首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
锂同位素分馏机制讨论   总被引:7,自引:0,他引:7  
作为一种新兴的稳定同位素示踪工具, 锂同位素地球化学的研究近年来受到了国际地学界日益广泛的关注.其应用领域涵盖了从地表到地幔的流体与矿物之间的相互作用.在地表风化作用过程中, 轻锂同位素(6Li) 优先进入固体相, 而7Li则进入流体相, 因而地表风化作用淋滤出了岩石中的重锂, 致使河水具有重的锂同位素组成, 河水又将重锂同位素组分补给海洋, 洋壳的低温蚀变作用使得海水的锂同位素组成进一步变重.在俯冲带, 由于俯冲板片释放的流体具有重锂同位素组成的特征, 它们上升并交代上覆的地幔楔和相邻的地幔, 使得地幔楔的锂同位素组成变重.同时, 深俯冲的板片由于脱水而具有较轻的锂同位素组成, 它们在地幔中可能形成一个局部轻锂的地幔储源.影响地幔橄榄岩锂同位素分馏的因素主要有3个方面: 温度、扩散机制以及外来熔体的反应.由于高温下地幔矿物之间的锂同位素分馏很小, 而单纯的扩散分馏机制不能够很好的解释我国华北汉诺坝地区地幔橄榄岩中矿物之间的锂同位素分馏.因此, 具有轻锂同位素组成的熔体与橄榄岩之间的反应是上述现象的一个合理解释.需要指出的是, 在橄榄岩-熔体反应的过程中, 锂同位素的扩散作用也对地幔矿物之间的同位素分馏有一定的贡献.   相似文献   

2.
为查明冀东北地区中低温对流型地热系统中氟的富集过程,通过对地热流体水化学特征和同位素数据的分析,研究地热流体中氟的分布特征、富集规律、水化学过程及影响因素。结果表明:研究区地热流体F^-含量为1.36~23.83 mg/L,呈现北高南低的趋势;在HCO3^-—Na^+和SO4^2-·HCO3^-—Na^+等Na型水中富集程度高于HCO3^-—Ca^2+和HCO3^-—Ca^2+·Mg^2+等Ca型水;碱性环境、温度和循环深度是影响氟离子富集的主要因素;水岩作用、含氟矿物溶解及阳离子交换作用,是控制高氟地热水水化学特征的主要地球化学过程。氟浓度异常可为寻找地热资源提供基础参考线索,为地热资源的科学合理利用提供科学依据。  相似文献   

3.
作为我国近些年地热勘探取得重要突破的地热田,西藏南部古堆地热田以其浅埋、高温、富锂、活动剧烈为典型特征而为人们广泛关注。然而关于其水化学特征和成因人们还知之甚少。古堆高温富锂地热田由五个地热显示区组成,分别是布雄朗古、杀噶朗噶、巴布的密、茶卡和日若地热显示区,其中布雄朗古、杀噶朗噶地热显示区地热活动最为强烈。古堆地热田沸泉和热泉的水化学类型主要为Na- Cl型,温泉和冷泉的水化学类型主要为Na- Cl- HCO3、Na- HCO3- Cl和Na- HCO3型,地表水化学类型主要为Ca- Mg- SO4- HCO3和Na- Ca- Mg- SO4- Cl- HCO3型,这些不同的水化学类型可能反映其不同的成因和物质来源;K- Na地温计显示布雄朗古、杀噶朗噶、巴布的密、茶卡有相似的热储温度(最高可达240. 56℃),且明显高于石英和K- Mg地温计计算结果;除了部分沸泉,多数地热水在Na- K- Mg三角图中的投点都远离完全平衡线,表明地热水在从热储上升至地表的过程中没有达到完全的化学再平衡,可能与冷水发生了混合;通过对地热流体特征元素的分析发现Cl、Na、K、SiO2、B、As、Li、Rb、Cs和F是古堆地热流体的特征化学组分,Cl和其他特征化学组分之间良好的线性关系,表明了深部母地热流体的存在;通过对古堆地热流体焓- 氯图解的分析表明古堆地热田深部可能存在两类不同的母地热流体,其Cl含量、焓值和对应的温度分别为567 mg/L、1562. 5 J/g、335. 5℃和697 mg/L、1250 J/g、282. 5℃,并且古堆地热田的母地热流体可能是通过与围岩的热传导、沸腾或者与浅部地表冷水混合的冷却方式上升至地表形成不同温度、水化学类型和活动强度的热泉,本研究对深入认识我国西藏南部高温富锂地热系统的水化学特征和形成过程具有重要理论意义,同时对将来合理利用我国西藏南部清洁地热能和地热型锂资源具有重要的现实意义。  相似文献   

4.
盐湖富锂(Li)卤水是世界锂产品的主要原材料,而大陆高盐度地热流体常含有较高浓度的Li。大陆地热体系是地热形成机理研究的重点,由于岩石的复杂性较少受到关注,且该领域Li同位素应用研究尚未得到较为系统的认识。论述了近年来Li同位素地球化学在大陆地热研究中的最新应用和进展,提出了该领域研究存在的问题,并展望了未来的研究方法与方向。大陆地热流体研究应高度重视Li-B-Sr-U多同位素方法的应用,同时也应结合不同温度条件下的水岩反应实验研究。并且,未来大陆地热体系研究更应重视各类沉积物/岩石Li同位素组成及其时空分布特征、储层岩石矿物学以及水岩反应过程中次生矿物形成时的Li同位素行为研究,以期揭示地热体系中复杂的流体演化机制,为该体系内Li资源的勘查、开发和利用提供科学的参考。  相似文献   

5.
近年来,由于分析手段的不断改进,锂同位素的精确测试才得以实现。锂以其分馏大、中度不相容、易随流体迁移、地表环境与地幔锂同位素特征差异明显等优势,被认为是极具潜力的示踪元素。目前,锂同位素在壳幔物质循环、风化作用、岩浆作用、流体(热液)活动等方面研究中已得到广泛的应用,其中又以俯冲带锂同位素的研究程度最高。本文主要从锂同位素分馏机理、俯冲带锂的行为特征、岛弧岩浆的锂同位素研究以及深俯冲作用过程中锂的行为等方面总结了当前国内外锂同位素的研究进展。  相似文献   

6.
文章系统研究了老厂矿床的碳酸盐围岩和成矿方解石的碳、氧同位素组成.研究表明,相对于区域地层,矿区碳酸盐岩围岩普遍亏损18O;成矿方解石的碳氧同位素总体上具有明显的正相关性,这些特征表明成矿流体与围岩发生了大规模的水岩反应.文章初步建立了水岩反应的理想模式,根据该模式进一步将成矿方解石划分为矿体中心相和边缘相2组.水岩反应理论模拟表明:总体上成矿流体中的可溶性碳以H2CO3为主,中心相成矿流体的δ13C、δ18O值分别为-5.5‰和+4‰,具有典型深部岩浆流体的特征;边缘相成矿流体的δ13C、δ18O值分别为-1.5‰和+4‰,代表了深部岩浆流体与下渗天水共同交代碳酸盐岩围岩后的碳、氧同位素特征.  相似文献   

7.
西藏麻米错盐湖大型锂硼矿盆地水化学特征   总被引:4,自引:0,他引:4  
余石勇  刘孟  赵元艺  郑绵平 《地质学报》2022,96(6):2195-2205
麻米错盐湖位于西藏阿里地区改则县麻米乡,氯化锂资源量250万t,固体硼矿石资源量3686万t,是西藏大型锂硼矿之一。本研究采集麻米错盆地河水、泉水及湖水等27件样品,分析其总溶解性固体(TDS)、pH值及主要化学成分,通过数理统计分析、Piper阴阳离子三角图和Gibbs等方法对比研究表明,河水径流水化学类型为Ca·Na·Mg HCO3·Cl型,河水支流水化学类型为Ca HCO3、Ca·Mg SO4·HCO3型;泉水化学类型为Mg·Ca HCO3·SO4、Na·Mg HCO3·Cl型;湖水水化学类型为Na Cl。水化学离子组成主要受岩石风化和蒸发结晶作用控制,河水和泉水中主要离子来源于碳酸盐岩和硅酸盐岩风化。河水中主要离子含量介于雪山融水和泉水之间,且接近泉水含量,表明河水更多依靠泉水补给。盐湖中成矿物质来源于岩石风化和深部水岩反应。麻米错湖水正处于正均衡状态,水位持续上涨会对湖区生态和人民生活生产会产生一定影响,建议开展水位动态监测工作。  相似文献   

8.
<正>化学风化作用是地球表面演化的重要过程之一,是地表物质循环的关键环节。然而,对于长时间尺度上硅酸盐风化的强度以及控制风化作用的因素,目前还存在争议。由于在水岩反应中会发生显著同位素分异,锂同位素被认为可以示踪硅酸盐风化。英国Durham大学的Dellinger和他的合作者汇总了全球几大水系(如亚马逊河、刚果河、长江等)的河流沉积物数据,  相似文献   

9.
作为热液体系中成矿的一个重要前提,水-岩反应一直以来都是矿床学的重要研究内容,亦是国际地学界的前沿问题。该过程伴随着同位素的交换,使流体和岩石的同位素组成发生变化。硼和锂同位素作为非传统的稳定同位素示踪工具,常用于限定流体和岩石的热液反应过程。本文对水-岩反应过程中影响硼和锂同位素分馏的因素作了较全面概述,包括温度、pH值、溶解过程、表面交换反应以及次生矿物的沉淀过程,并取得了一些主要认识:(1)一般地,低温或者高pH值时流体更快速富集11B并且在反应结束时有更高的δ11B值;低温(150℃)时锂进入次生矿物中,高温(200℃)时锂从岩石中萃取出来。(2)初始物质的溶解过程与表面交换反应对锂同位的分馏几乎没有影响。(3)一般而言,次生矿物的形成使7Li优先丢失进入溶液而富集重同位素。最后简单陈述了水-岩反应过程中硼和锂同位素组成的质量平衡模拟计算以及反映流体和岩石的同位素组成的变化。  相似文献   

10.
对栗木水溪庙矿区泥盆系上统融县组灰岩的碳氧同位素进行了研究,该地区灰岩的碳氧同位素组成可提供隐伏花岗岩隆起及其相关流体的重要信息。受隐伏花岗岩侵入驱动的流体与上覆融县组灰岩发生反应的温度在110℃左右,流体的初始同位素组成为δ18OSMOW=-3‰,δ13CPDB≤-7‰,反应的水岩比值(w/r)可能小于5。这种岩浆水与大气降水的混合流体与围岩之间的水岩反应使得地表灰岩的δ18O和δ13C值降低,产生负异常。研究表明,围岩的δ18O值降低受反应的水岩比值和温度控制;δ13C值降低主要与反应的水岩比值有关。反应的温度越高,w/r值越大,灰岩的碳氧同位素负异常越明显。因此,水溪庙矿区地表出露的碳酸盐地层中的碳氧同位素变化可在地球化学勘查中用于指示下伏花岗岩岩脊的隐伏位置。  相似文献   

11.
Geothermal resources are very rich in Yunnan, China. However, source of dissolved solutes in geothermal water and chemical evolution processes remain unclear. Geochemical and isotopic studies on geothermal springs and river waters were conducted in different petrological-tectonic units of western Yunnan, China. Geothermal waters contain Ca–HCO3, Na–HCO3, and Na (Ca)–SO4 type, and demonstrate strong rock-related trace elemental distributions. Enhanced water–rock interaction increases the concentration of major and trace elements of geothermal waters. The chemical compositions of geothermal waters in the Rehai geothermal field are very complicated and different because of the magma chamber developed at the shallow depth in this area. In this geothermal field, neutral-alkaline geothermal waters with high Cl, B, Li, Rb Cs, As, Sb, and Tl contents and acid–sulfate waters with high Al, Mn, Fe, and Pb contents are both controlled by magma degassing and water–rock interaction. Geothermal waters from metamorphic, granite, and sedimentary regions (except in the Rehai area) exhibit varying B contents ranging from 3.31 mg/L to 4.49 mg/L, 0.23 mg/L to 1.24 mg/L, and <0.07 mg/L, respectively, and their corresponding δ11B values range from −4.95‰ to −9.45‰, −2.57‰ to −8.85‰, and −4.02‰ to +0.06‰. The B contents of these geothermal waters are mainly controlled by leaching host rocks in the reservoir, and their δ11B values usually decrease and achieve further equilibrium with its surrounding rocks, which can also be proven by the positive δ18O-shift. In addition to fluid–rock reactions, the geothermal waters from Rehai hot springs exhibit higher δ11B values (−3.43‰ to +1.54‰) than those yielded from other areas because mixing with the magmatic fluids from the shallow magma. The highest δ11B of steam–heated waters (pH 3.25) from the Zhenzhu spring in Rehai is caused by the fractionation induced by pH and the phase separation of coexisting steam and fluids. Given the strong water–rock interaction, some geothermal springs in western Yunnan show reservoir temperatures higher than 180 °C, which demonstrate potential for electricity generation and direct-use applications. The most potential geothermal field in western Yunnan is located in the Rehai area because of the heat transfer from the shallow magma chamber.  相似文献   

12.
任大忠  孙卫  黄海  刘登科  屈雪峰  雷启鸿 《地球科学》2016,41(10):1735-1744
鄂尔多斯盆地姬塬油田长6储层原油储量丰富,储层致密制约着油气的勘探开发潜力和评价精度.通过开展物性、粒度、铸体薄片、X衍射、扫描电镜、压汞等测试研究储层特征,以时间为主轴,综合成岩史、埋藏史、地热史、构造等因素,采用“成岩作用模拟”和“地质效应模拟”构建孔隙度演化模型及计算方法探讨致密储层成因机理.结果表明:储层经过较强的演化改造发育微-纳米孔喉系统,形成低孔特低孔-超低渗的致密砂岩储层.H53井长6段孔隙度演化史揭示了增孔和减孔因素对孔隙度及油气充注的影响;通过对比最大粒间孔面孔率、最大溶蚀面孔率、最大压实率、最大胶结率样品孔隙度演化路径和含油饱和度,查明了致密储层成因的差异及品质.   相似文献   

13.
宋小庆  彭钦  段启杉  夏颜乐 《地球科学》2019,44(9):2874-2886
目前在黔东北地区未系统地开展过地热水水文地球化学特征以及地热水来源方面的研究,存在地热水来源、补给区域、径流和排泄等特征不清等问题.在充分了解黔东北地热地质条件的基础上,采集区内15组地热水进行水化学全分析、收集12组地热水氢氧同位素和3组地热水碳同位素数据,得到了该区地热水的水化学特征和同位素特征,分析出地热水的补给来源,估算了地热水的补给高程、补给温度、热储温度、循环深度以及冷水混入比例.结果表明,受地形地貌及地质构造的影响,该区地热水总体由南向北径流,水化学类型主要为HCO3·SO4-Ca·Mg、HCO3-Ca·Mg、HCO3-Na、SO4-Ca·Mg及SO4-Ca型,有益元素主要有F-和H2SiO3,沿径流方向地热水呈现pH降低、TDS增加的趋势,水化学类型则由重碳酸盐型水变为硫酸盐型水.同位素分析结果表明,该区地热水补给源为大气降水,补给区为海拔1 500~2 000 m的梵净山地区,地热水年龄为(6 400~11 570)±560 a,补给时的年平均气温为7.0~9.1℃;选用二氧化硅温标及lg(Q/K)-T法估算热储温度为45.0~107.0℃,地热水循环深度为1 000~3 000 m;硅-焓混合模型估算地热水混合前的热储温度极大值为110~200℃,地热水在上升过程中受浅部冷水混合,冷水混入比例为50%~90%.   相似文献   

14.
查孜地热田位于青藏高原西南部。通过野外地质调查及地热钻孔揭露,发现该地热田具有较好的地热资源开发潜力。对该地热田地下热水的水文地球化学及同位素特征开展研究,发现地下热水为HCO3-Na型; 热水与冷水的离子浓度存在差异,显示二者具有不同的物质来源,但又具有一定的水力联系。热水中的δD和δ18O同位素特征表明: 该地热田地下热水的主要补给来源为大气降水和冰雪融水,补给海拔为5 652 m以上; 大气降水和冰雪融水下渗并与沿断裂破碎带向上运移的地热流体混合后形成地下热水。断裂破碎带不仅是温泉的主要通道,也是地热流体的储集场所,地热田热水在地下运移滞留至少41 a。据SiO2地热温标估算得出,该区地下热储温度为148.18 ~153.49 ℃,天然放热量为2 264.33×1012 J/a。  相似文献   

15.
川藏铁路康定隧址区穿越鲜水河断裂带,属地热异常区,对铁路建设造成一定的热害威胁。采用野外调查、水化学分析和氢氧同位素测试等技术方法,开展了川藏铁路康定隧址区地热水成因研究。结果表明,康定隧址区地热水水化学类型主要为HCO3·Cl—Na和HCO3—Na型,聚集于折多塘、康定和中谷3个热水区。地热水均为未成熟水,热储温度为104~172 ℃,深部初始地热水温度为186~250 ℃,冷水混合比例为0.56~0.81。氢氧同位素显示地热水补给高程为3768~4926 m。在康定隧址区,地热水受到高海拔水源补给,主体断裂构造为导热构造,次级分支断裂和发育节理、裂隙的断层破碎带为导水构造,地热水形成后沿浅部断层破碎带出露形成温泉。FEFLOW数值模拟分析表明研究区100 m深度地温场温度为35.4~95.1 ℃,研究区内三个热水区之间存在低温通道。隧道建设时应重点关注康定热水区的高温水热灾害。  相似文献   

16.
研究工作对完善区内高温地热系统成因机理和后期勘探及钻探工作提供一定的参考意义.为进一步研究贵德盆地地热资源赋存状态及热源来源,在充分了解贵德盆地地热地质条件的基础上,采集区内地热流体样品,进行水化学全分析和氢氧同位素分析,得到该区地热流体化学特征和氢氧同位素特征,估算了区内高温热田-扎仓寺热田的热储温度.分析结果表明:该区高温地下热水的水化学类型主要为SO4·Cl-Na型,低温水水化学类型较为复杂,主要为SO4-Na、SO4·HCO3-Na型;扎仓寺热田地下热水中Li+、F-、Sr2+、As3+与Cl-存在很好的正相关性,显示了相同的物质来源,SiO22-与Cl-极高的正相关性进一步验证了扎仓寺地热为深部热源;氢氧同位素数据都集中在当地大气降水线附近,说明地下热水主要为大气降水补给.选用合理的水文地球化学温标计算了扎仓寺热田的热储温度,并利用硅-焓模型分析了该热田地热流体中冷水混入比例及冷水混入前的热储温度,分析认为扎仓寺热田4 000 m以内存在两个热储层,第一热储层热储温度约为133 °C,热循环深度为1 800 m;第二热储层热储温度约为222 °C,热循环深度约为3 200 m.   相似文献   

17.
曹入文  周训  陈柄桦  李状 《地学前缘》2021,28(4):361-372
温泉的水化学和成因研究对地热资源的开发利用有重要意义。四川巴塘县茶洛温泉的分布受茶洛—松多断层带的控制,沿北东—南西向的河流两岸出露,附近出露三叠系灰岩、砾岩和燕山期花岗岩。在温泉区出露有近20个泉眼,对其中10个泉眼进行采样测试。受出露点冷水混入的影响,东北部的两个泉眼温度为45~51 ℃,中西部地区的泉眼温度为77~89 ℃,部分为沸泉泉眼;各泉眼流量为0.01~1.8 L/s;pH值为6.1~8.1,矿化度为0.39~1.06 g/L,F-含量为15~22 mg/L,偏硅酸含量为69~356 mg/L。泉水主要阳离子为Na+、K+和Ca2+,主要阴离子为 CO 3 2 - HCO 3 -、Cl- SO 4 2 -,水化学类型为HCO3-Na型。氢氧同位素数据表明,研究区地下热水来源于大气降水,补给高程约为4 400~4 800 m,补给区年均气温在-10 ℃左右。利用SiO2温标估算茶洛温泉热储层温度约为150~200 ℃,热水循环深度约为2 810~3 480 m。茶洛温泉为大气降水入渗后在地下深循环过程中被大地热流加热,再沿断层带在河谷涌出地表而形成的温泉。在河流西北岸分布有灰岩,地下水溶蚀形成空洞,来自浅处的冷水和来自深部的热水在空洞中混合并被加热至沸点,导致热水间歇性上升喷出地面,形成间歇喷泉。  相似文献   

18.
辽宁丹东地区地热资源丰富,阐明其地热田的成因模式对于区域热水资源的可持续开发利用具有重要意义。以区内北汤、东汤、五龙背地热田为研究对象,进行水化学和同位素分析。结果表明,北汤、东汤、五龙背地热水的水化学类型分别为SO4·Cl-Na·Ca型、HCO3·SO4-Na型、 HCO3-Na·Ca、HCO3·SO4-Na和HCO3·Cl-Na型。研究区的热水来源为大气降水,北汤、东汤地热田的补给高程分别为678 m和376 m。根据14C测年方法,得出北汤、东汤和五龙背地热田地热水年龄分别为2 000~3 300 a B.P.、2 200~7 200 a B.P.和700~2 900 a B.P.。根据二氧化硅地温计和lg(Q/K)方法,北汤、东汤和五龙背地热田的热储温度分别为92 ℃、120 ℃和100~101 ℃,相应的地热水循环深度分别为1 900 m、3 000 m和800~1 800 m。地热水接收大气降水入渗补给,经断裂带深循环加热,于NNE和NW向两组断裂交汇处上涌进入浅部含水层或出露地表成泉,属中低温对流型地热系统。  相似文献   

19.
Chazi geothermal field is located in Southwestern Tibetan Plateau. The geothermal potential has been ascertained by field survey and geothermal drilling. The hydrogeochemical characteristics and isotopic composition of this geothermal field show that the underground water belongs to HCO3-Na. The difference of ion concentration between hot water and cold water shows that they have different material sources and certain hydraulic relations. The isotope analysis of δD and δ18O determines that the major source of the geothermal water in this area is meteoric water and water melt from the mountains snow and ice with the height above 5 652 m. The geothermal water was the result of the mixture of deep infiltrated meteoric water and deep-source fluid when they move along the fracture zone. The fracture zone is the main channel of hot spring and the reservoir of geothermal fluid. The migration retention time of the geothermal water in this geothermal field was at least 41 years. According to the calculated temperature of SiO2 geothermometer, the geothermal temperature of the underground heat reservoir is about 148.18~153.49 ℃, and natural heat discharge is 2 264.33×1012 J/a.  相似文献   

20.
在“雄县模式”和环境压力的双重驱动下,河北地区已形成我国最大的地热供暖城市群。因此,研究武城凸起地热田地热地质特征,对河北省故城县地热开发具有重要的指导意义。本文通过测井、地震和区域地质资料,结合水化学特征、同位素测试结果的分析,系统分析了地热田的不同类型热储展布、储集层物性、地下热水补给来源和循环路径特征,并精细评价了地热资源量。结果表明武城凸起地热田热储类型主要为馆陶组砂岩热储和奥陶系岩溶热储。砂岩热储区域稳定分布,主要产水层为下馆陶组,底板埋深1 200~1 600 m,单井出水量79~123 m3/h, 井口水温52~54 ℃;岩溶热储有利区带主要分布在寒武—三叠系卷入的背斜核部,呈南北向带状展布,主要产水层为上马家沟组、下马家沟组和亮甲山组,顶板埋深2 100~2 900 m,单井出水量75~98 m3/h,井口水温82~85 ℃。地下热水来源为西部太行山脉和北部燕山山脉,热水沿着NE-SW向断裂破碎带和岩溶不整合面向上水平运移进入浅层热储,通过沧县隆起和邢衡隆起在武城凸起汇集,形成中低温地热田。地下热水质类型为Cl-Na型,最大循环深度为2 822.5~3 032.5 m,14C测年表明砂岩热储和岩溶热储年龄分别为21 ka和32 ka。明化镇组和石炭—二叠系分别为两套热储的直接盖层。武城凸起地热田地热资源量分层精细评价结果表明,热储地热资源量合计4.86×1010 GJ,折合标煤16.6×108 t。年可开采地热资源量可满足供暖面积1.1×108 m2,市场开发潜力巨大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号