly fluid‐absent prior to lawsonite breakdown, only becoming fluid‐present across the reaction, then immediately becoming fluid‐absent again.  相似文献   

2.
Pseudosections calculated with thermocalc predict that lawsonite‐bearing assemblages, including lawsonite eclogite, will be common for subducted oceanic crust that experiences cool, fluid‐saturated conditions. For glaucophane–lawsonite eclogite facies conditions (500–600 °C and 18–28 kbar), MORB compositions are predicted in the NCKMnFMASHO system to contain glaucophane, garnet, omphacite, lawsonite, phengite and quartz, with chlorite at lower temperature and talc at higher temperature. In these assemblages, the pyrope content in garnet is mostly controlled by variations in temperature, and grossular content is strongly controlled by pressure. The silica content in phengite increases linearly with pressure. As the P–T conditions for these given isopleths are only subtly affected by common variations in bulk‐rock compositions, the P–T pseudosections potentially present a robust geothermobarometric method for natural glaucophane‐bearing eclogites. Thermobarometric results recovered both by isopleth and conventional approaches indicate that most natural glaucophane–lawsonite eclogites (Type‐L) and glaucophane–epidote eclogites (Type‐E) record similar peak P–T conditions within the lawsonite stability field. Decompression from conditions appropriate for lawsonite stability should result in epidote‐bearing assemblages through dehydration reactions controlled by lawsonite + omphacite = glaucophane + epidote + H2O. Lawsonite and omphacite breakdown will be accompanied by the release of a large amount of bound fluid, such that eclogite assemblages are variably recrystallized to glaucophane‐rich blueschist. Calculated pseudosections indicate that eclogite assemblages form most readily in Ca‐rich rocks and blueschist assemblages most readily in Ca‐poor rocks. This distinction in bulk‐rock composition can account for the co‐existence of low‐T eclogite and blueschist in high‐pressure terranes.  相似文献   

3.
The preservation of mineral assemblages that were fluid‐present during their prograde history is primarily related to the consumption of the fluid by growth of more hydrous minerals as the retrograde history begins. The range of behaviour relating to the preservation of mineral assemblages is examined using calculated phase diagrams for fluid‐saturated conditions, contoured for the H2O content of the mineral assemblage. At equilibrium, as a mineral assemblage crosses contours of decreasing H2O content along a pressure–temperature path, it dehydrates, the fluid being lost from the rock. If the assemblage crosses contours of increasing H2O content, the mineral assemblage starts to rehydrate using any fluid on its grain boundaries. When the rock has consumed its fluid, the resulting mineral assemblage is that preserved in the rock. Conditions relating to the preservation of mineral assemblages are discussed, and examples of the consequences of different pressure–temperature paths on preservation in a metapelitic and a metabasic rock composition are considered on phase diagrams calculated with thermocalc .  相似文献   

4.
Low‐temperature eclogite and eclogite facies metapelite together with serpentinite and marble occur as blocks within foliated blueschist that was originated from greywacke matrix; they formed a high‐pressure low‐temperature (HPLT) subduction complex (mélange) in the North Qilian oceanic‐type suture zone, NW China. Phengite–eclogite (type I) and epidote–eclogite (type II) were recognized on the basis of mineral assemblage. Relic lawsonite and lawsonite pseudomorphs occur as inclusions in garnet from both types of eclogite. Garnet–omphacite–phengite geothermobarometry yields metamorphic conditions of 460–510 °C and 2.20–2.60 GPa for weakly deformed eclogite, and 475–500 °C and 1.75–1.95 GPa for strongly foliated eclogite. Eclogite facies metasediments include garnet–omphacite–phengite–glaucophane schist and various chloritoid‐bearing schists. Mg‐carpholite was identified in some high‐Mg chloritoid schists. PT estimates yield 2.60–2.15 GPa and 495–540 °C for Grt–Omp–Phn–Gln schist, and 2.45–2.50 GPa and 525–530 °C for the Mg‐carpholite schist. Mineral assemblages and PT estimates, together with isotopic ages, suggest that the oceanic lithosphere as well as pelagic to semi‐pelagic sediments have been subducted to the mantle depths (≥75 km) before 460 Ma. Blueschist facies retrogression occurred at c. 454–446 Ma and led to eclogite deformation and dehydration of lawsonite during exhumation. The peak PTconditions for eclogite and metapelite in the North Qilian suture zone demonstrate the existence of cold subduction‐zone gradients (6–7 °C km?1), and this cold subduction brought a large amount of H2O to the deep mantle in the Early Palaeozoic times.  相似文献   

5.
Lawsonite pseudomorphs are used to identify and distinguish the kinematic records of subduction and exhumation in blueschist‐facies rocks from Syros (Cyclades; Greece). Lawsonite is a hydrous mineral that crystallizes at high‐pressure and low‐temperature conditions. During decompression, lawsonite is typically pseudomorphed by an aggregate dominated by epidote and paragonite. Such aggregates are easily deformable and if deformation occurs after the lawsonite breakdown, the pseudomorphs are difficult to distinguish from the matrix. The preservation of the lawsonite crystal shape, despite complete retrogression, indicates therefore that the host blueschist rock has not been affected by penetrative deformation during exhumation, thus providing indication of strain‐free conditions. Therefore, tracking the lawsonite growth and destabilization along the P–T path followed by the rocks during a subduction/exhumation cycle provides information about the subduction/exhumation‐related deformation. Using microstructural observations and P–T pseudosections calculated with thermocalc , it is inferred that top‐to‐the‐south sense of shear preserved in lawsonite pseudomorph‐bearing blueschists on Syros occurred during the prograde metamorphic path within the lawsonite stability field, and is therefore associated with subduction. On the contrary, the deformation with a top‐to‐the‐north sense of shear is observed in surrounding rocks, where lawsonite pseudomorphs are deformed or apparently lacking. This deformation occurred after the lawsonite breakdown during exhumation. At the regional scale, exhumation‐related deformation is heterogeneous, allowing the preservation of lawsonite pseudomorphs in significant volumes of blueschists of the central and southern Cyclades. It is argued that such successive shearing deformation events with opposite senses more likely correspond to an exhumation process driven by slab rollback, in which subduction and exhumation are not synchronous.  相似文献   

6.
Silica‐undersaturated, sapphirine‐bearing granulites occur in a large number of localities worldwide. Such rocks have historically been under‐utilized for estimating PT evolution histories because of limited experimental work, and a consequent poor understanding of the topology and PT location of silica‐undersaturated mineral equilibria. Here, a calculated PT projection for sapphirine‐bearing, silica‐undersaturated metapelitic rock compositions is constructed using THERMOCALC for the FeO‐MgO‐Al2O3‐SiO2 (FMAS) and KFMASH (+K2O + H2O) chemical systems, allowing quantitative analysis of silica‐undersaturated mineral assemblages. This study builds on that for KFMASH sapphirine + quartz equilibria [Kelsey et al. (2004) Journal of Metamorphic Geology, vol. 22, pp. 559–578]. FMAS equilibria are significantly displaced in PT space from silicate melt‐bearing KFMASH equilibria. The large number of univariant silica‐undersaturated KFMASH equilibria result in a PT projection that is topologically more complex than could be established on the basis of experiments and/or natural assemblages. Coexisting sapphirine and silicate melt (with or without corundum) occur down to c. 900 °C in KFMASH, some 100 °C lower than in silica‐saturated compositions, and from pressures of c.≤1 to ≥12 kbar. Mineral compositions and composition ranges for the calculated phases are consistent with natural examples. Bulk silica has a significant effect on the stability of sapphirine‐bearing assemblages at a given PT, resulting in a wide variety of possible granulite facies assemblages in silica‐undersaturated metapelites. Calculated pseudosections are able to reproduce many naturally occurring silica‐undersaturated assemblages, either within a single assemblage field or as the product of a PT trajectory crossing several fields. With an understanding of the importance of bulk composition on sapphirine stability and textural development, silica‐undersaturated assemblages may be utilized in a quantitative manner in the detailed metamorphic investigation of high‐grade terranes.  相似文献   

7.
In the Chinese southwestern Tianshan (U)HP belt, former lawsonite presence has been predicted for many (U)HP metamorphic eclogites, but only a very few lawsonite grains have been found so far. We discovered armoured lawsonite relicts included in quartz, which, on its part, is enclosed in porphyroblastic garnet in an epidote eclogite H711‐14 and a paragonite eclogite H711‐29. H711‐14 is mainly composed of garnet, omphacite, epidote and titanite, with minor quartz, paragonite and secondary barroisite and glaucophane. Coarse‐grained titanite occasionally occurs in millimetre‐wide veins in equilibrium with epidote and omphacite, and relict rutile is only preserved as inclusions in matrix titanite and garnet. H711‐29 shows the mineral assemblage of garnet, omphacite, glaucophane, paragonite, quartz, dolomite, rutile and minor epidote. Dolomite and rutile are commonly rimed by secondary calcite and titanite respectively. Porphyroblastic garnet in both eclogites is compositionally zoned and exhibits an inclusion‐rich core overgrown by an inclusion‐poor rim. Phase equilibria modelling predicts that garnet cores formed at the P‐peak (490–505 °C and 23–25.5 kbar) and coexisted with the lawsonite eclogite facies assemblage of omphacite + glaucophane + lawsonite + quartz. Garnet rims (550–570 °C and ~20 kbar) grew subsequently during a post‐peak epidote eclogite facies metamorphism and coexisted with omphacite + quartz ± glaucophane ± epidote ± paragonite. The results confirm the former presence of a cold subduction zone environment in the Chinese southwestern Tianshan. The P–T evolution of the eclogites is characterized by a clockwise P–T path with a heating stage during early exhumation (thermal relaxation). The preservation of lawsonite in these eclogites is attributed to isolation from the matrix by quartz and rigid garnet, which should be considered as a new type of lawsonite preservation in eclogites. The complete rutile–titanite transition in H711‐14 took place in the epidote eclogite facies stage in the presence of an extremely CO2‐poor fluid with X(CO2) [CO2/(CO2 + H2O) in the fluid] <<0.008. In contrast, the incomplete rutile–titanite transition in H711‐29 may have occurred after the epidote eclogite facies stage and the presence of dolomite reflects a higher X(CO2) (>0.01) in the coexisting fluid at the epidote eclogite facies stage.  相似文献   

8.
At sub‐arc depths, the release of carbon from subducting slab lithologies is mostly controlled by fluid released by devolatilization reactions such as dehydration of antigorite (Atg‐) serpentinite to prograde peridotite. Here we investigate carbonate–silicate rocks hosted in Atg‐serpentinite and prograde chlorite (Chl‐) harzburgite in the Milagrosa and Almirez ultramafic massifs of the palaeo‐subducted Nevado‐Filábride Complex (NFC, Betic Cordillera, S. Spain). These massifs provide a unique opportunity to study the stability of carbonate during subduction metamorphism at PT conditions before and after the dehydration of Atg‐serpentinite in a warm subduction setting. In the Milagrosa massif, carbonate–silicate rocks occur as lenses of Ti‐clinohumite–diopside–calcite marbles, diopside–dolomite marbles and antigorite–diopside–dolomite rocks hosted in clinopyroxene‐bearing Atg‐serpentinite. In Almirez, carbonate–silicate rocks are hosted in Chl‐harzburgite and show a high‐grade assemblage composed of olivine, Ti‐clinohumite, diopside, chlorite, dolomite, calcite, Cr‐bearing magnetite, pentlandite and rare aragonite inclusions. These NFC carbonate–silicate rocks have variable CaO and CO2 contents at nearly constant Mg/Si ratio and high Ni and Cr contents, indicating that their protoliths were variable mixtures of serpentine and Ca‐carbonate (i.e., ophicarbonates). Thermodynamic modelling shows that the carbonate–silicate rocks attained peak metamorphic conditions similar to those of their host serpentinite (Milagrosa massif; 550–600°C and 1.0–1.4 GPa) and Chl‐harzburgite (Almirez massif; 1.7–1.9 GPa and 680°C). Microstructures, mineral chemistry and phase relations indicate that the hybrid carbonate–silicate bulk rock compositions formed before prograde metamorphism, likely during seawater hydrothermal alteration, and subsequently underwent subduction metamorphism. In the CaO–MgO–SiO2 ternary, these processes resulted in a compositional variability of NFC serpentinite‐hosted carbonate–silicate rocks along the serpentine‐calcite mixing trend, similar to that observed in serpentinite‐hosted carbonate‐rocks in other palaeo‐subducted metamorphic terranes. Thermodynamic modelling using classical models of binary H2O–CO2 fluids shows that the compositional variability along this binary determines the temperature of the main devolatilization reactions, the fluid composition and the mineral assemblages of reaction products during prograde subduction metamorphism. Thermodynamic modelling considering electrolytic fluids reveals that H2O and molecular CO2 are the main fluid species and charged carbon‐bearing species occur only in minor amounts in equilibrium with carbonate–silicate rocks in warm subduction settings. Consequently, accounting for electrolytic fluids at these conditions slightly increases the solubility of carbon in the fluids compared with predictions by classical binary H2O–CO2 fluids, but does not affect the topology of phase relations in serpentinite‐hosted carbonate‐rocks. Phase relations, mineral composition and assemblages of Milagrosa and Almirez (meta)‐serpentinite‐hosted carbonate–silicate rocks are consistent with local equilibrium between an infiltrating fluid and the bulk rock composition and indicate a limited role of infiltration‐driven decarbonation. Our study shows natural evidence for the preservation of carbonates in serpentinite‐hosted carbonate–silicate rocks beyond the Atg‐serpentinite breakdown at sub‐arc depths, demonstrating that carbon can be recycled into the deep mantle.  相似文献   

9.
Due to the retrograde cation exchange problems experienced by conventional geothermobarometers above their closure temperatures, petrogenetic grids are a potentially powerful alternative to unravelling the PT evolution of ultrahigh‐T granulite terranes. A new qualitative KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) petrogenetic grid for Mg–Al rich metapelites containing K‐feldspar, sillimanite and quartzofeldspathic melt that successfully accounts for the majority of assemblages composed of variations of sapphirine, spinel, garnet, orthopyroxene, cordierite, biotite and quartz is developed. Univariant reactions are predicted utilizing a newly derived ‘melt projection’ and these reactions are entirely consistent with algebraically calculated reaction coefficients obtained using a set of standard phase compositions. Based upon observations of commonly associated mineral assemblages in natural lithologies the [Spr, Spl], [Qtz, Spl], [Bt, Spl], [Opx, Spr], [Opx, Qtz] and [Bt, Opx] invariant points are assumed to be stable, whilst the [Grt, Spr], [Grt, Qtz], [Spr, Qtz] and [Crd, Qtz] are assumed to be metastable. Biotite‐bearing assemblages are confined to the lowest temperatures, and sapphirine + quartz to the highest temperatures. Orthopyroxene + sillimanite ± quartz assemblages are confined to the highest pressures, whilst spinel‐bearing assemblages are stabilized by lower pressures. The alternative choice of invariant point stability leads to significant differences between this grid and previously proposed topologies. Spinel cannot be stable along with the orthopyroxene and sillimanite assemblage as previously proposed. Further, more subtle differences in topology result from the treatment of H2O in the chemographic projection used to deduce univariant reactions, and projecting from a water‐bearing quartzofeldspathic melt does not yield the same reaction coefficients as projection from H2O. The new grid allows reinterpretation of previously proposed evolutionary P–T paths for Mg–Al rich granulites from the Napier Complex and Rauer Group, East Antarctica, and In Ouzzal, Algeria.  相似文献   

10.
Lower temperature eclogite (with T = 600 °C) represents a significant part of the occurrences of eclogite in orogenic belts. ‘True’ eclogite, with, for example, garnet + omphacite >70%, is well represented in such an occurrence. Calculated phase equilibria in Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O (NCKFMASHTO), for just one rock composition – that of a representative mid‐ocean ridge basalt, morb – are used to see under what circumstances ‘true’ eclogite is predicted to occur. The variables considered are not only pressure (P) and temperature (T) but also water content and oxidation state. The latter two variables are known to exert a significant control on mineral assemblage but are difficult to establish retrospectively from the observed rocks themselves. It is found that whereas oxidation state does have a strong effect on mineral assemblage, the key control on developing ‘true’ eclogite is shown to be temperature and water content. If temperature is established to be <600 °C, water content has to be low (less or much less than that for H2O saturation) in order for ‘true’ eclogite to form. Moreover, unless pressure is at the high end in the range considered, lawsonite eclogite and ‘true’ eclogite will tend to be mutually exclusive, with the former requiring high water content at the lower temperature where it occurs, but the latter requiring low water content.  相似文献   

11.
Fe‐rich metapelitic granulites of the Musgrave Block, central Australia, contain several symplectic and coronal reaction textures that post‐date a peak S2 metamorphic assemblage involving garnet, sillimanite, spinel, ilmenite, K‐feldspar and quartz. The earliest reaction textures involve spinel‐ and quartz‐bearing symplectites that enclose garnet and to a lesser extent sillimanite. The symplectic spinel and quartz are in places separated by later garnet and/or sillimanite coronas. The metamorphic effects of a later, D3, event are restricted to zones of moderate to high strain where a metamorphic assemblage of garnet, sillimanite, K‐feldspar, magnetite, ilmenite, quartz and biotite is preserved. Quantitative mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) using Thermocalc 3.0 and the accompanying internally consistent dataset provide important constraints on the influence of TiO2 and Fe2O3 on biotite‐bearing and spinel‐bearing equilibria, respectively. Biotite‐bearing equilibria are shifted to higher temperatures and spinel‐bearing equilibria to higher pressures and lower temperatures in comparison to the equivalent equilibria in K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH). The sequence of reaction textures involving spinel is consistent with a D2 P–T path that involved a small amount of decompression followed predominantly by cooling within a single mineral assemblage stability field. Thus, the reaction textures reflect changes in modal proportions within an equilibrium assemblage rather than the crossing of a univariant reaction. The D3 metamorphic assemblage is consistent with lower temperatures than those inferred for D2.  相似文献   

12.
Sapphirine, coexisting with quartz, is an indicator mineral for ultrahigh‐temperature metamorphism in aluminous rock compositions. Here a new activity‐composition model for sapphirine is combined with the internally consistent thermodynamic dataset used by THERMOCALC, for calculations primarily in K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O (KFMASH). A discrepancy between published experimentally derived FMAS grids and our calculations is understood with reference to H2O. Published FMAS grids effectively represent constant aH2O sections, thereby limiting their detailed use for the interpretation of mineral reaction textures in compositions with differing H2O. For the calculated KFMASH univariant reaction grid, sapphirine + quartz assemblages occur at P–T in excess of 6–7 kbar and 1005 °C. Sapphirine compositions and composition ranges are consistent with natural examples. However, as many univariant equilibria are typically not ‘seen’ by a specific bulk composition, the univariant reaction grid may reveal little about the detailed topology of multi‐variant equilibria, and therefore is of limited use for interpreting the P–T evolution of mineral assemblages and reaction sequences. Calculated pseudosections, which quantify bulk composition and multi‐variant equilibria, predict experimentally determined KFMASH mineral assemblages with consistent topology, and also indicate that sapphirine stabilizes at increasingly higher pressure and temperature as XMg increases. Although coexisting sapphirine and quartz can occur in relatively iron‐rich rocks if the bulk chemistry is sufficiently aluminous, the P–T window of stability shrinks with decreasing XMg. An array of mineral assemblages and mineral reaction sequences from natural sapphirine + quartz and other rocks from Enderby Land, Antarctica, are reproducible with calculated pseudosections. That consistent phase diagram calculations involving sapphirine can be performed allows for a more thorough assessment of the metamorphic evolution of high‐temperature granulite facies terranes than was previously possible. The establishment of a a‐x model for sapphirine provides the basis for expansion to larger, more geologically realistic chemical systems (e.g. involving Fe3+).  相似文献   

13.
The exhumation mechanism of high‐pressure (HP) and ultrahigh‐pressure (UHP) eclogites formed by the subduction of oceanic crust (hereafter referred to as oceanic eclogites) is one of the primary uncertainties associated with the subduction factory. The phase relations and densities of eclogites with MORB compositions are modelled using thermodynamic calculations over a P–T range of 1–4 GPa and 400–800 °C, respectively, in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) system. Our modelling suggests that the mineral assemblages, mineral proportions and density of oceanic crust subducted along a cold P–T path are quite different from those of crust subducted along a warm P–T path, and that the density of oceanic eclogites is largely controlled by the stability of low‐density hydrous minerals, such as lawsonite, chlorite, glaucophane and talc. Along a cold subduction P–T path with a geotherm of ~6 °C km?1, lawsonite is always present at 1.1 to >4.0 GPa, and chlorite, glaucophane and talc can be stable at pressures of up to 2.3, 2.6 and 3.6 GPa respectively. Along such a P–T path, the density of subducted oceanic crust is always lower than that of the surrounding mantle at depths shallower than 110–120 km (< 3.3–3.6 GPa). However, along a warm subduction P–T path with a geotherm of ~10 °C km?1, the P–T path is outside the stability field of lawsonite, and the hydrous minerals of chlorite, epidote and amphibole break down completely into dry dense minerals at relatively lower pressures of 1.5, 1.85 and 1.9 GPa respectively. Along such a warm subduction P–T path, the subducted oceanic crust becomes denser than the surrounding mantle at depths >60 km (>1.8 GPa). Oceanic eclogites with high H2O content, oxygen fugacity, bulk‐rock XMg [ = MgO/(MgO + FeO)], XAl [ = Al2O3/(Al2O3 + MgO + FeO)] and low XCa [ = CaO/(CaO + MgO + FeO + Na2O)] are likely suitable for exhumation, which is consistent with the bulk‐rock compositions of the natural oceanic eclogites on the Earth's surface. On the basis of natural observations and our calculations, it is suggested that beyond depths around 110–120 km oceanic eclogites are not light enough and/or there are no blueschists to compensate the negative buoyancy of the oceanic crust, therefore explaining the lack of oceanic eclogites returned from ultradeep mantle (>120 km) to the Earth's surface. The exhumed light–cold–hydrous oceanic eclogites may have decoupled from the top part of the sinking slab at shallow depths in the forearc region and are exhumed inside the serpentinized subduction channel, whereas the dense–hot–dry eclogites may be retained in the sinking slab and recycled into deeper mantle.  相似文献   

14.
Progress relating to calculation of partial melting equilibria for metapelites   总被引:36,自引:4,他引:32  
Improved activity–composition relationships for biotite, garnet and silicate liquid are used to construct updated PT grids and pseudosections for high‐grade metapelites. The biotite model involves Ti charge‐balanced by hydrogen deprotonation on the hydroxyl site, following the substitution , where HD represents the hydroxyl site. Relative to equivalent biotite‐breakdown melting reactions in PT grids in K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH), those in K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (KFMASHTO) occur at temperatures close to 50 °C higher. A further consequence of the updated activity models is that spinel‐bearing equilibria occur to higher temperature and higher pressure. In contrast, the addition of Na2O and CaO to KFMASH to make the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) system lowers key biotite‐breakdown melting reactions in PT space relative to KFMASH. Combination of the KFMASHTO and NCKFMASH systems to make Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCKFMASHTO) results in key biotite‐breakdown melting reactions occurring at temperatures intermediate between those in KFMASHTO and those in NCKFMASH. Given such differences, the choice of model system will be critical to inferred PT conditions in the application of mineral equilibria modelling to rocks. Further, pseudosections constructed in KFMASH, NCKFMASH and NCKFMASHTO for several representative rock compositions show substantial differences not only in the PT conditions of key metamorphic assemblages but also overall topology, with the calculations in NCKFMASHTO more reliably reflecting equilibria in rocks. Application of mineral equilibria modelling to rocks should be undertaken in the most comprehensive system possible, if reliable quantitative PT information is to be derived.  相似文献   

15.
The north Qilian high‐pressure (HP)/low‐temperature (LT) metamorphic belt is composed mainly of blueschists, eclogites and greenschist facies rocks. It formed within an Early Palaeozoic accretionary wedge associated with the subduction of the oceanic crust and is considered to be one of the best preserved HP/LT metamorphic belts in China. Here we report new lawsonite‐bearing eclogites and eclogitic rocks enclosed within epidote blueschists in the North Qilian Mountains. Five samples contain unaltered lawsonite coexisting with omphacite and phengite as inclusions in garnet, indicating eclogite facies garnet growth and lawsonite pseudomorphs were observed in garnet from an additional 11 eclogites and eclogitic rocks. Peak pressure conditions estimated from lawsonite omphacite‐phengite‐garnet assemblages were 2.1–2.4 GPa at temperatures of 420–510 °C, in or near the stability field of lawsonite eclogite, and implying formation under an apparent geothermal gradient of 6–8 °C km?1, consistent with metamorphism in a cold subduction zone. SHRIMP U‐Pb dating of zircon from two lawsonite‐bearing eclogitic metabasites yields ages of 489 ± 7 Ma and 477 ± 16 Ma, respectively. CL images and mineral inclusions in zircon grains indicate that these ages reflect an eclogite facies metamorphism. An age of 502 ± 16 Ma is recorded in igneous cores of zircon grains from one lawsonite pseudomorph‐bearing eclogite, which is in agreement with the formation age of Early Ordovician for some ophiolite sequences in the North Qilian Mountains, and may be associated with a period of oceanic crust formation. The petrological and chronological data demonstrate the existence of a cold Early Palaeozoic subduction zone in the North Qilian Mountains.  相似文献   

16.
Lawsonite blueschists are important markers of cold subduction zones, subjected to intense fluid circulation. This is because lawsonite preservation in exhumed blueschists and eclogites is typically linked to cold exhumation paths, accompanied by hydration. In the Catena Costiera (Calabria, southern Italy), lawsonite–clinopyroxene blueschists of the Diamante–Terranova Unit, affected by ductile shearing and retrogression, are exposed. Blueschists contain zoned clinopyroxene crystals, showing core–rim compositional variation from diopside to omphacite and hosting primary inclusions of lawsonite and titanite. Thermodynamic modelling of phase equilibria in the NCKFMASHTO system revealed peak metamorphic conditions of 2.0–2.1 GPa and 475–490°C for the Alpine subduction in Calabria. The subsequent post-peak metamorphic evolution mainly proceeded along a decompression and cooling path up to ~1.1 GPa and ~380°C. The final exhumation stages are recorded in the sheared blueschists where a mylonitic to ultramylonitic foliation developed at ~0.7 GPa and 290–315°C. Therefore, the P–T evolution of the Diamante–Terranova blueschists mostly occurred in the stability field of lawsonite, sustained by H2O-saturated conditions during the exhumation path. The results of this study indicate that the blueschists underwent peak metamorphic conditions higher than previously thought, reaching a maximum depth of ~70 km under a very cold geothermal gradient (~6.6°C/km), during the Eocene subduction of the Ligurian Tethys oceanic crust in Calabria.  相似文献   

17.
Many geological and geodynamical studies of metamorphism in subduction zones have relied upon worldwide compilations of modelled slab‐top pressure–temperature (P–T) conditions, although recent evaluation of such data sets suggests that these predictions are ~100–300°C colder at any given pressure than the conditions recorded by exhumed metamorphic rocks. As such, geochemical, petrological and geophysical interpretations formulated using such ‘cold’ assumptions may be subject to error and uncertainty. Here, we apply thermodynamic phase equilibrium calculations to forward‐model how phase assemblages, the P–T conditions of key devolatilization reactions and the effect of densification with depth vary for typical mid‐ocean ridge basalt (MORB) along these newly defined ‘hotter’ subduction zone geotherms for cold, warm and average environments. The depth and extent of devolatilization of MORB is strongly dependent on the geotherm along which the oceanic crust subducts. At the onset of subduction along a warm geotherm, metabasites contain ~3   wt% H2O and release ~45% of this fluid in a single pulse at ~20 km, correlating with chlorite and epidote breakdown. Below these depths, metamorphosed MORB will dehydrate incrementally due to gradual amphibole breakdown, becoming almost completely dehydrated at ~70 km. Oceanic crust subducting along an average geotherm will contain ~3.5 wt% of H2O at the onset of subduction and will release ~40% of the bulk‐rock H2O in two fluid pluses occurring at ~30 and 50 km, correlating with chlorite breakdown. Below these depths, gradual dehydration of ~50% of the bulk‐rock H2O due to amphibole breakdown leads to near‐complete dehydration at ~80 km. By contrast, in cold subduction zones, metamorphosed MORB will typically be H2O‐undersaturated and will dehydrate gradually at different depths, transporting ~0.6 wt% H2O to sub‐arc depths. As the volume of fluid released via these dehydration reactions differs strongly between cold, average and warm scenarios, different degrees of serpentinization of the mantle forearc are expected worldwide and thus, the efficacy of buoyancy‐driven exhumation should vary strongly in space and time. Metabasites subducting along a warm and average geotherm will liberate most of the fluids at shallower depths, suggesting that these lithologies might preferentially exhume, yet MORB subducting along cold geotherms will not dehydrate until greater depths, inhibiting its return to the surface. Critically, while we show that metabasites formed along warmer geotherms are denser than metabasites from colder geotherms at any equivalent depth, buoyancy‐driven exhumation provoked by fluids plays a notably more important role in exhumation potential than the overall bulk‐rock ‘metamorphic’ density. Furthermore, we show that lawsonite does not stabilize in average and warmer subduction zones, which provides a simple but important solution to the mismatch between its predicted abundance in experiments and its rarity in nature and argues against its use as a reliable petrogenetic indicator of subduction throughout deep geological time, as has been suggested by some recent studies.  相似文献   

18.
The influx of a H2O–CO2‐dominated fluid into actinolite‐bearing metabasic rocks during greenschist facies metamorphism in the Kalgoorlie area of Western Australia resulted in a zoned alteration halo around inferred fluid conduits that contain gold mineralisation. The alteration halo is divided into two outer zones, the chlorite zone and the carbonate zone, and an inner pyrite zone adjacent to the inferred fluid conduits. Reaction between the fluid and the protolith resulted in the breakdown of actinolite and the development of chlorite, dolomite, calcite and siderite. In addition, rocks in the pyrite zone developed muscovite‐bearing assemblages as a consequence of the introduction of potassium by the fluid. Mineral equilibria calculations undertaken using the computer software thermocalc in the model system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–CO2 show that mineral assemblages in the outer zones of the alteration halo are consistent with equilibrium of the protoliths with a fluid of composition XCO2 = CO2/(CO2 + H2O) = 0.1–0.25 for temperatures of 315–320 °C. The inner zone of the alteration halo reflect equilibrium with a fluid of composition XCO2≈ 0.25. Fluid‐rock buffering calculations show that the alteration halo is consistent with interaction with a single fluid composition and that the zoned structure of the halo reflects the volume of this fluid with which the rocks reacted. This fluid is likely to have also been the one responsible for the gold mineralisation at Kalgoorlie.  相似文献   

19.
Amphibolite facies mafic rocks that consist mainly of hornblende, plagioclase and quartz may also contain combinations of chlorite, garnet, epidote, and, more unusually, staurolite, kyanite, sillimanite, cordierite and orthoamphiboles. Such assemblages can provide tighter constraints on the pressure and temperature evolution of metamorphic terranes than is usually possible from metabasites. Because of the high variance of most of the assemblages, the phase relationships in amphibolites depend on rock composition, in addition to pressure, temperature and fluid composition. The mineral equilibria in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O (NCFMASH) model system demonstrate that aluminium content is critical in controlling the occurrence of assemblages involving hornblende with aluminous minerals such as sillimanite, kyanite, staurolite and cordierite. Except in aluminous compositions, these assemblages are restricted to higher pressures. The iron to magnesium ratio (XFe), and to a lesser extent, sodium to calcium ratio, have important roles in determining which (if any) of the aluminous minerals occur under particular pressure–temperature conditions. Where aluminous minerals occur in amphibolites, the P–T–X dependence of their phase relationships is remarkably similar to that in metapelitic rocks. The mineral assemblages of Fe‐rich amphibolites are typically dominated by garnet‐ and staurolite‐bearing assemblages, whereas their more Mg‐rich counterparts contain chlorite and cordierite. Assemblages involving staurolite–hornblende can occur over a wide range of pressures (4–10 kbar) at temperatures of 560–650 °C; however, except in the more aluminous, iron‐rich compositions, they occupy a narrow pressure–temperature window. Thus, although their occurrence in ‘typical’ amphibolites may be indicative of relatively high pressure metamorphism, in more aluminous compositions their interpretation is less straightforward.  相似文献   

20.
The evolution of the mineral assemblages and P–T conditions during partial melting of upper‐amphibolite facies paragneisses in the Orue Unit, Epupa Complex, NW Namibia, is modelled with calculated P–T–X phase diagrams in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O system. The close concordance of predictions from the phase diagrams to petrographic observations and thermobarometric results documents that quantitative phase diagrams are suitable to explain the phase relationships in migmatitic upper‐amphibolite facies low‐ and medium‐pressure metapelites, which occur in many high‐grade metamorphic terranes worldwide. Different mineral assemblages in the migmatitic metapelites of the Orue Unit reflect regional discrepancies in the metamorphic grade: in a Northern Zone, early biotite–sillimanite–quartz assemblages were replaced via melt‐producing reactions by cordierite‐bearing assemblages. In a Southern Zone, they were replaced via melt‐producing reactions by garnet‐bearing assemblages while cordierite is restricted to rare metapelitic granofelses, which preserve Grt–Sil–Crd–Bt peak assemblages. Peak‐metamorphic conditions of 700–750 °C at 5.5–6.7 kbar in the Southern Zone and of ~750 °C at 4.5 kbar in the Northern Zone are estimated by integrating thermobarometric calculations with data from calculated mineral composition isopleths. Retrograde back‐reactions between restite and crystallizing melt are recorded by the replacement of garnet by biotite–sillimanite and/or biotite–muscovite intergrowths. Upper‐amphibolite facies metamorphism and partial melting (c. 1340–1320 Ma) in the rocks of the Southern Zone of the Orue Unit, which underwent probably near‐isobaric heating–cooling paths, are attributed to contact metamorphism induced by the coeval (c. 1385–1319 Ma) emplacement of the Kunene Intrusive Complex, a huge massif‐type anorthosite body. The lower‐pressure metapelites of the Northern Zone are interpreted to record contact metamorphism at an upper crustal level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号