首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
Abstract. Multi-channel seismic data obtained from the Nankai accretionary prism and forearc basin system has been studied to elucidate the migration and accumulation process of gas to the BGHS and examine the distribution pattern of BSRs and characteristic reflections associated with them.
BSRs are distributed widely in the Nankai accretionary prism and associated forearc basins (33,000 km2) and 90 % of them have migration and recycling origins. The widest distribution of the BSRs can be seen at the prism. A correlation between the BSR distributions and prism size shows that the BSRs tend to be more well-developed in a prism of large size. This suggests that a large prism may produce much amount of gas-bearing fluids that migrate to the BGHS and form the BSRs (tectonic control), hi the forearc basins, the BSRs are identified at topographic highs, anticlines and basin margins (structural control).
The upward migration of gas-bearing fluids is carried out through permeable sand layers and as a result, the distribution of BSRs is confined to alternating beds of sand and mud facies (sedimentary control). However, if there is enough time for upward migration and accumulation of gas to the BGHS, the BSRs can be generated widely in low-permeable mud facies (time control).
Those results imply that structural, tectonic, sedimentary and time controls are primary factors to decide the distribution of BSRs in the Nankai Trough area.  相似文献   

2.
Abstract: Stratigraphic controls on the formation and distribution of gas hydrates were examined for sediments from a BH-1 well drilled in the landward slope of the Nankai Trough, approximately 60 km off Omaezaki, Japan. Three lithologic units were recognized in the 250 m-thick sequence of sediments: Unit 1 (0–70 mbsf) consists of calcareous silt and clay with thin volcanic ash layers, Unit 2 (70–150 mbsf) consists of calcareous silt and clay with volcanic ash and thin sand layers, and Unit 3 (150–250 mbsf) consists of weakly consolidated calcareous silt and clay with thick and frequent sand layers. Soupy structures and gas bubbles in the sediments indicate the presence of two hydrate zones between 40 and 130 mbsf and below 195 mbsf. Nannofossil biostratigraphy and magnetostratigraphy indicate that the sequence recovered at the BH-1 well is mostly continuous and represents sediments deposited from 0 to 1.5 Ma. Calculation of the sedimentation rate reveals a condensed section between 65 and 90 mbsf. The inferred distribution of gas hydrates in the BH-1 well appears to be strongly controlled by the stratigraphy and lithology of the sediments. Thick, gently inclined sand layers in Unit 3 provide a conduit for the migration of gases from deeper regions, and are considered responsible for the formation of the hydrate zone below 195 mbsf. At shallower levels, thin, gently inclined sand layers are also considered to allow for the migration of gases, leading to the formation of the upper hydrate zone between 40 and 130 mbsf. The overlying sub-horizontal silt and clay of the condensed section, truncating the underlying gently inclined sand and silt/clay layers, may provide an effective trap for gases supplied through the sand layers, further contributing to hydrate formation in the upper hydrate zone.  相似文献   

3.
Abstract. The Nankai Trough parallels the Japanese Island, where extensive BSRs have been interpreted from seismic reflection records. High resolution seismic surveys and drilling site-survey wells conducted by the MTI in 1997, 2001 and 2002 have revealed subsurface gas hydrate at a depth of about 290 mbsf (1235 mbsl) in the easternmost part of Nankai Trough. The MITI Nankai Trough wells were drilled in late 1999 and early 2000 to provide physical evidence for the existence of gas hydrate. During field operations, continuous LWD and wire-line well log data were obtained and numerous gas hydrate-bearing cores were recovered. Subsequence sedimentologic and geochemical analyses performed on the cores revealed important geologic controls on the formation and preservation of natural gas hydrate. This knowledge is crucial to predicting the location of other hydrate deposits and their eventual energy resource. Pore-space gas hydrates reside in sandy sediments from 205 to 268 mbsf mostly filling intergranular porosity. Pore waters chloride anomalies, core temperature depression and core observations on visible gas hydrates confirm the presence of pore-space hydrates within moderate to thick sand layers. Gas hydrate-bearing sandy strata typically were 10 cm to a meter thick. Gas hydrate saturations are typically between 60 and 90 % throughout most of the hydrate-dominant sand layers, which are estimated by well log analyses as well as pore water chloride anomalies.
It is necessary for evaluating subfurface fluid dlow behavious to know both porosity and permeability of gas hydrate-bearing sand to evaluate subsurface fluid flow behaviors. Sediment porosities and pore-size distributions were obtained by mercury porosimetry, which indicate that porosities of gas hydrate-bearing sandy strata are approximately 40 %. According to grain size distribution curves, gas hydrate is dominant in fine- to very fine-grained sandy strata.  相似文献   

4.
The passive eastern Indian margin is rich in gas hydrates, as inferred from the wide-spread occurrences of bottom-simulating reflectors (BSRs) and recovery of gas hydrate samples from various sites in the Krishna Godavari (KG) and Mahanadi (MN) basins drilled by the Expedition 01 of the Indian National Gas Hydrate Program (NGHP). The BSRs are often interpreted to mark the thermally controlled base of gas hydrate stability zone (BGHSZ). Most of the BSRs exhibit moderate to typically higher amplitudes than those from other seismic reflectors. We estimate the average geothermal gradient of ∼40°C/km and heat flow varying from 23 to 62 mW/m2 in the study area utilizing the BSR’s observed on seismic sections. Further we provide the BGHSZ where the BSR is not continuous or disturbed by local tectonics or hidden by sedimentation patterns parallel to the seafloor with a view to understand the nature of BSR.  相似文献   

5.
Abstract. The Nankai Trough runs along the Japanese Islands, where extensive BSRs have been recognized in its forearc basins. High resolution seismic surveys and site-survey wells undertaken by the MITI have revealed the gas hydrate distribution at a depth of about 290 mbsf. The MITI Nankai Trough wells were drilled in late 1999 and early 2000. The highlights were successful retrievals of abundant gas hydrate-bearing cores in a variety of sediments from the main hole and the post survey well-2, keeping the cored gas hydrate stable, and the obtaining of continuous well log data in the gas hydrate-dominant intervals from the main hole, the post survey well-1 and the post survey well-3. Gas-hydrate dominant layers were identified at the depth interval from 205 to 268 mbsf. Pore-space hydrate, very small in size, was recognized mostly filling intergranular pores of sandy sediments. Anomalous chloride contents in extracted pore water, core temperature depression, core observations as well as visible gas hydrates confirmed the presence of pore-space hydrates within moderate to thick sand layers. Gas hydrate-bearing sandy strata typically were 10 cm to a meter thick with porosities of about 40 %. Gas hydrate saturations in most hydrate-dominant layers were quite high, up to 90 % pore saturation.
All the gas hydrate-bearing cores were subjected to X-ray CT imagery measurements for observation of undisturbed sedimentary textures and gas-hydrate occurrences before being subjected to other analyses, such as (1) petrophysical properties, (2) biostratigraphy, (3) geochemistry, (4) microbiology and (5) gas hydrate characteristics.  相似文献   

6.
ABSTRACT

Mud diapirs and gas chimneys are widely developed in continental slope areas, which can provide sufficient gas for hydrate formation, and they are important for finding natural gas hydrates. Based on the interpretation and analysis of high-resolution 2D and 3D seismic data covering the deep-water area in the Qiongdongnan Basin (QDNB), northern South China Sea, we studied the formation mechanism of mud diapirs and gas chimneys and their relationship with natural gas hydrates. Mud diapirs and gas chimneys are columnar and domelike in shape and the internal regions of these bodies have abnormal reflections characterized by fuzzy, chaotic, and blanking zones. The reflection events terminate at the rims of mud diapirs and gas chimneys with pull-up reflections and pull-down reflections, respectively. In addition, ‘bright spots’ and diapiric-associated faults occur adjacent to mud diapirs and gas chimneys. The rapidly deposited and deeply buried fine sediments filling in the Tertiary in deep-water areas of the QDNB and overpressure potential derived from undercompacted mudstones, as well as from the pressurization of organic matter and hydrocarbon generation, provide abundant materials and intensive driving forces for the formation of mud diapirs and gas chimneys. Bottom simulating reflectors (BSRs) with strong amplitude and high or poor continuity were recognized atop the mud diapirs and gas chimneys and in the structural highs within the same region, indicating that they have a close relationship with each other. The mud diapirs and gas chimneys and associated high-angle faults provide favourable vertical pathways for the hydrocarbons migrating from deep strata to shallow natural gas hydrate stability zones where natural gas hydrates accumulate; however, some BSRs are characterized by weak amplitude and poor continuity, which can be affected by high temperature and overpressure in the process of the mud diapir and gas chimney activities. This mutually restricting relationship must be taken into consideration in the process of gas hydrate exploration in QDNB.  相似文献   

7.
天然气水合物的地热研究进展   总被引:8,自引:0,他引:8  
天然气水合物的地热研究在以下几个方面都取得了重要进展,热流与似海底反射层的关系,水合物稳定带的研究;水合物热物理参数的确定;水合物形成过程中的热状态;热导率的应用,指出了今后水合物的地热学研究方向。  相似文献   

8.
海底泥底辟构造与天然气水合物成藏关系密切,泥底辟既能为水合物提供充分的气源物质,同时又能促使地层温度场改变进而影响水合物成藏稳定性。南海北部神狐海域SH5站位虽然BSR明显,但钻探证实不存在天然气水合物。该钻位温度剖面异常高,温度场上移,同时在其下伏地层中发现泥底辟构造和裂隙通道。根据上述事实并结合泥底辟发育各个阶段中的特点,认为泥底辟构造对天然气水合物成藏具有控制作用。泥底辟发育早期和中期阶段,低热导率和低热量有机气体有利于天然气水合物生成;而在晚期阶段,高热量液体上侵稳定带底界,导致水合物分解迁移。SH5站位很可能由于受到处于晚期阶段的泥底辟上侵而未能获取天然气水合物。  相似文献   

9.
Abstract. Simulation experiments with a one-dimensional static model for formation of methane hydrate are used to demonstrate models of hydrate occurrence and its generation mechanism for two end-member cases. The simulation results compare well with experimental data for two natural examples (the Nankai Trough and the Blake Ridge).
At the MITI Nankai Trough wells, the hydrate occurrence is characterized by strongly hydrated sediments developing just above the BGHS. Such occurrence can be reproduced well by simulation in which the end-member case of upward advective fluid flow from below the BGHS is set. The strongly hydrated sediments is formed by oversaturated solution with free gas which directly enters the BGHS by the upward advective fluid flow. The recycling of dissociated methane of preexisting hydrate also contributes to the increase of hydrate saturation.
At the Site 997 in the Blake Ridge area, the hydrate occurrence is characterized by thick zone with poorly hydrated sediments and no hydrate zone developing above the hydrate zone. Such occurrence can be reproduced well by simulation in which the end-member case of in-situ biogenic production of methane in the sediment of methane hydrate zone is set. The distribution pattern of hydrate saturation is basically controlled by that of TOC. However, the hydrate concentration near the bottom of the hydrate zone is increased by the effect of recycling of dissociated methane of pre-existing hydrate. No hydrate zone expresses the geologic time needed until the local concentration of methane exceeds the solubility by gradual accumulation of in-situ biogenic methane with burial.  相似文献   

10.
Abstract. For the purpose of development of methane hydrate, occurring in the deep marine subsurface, as a resource, the most important issue is to understand the methane hydrate system (generation, migration and accumulation) as well as to delineate the methane hydrate reservoir properties. We have applied the Amplitude Versus Offset (AVO) analysis to the seismic data acquired in the Nankai Trough, offshore Japan, in order to confirm the occurrence of gas just below the methane hydrate-bearing zone, assuming that gas will show a so-called Class-3 AVO response. Knowledge of the amount and occurrence of gas in the sediment below methane hydrate-bearing zone is one of the keys to understand the methane hydrate system.
We have utilized the qualitative analysis of AVO methodology to delineate how gas is located below the BSR, which is thought to be the reflection event from the interface between the methane hydrate-bearing zone and the underlying gas-bearing zone. In the region of MITI Nankai Trough Well PSW-3, we observe two BSRs separated by 25 ms. After AVO modeling using well data, we applied AVO attribute analysis and attribute crossplot analysis to the seismic data. Finally we applied an offset-amplitude analysis to CMP gather data at specific locations to confirm the results of AVO attribute analysis. The AVO analysis shows that there is very little gas located in the underlying sediment below methane hydrate-bearing zone. This result supports the fact that we could not obtain any clear evidence of gas occurrence just below the methane hydrate-bearing zone in the Nankai Trough well drilling.  相似文献   

11.
Seismic reflection data reveal prominent bottom-simulating reflections (BSRs) within the relatively young (<0.78 Ma) sediments along the West Svalbard continental margin. The potential hydrate occurrence zone covers an area of c. 1600 km2. The hydrate accumulation zone is bound by structural/tectonic features (Knipovich Ridge, Molloy Transform Fault, Vestnesa Ridge) and the presence of glacigenic debris lobes inhibiting hydrate formation upslope. The thickness of the gas-zone underneath the BSR varies laterally, and reaches a maximum of c. 150 ms. Using the BSR as an in-situ temperature proxy, geothermal gradients increase gradually from 70 to 115 °C km−1 towards the Molloy Transform Fault. Anomalies only occur in the immediate vicinity of normal faults, where the BSR shoals, indicating near-vertical heat/fluid flow within the fault zones. Amplitude analyses suggest that sub-horizontal fluid migration also takes place along the stratigraphy. As the faults are related to the northwards propagation of the Knipovich Ridge, long-term disturbance of hydrate stability appears related to incipient rifting processes.  相似文献   

12.
We calculate the heat flow from the depth of bottom-simulating seismic reflectors (BSRs) on a seismic profile in the Xisha Trough of the South China Sea, and compare them with the probe heat flow measurements. The BSR heat flow turn out to be 32–80 mW/m2, significantly lower than the measurements of 83–112 mW/m2. Such big disparity cannot be ascribed only to the errors from parameters (parameter errors) that traditionally believed to influence the BSR heat flow. Besides the parameter errors, we discuss emphatically the errors coming from the theoretical assumption for the BSR heat flow determination (theoretical errors), which occur when the BSR depth does not coincide with the base of the methane hydrate stability zone (MHSZ). If BSR stays bellow the base of MHSZ, lying at the top of free gas zone, the derived heat flow would be underestimated. Compared with the parameter errors, the theoretical errors would be relatively larger in some geological settings. The disparity between measured and BSR heat flow in the Xisha Trough might be mainly due to the theoretical error. Based on the theoretical model, assuming that the BSR lying at the top of the free gas zone, the methane flux along the Xisha seismic profile is estimated, and the thickness of the methane hydrate occurrence zone is predicted.  相似文献   

13.
琼东南盆地南部隆起带天然气水合物赋存特征分析   总被引:2,自引:1,他引:1  
天然气水合物是21世纪最具潜力的接替煤炭、石油和天然气的新型洁净能源之一。我国南海蕴藏着丰富的水合物资源,目前已在南海北部陆坡神狐、东沙、海马区发现丰富的水合物资源。本文分析了琼东南盆地南部隆起带天然气水合物赋存的地质条件,开展了地球物理资料的分析与海底反射(BSR)识别,计算了水合物热动力学稳定带厚度。研究表明,琼东南盆地南部隆起带具备水合物赋存的地质条件,渗漏构造发育,游离气丰富,BSR表现为强振幅、不连续等特征,水合物稳定带厚度大,具有较大的天然气水合物资源潜力。  相似文献   

14.
To look for gas hydrate, 22 multi-channel and 3 single-channel seismic lines on the East China Sea (ECS) shelf slope and at the bottom of the Okinawa Trough were examined. It was found that there was indeed bottom simulating reflector (BSR) occurrence, but it is very rare. Besides several BSRs, a gas seepage was also found. As shown by the data, both the BSR and gas seepage are all related with local geological structures, such as mud diapir, anticline, and fault-controlled graben-like structure. However, similar structural "anomalies" are quite common in the tectonically very active Okinawa Trough region, but very few of them have developed BSR or gas seepage. The article points out that the main reason is probably the low concentration of organic carbon of the sediment in this area. It was speculated that the rare occurrence of gas hydrates in this region is governed by structure-controlled fluid flow. Numerous faults and fractures form a network of high-permeability channels in the sediment and highly fractured igneous basement to allow fluid circulation and ventilation. Fluid flow in this tectonic environment is driven primarily by thermal buoyancy and takes place on a wide range of spatial scales. The fluid flow may play two roles to facilitate hydrate formation:to help gather enough methane into a small area and to modulate the thermal regime.  相似文献   

15.
《China Geology》2020,3(1):16-27
Bottom simulating reflector (BSR) has been recognized as one of the indicators of gas hydrates. However, BSR and hydrate are not one-to-one correspondence. In the Xisha area of South China Sea (SCS), carbonate rocks wildly develop, which continuously distribute parallel to the seafloor with high amplitude on seismic sections, exhibiting reflections similar to BSRs in the Shenhu area nearby. This phenomenon causes some interference to hydrates identification. In this paper, the authors discussed the typical geophysical differences between carbonate rocks and hydrates, indicating that the main difference exists in relationship between porosity and velocity, causing different amplitude versus offset (AVO) characters. Then the authors proposed a new model assuming that the carbonates form the matrix and the hydrate fill the pore as a part of the matrix. The key modeling parameters have been optimized constrained by P-velocities and S-velocities simultaneously, and the model works well both for carbonate rock and gas hydrate bearing sediments. For quantitative identification, the authors calculated the velocities when carbonates and hydrates form the matrix together in different proportions. Then they proposed a carbonate and hydrate identification template (CHIT), in which the possible hydrate saturation (PHS) and possible carbonate content (PCC) can be both scaled out for a group of sample composed by P-velocity and S-velocity. If PHS is far larger than PCC, it is more likely to be a hydrate sample because carbonates and hydrates do not coexist normally. The real data application shows that the template can effectively distinguish between hydrates and carbonate rocks, consequently reducing the risk of hydrate exploration.  相似文献   

16.
The Geochemical Context of Gas Hydrate in the Eastern Nankai Trough   总被引:1,自引:0,他引:1  
Abstract. Geochemical studies for gas hydrate, gas and organic matter collected from gas hydrate research wells drilled at the landward side of the eastern Nankai Trough, offshore Tokai, Japan, are reported. Organic matter in the 2355 m marine sediments drilled to Eocene is mainly composed of Type III kerogen with both marine and terrigenous organic input. The gas hydrate-bearing shallow sediments are immature for hydrocarbon generation, whereas the sediments below 2100 mbsf are thermally mature. The origins of gases change from microbial to thermogenic at around 1500 mbsf.
Carbon isotope compositions of CH4 and CO2, and hydrocarbon compositions consistently suggest that the CH4 in the gas hydrate-bearing sediments is generated by microbial reduction of CO2. The δ13C depth-profiles of CH4 and CO2 suggest that the microbial methanogenesis is less active in the Nankai Trough sediments compared with other gas hydrate-bearing sediments where solid gas hydrate samples of microbial origin were recovered. Since in situ generative-potential of microbial methane in the Nankai Trough sediments is interpreted to be low due to the low total organic carbon content (0.5 % on the average) in the gas hydrate-bearing shallow sediments, upward migration of microbial methane and selective accumulation into permeable sands should be necessary for the high concentration of gas hydrate in discrete sand layers.  相似文献   

17.
基于天然气水合物地震数据计算南海北部陆坡海底热流   总被引:24,自引:10,他引:14  
天然气水合物是一种由水的冰晶格架及其间吸附的气体分子(以甲烷为主)组成的固态化合物,地震剖面上的似海底反射BSR是天然气水合物赋存的重要地球物理标志。相同气体成分水合物的相对稳定的温压关系是根据BSR的赋存深度计算海底热流的理论基础。选择南海北部陆坡有典型BSR反射的地震剖面,计算了南海北部陆坡天然气水合物发育区的压力、温度、地温梯度、热导率及热流等地热参数。通过计算热流值与实测热流值的对比可以大致推测,在南海北部陆坡海底运用该方法计算的热流值误差可能在12%以内。本研究不仅可以为海底热流等理论研究提供一定信度的数据资料,而且通过实测热流值校正后的热流数据以及经验公式,可以反过来用于BSR深度的计算以及天然气水合物稳定域的预测,具有重要的实践意义。  相似文献   

18.
《China Geology》2020,3(2):210-220
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin, which is on the northern continental slope of the South China Sea. Gas hydrates in this area have been intensively investigated, achieving a wide coverage of the three-dimensional seismic survey, a large number of boreholes, and detailed data of the seismic survey, logging, and core analysis. In the beginning of 2020, China has successfully conducted the second offshore production test of gas hydrates in this area. In this paper, studies were made on the structure of the hydrate system for the production test, based on detailed logging data and core analysis of this area. As to the results of nuclear magnetic resonance (NMR) logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition, the hydrate system on which the production well located can be divided into three layers: (1) 207.8–253.4 mbsf, 45.6 m thick, gas hydrate layer, with gas hydrate saturation of 0–54.5% (31% av.); (2) 253.4–278 mbsf, 24.6 m thick, mixing layer consisting of gas hydrates, free gas, and water, with gas hydrate saturation of 0–22% (10% av.) and free gas saturation of 0–32% (13% av.); (3) 278–297 mbsf, 19 m thick, with free gas saturation of less than 7%. Moreover, the pore water freshening identified in the sediment cores, taken from the depth below the theoretically calculated base of methane hydrate stability zone, indicates the occurrence of gas hydrate. All these data reveal that gas hydrates, free gas, and water coexist in the mixing layer from different aspects.  相似文献   

19.
Heat flow and gas hydrates of the Baikal Rift Zone   总被引:3,自引:0,他引:3  
Multi-channel seismic studies (MCS), performed during a Russian expedition in 1989 and a joint Russian-American expedition in 1992, have for the first time revealed a “bottom simulating reflector” (BSR) in Lake Baikal. These data have shown that gas hydrates occur in the southern and central basins of Lake Baikal in those places where the water depth exceeds 500–700 m. Four types of tectonic influence on the distribution of the gas hydrate were revealed: (a) Modern faults displace the BSR as they do with normal seismic boundaries. (b) Older faults displace normal reflectors, whereas the BSR is not displaced. (c) Modern faults form zones, where the BSR has been totally destroyed. (4) Processes that occur within older fault zones situated close to the base of the hydrated sediment layer lead to undulations of the BSR. The thickness of the hydrate stability field (inferred from seismic data) ranges between 35 and 450 m. Heat-flow values determined from BSR data range from 48 to 119 mW/m2. A comparison between heat-flow values from BSR data and values measured directly on the lake bottom shows an overall coincidence. Changes in water level and bottom-water temperature that occurred in the past have had no noticeable influence on the present BSR depths or heat-flow values. Determination of deep heat flow from BSR data is in this case more reliable than by direct measurements. Received: 10 December 1998 / Accepted: 15 November 1999  相似文献   

20.
We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号