首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
滇池湖泊沉积物中甘油二烷基甘油四醚脂的组成特征   总被引:1,自引:0,他引:1  
以云贵高原浅水湖泊—滇池作为研究对象,在对湖心一个63 cm沉积物柱样的有机质总体及分子有机地球化学研究的基础上,对沉积物有机质中甘油二烷基甘油四醚脂(GDGTs)组成进行了测定。研究结果表明,滇池湖泊沉积物中具有丰富的GDGTs,且以反映陆相土壤来源的支链类GDGTs为主。该沉积柱样中支链类GDGTs的环化指标(CBT)和甲基化指标(MBT)揭示出:1)整个沉积阶段滇池流域土壤的pH值主要介于7.5~8.2,相对中、下部层段,上部层段pH值呈现略微减小的趋势;2)基于CBT/MBT重建的滇池流域内年平均气温呈现由早期的温暖潮湿气候逐渐向寒冷干燥气候变化,近来又有所回暖的变化过程,这可以很好地解释该沉积柱中、下层段记录的总体有机质主要特征的演化规律。  相似文献   

2.
A number of cold seeps have been discovered in the northern South China Sea (SCS) including the Haiyang 4 cold-seep area where Core 973-5 was collected. Intact polar lipids (IPLs) and core lipids (CLs) were analyzed separately in sediments from Core 973-5. The most abundant lipid biomarkers were isoprenoidal GDGTs (isoGDGTs), with Crenarchaeol and GDGT-0 predominating. IPL-isoGDGTs and CL-isoGDGTs were mainly derived from Thaumarchaeota. IPL-isoGDGTs were mainly produced and retained in situ thus containing most of the in situ microbiological information. Branched GDGTs were predominantly derived from generated in marine production, and mixed with some terrestrial inputs. All IPLs groups presented a high value in the sulfate-methane transition zone (SMTZ). Furthermore, IPL and CL-MI, IPL-R0/4 showed the highest values within the SMTZ, while IPL and CL-R4/i had the lowest values at the SMTZ, suggesting that the contribution of Methanophila and methanogenic to GDGTs increased, while the contribution of ammonia-oxidizing Archaea to GDGTs decreased at the SMTZ.  相似文献   

3.
Isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) are archaeal and bacterial polar lipids increasingly used as environmental biomarkers, and are studied in a wide range of settings: lacustrine and oceanic sediments, water column particulate organic matter, soils, peats, sedimentary rocks and extracts from archaeal and bacterial cultures. In paleoclimatology, for example, typical work on a sediment core of several tens of m consists of several hundreds to more than a thousand HPLC–MS (high performance liquid chromatography–mass spectrometry) analyses. The measurements therefore require purification steps from total lipid extracts. We propose an automated procedure for obtaining the GDGT core lipid fraction. We first evaluate both the yield and efficiency of the separation using different cartridges. We then compare the results from automated and “classical manual” procedures for a soil and a marine sediment, as well as for a sedimentary paleosequence.  相似文献   

4.
长链烷基二醇类化合物(Long-chain alkyl diols)是指在碳链的1号位置和链中位置连接有羟基基团的类脂化合物,普遍存在于海洋、河流和湖泊环境中。由于这类化合物分布广泛、性质稳定不易降解、且检测手段较为简单,因此具有作为生物标志物的潜力,在生物地球化学领域引起了广泛的研究和关注。关于其生物来源尚未有定论,但是研究发现1,13-diols和1,15-diols可能主要来自真眼点藻,而14-diols主要来自硅藻Proboscia。目前根据长链烷基二醇建立的指标包括:硅藻生产力、上升流强度、盐度、温度、河流输入和表层海水营养盐浓度等,对古环境气候的重建有着重要的意义。归纳总结了目前长链烷基二醇指标的研究和应用进展,这有助于未来我国边缘海长链烷基二醇来源以及二醇指标的深入研究。  相似文献   

5.
Glycerol dibiphytanyl glycerol tetraether-based intact polar lipids (IPL GDGTs) are used as biomarkers for living Archaea and are analyzed utilizing a variety of extraction and quantification techniques. Most IPL GDGT studies have used a modified Bligh–Dyer extraction method, but it has been suggested that Soxhlet extraction may be more efficient for environmental samples and biomass. We investigated the impact of three different extractions (Soxhlet, Bligh–Dyer and accelerated solvent extraction, ASE), two IPL quantification methods and two work up techniques (Na2SO4 and SiO2 column) on the amount and distribution of CL (core lipid)- and IPL-derived GDGTs and crenarchaeol-based IPLs in marine sediments from the Arabian Sea and Icelandic shelf, as well as a microbial mat from a Dutch beach. The different extraction procedures gave a similar yield of CL- and IPL-derived GDGTs. Direct analysis of crenarchaeol IPLs showed, however, that, while GDGTs with a monohexose head group were not affected by the extraction method, there was a large effect on IPL GDGTs containing dihexose or hexose, phosphohexose head groups. Quantification of IPL-derived GDGTs by way of either separation over a silica column or by subtraction of CL GDGTs in the total lipid extract before and after hydrolysis gave similar results, but the ‘subtraction-method’ had a relatively large quantification error. However, the silica column, as well as drying over a Na2SO4 column, resulted in a loss of the hexose, phosphohexose IPLs by up to 80%. Based on the results, a modified Bligh–Dyer extraction with as little further treatment as possible is recommended to allow measurement of the full range of IPL GDGTs in sediments.  相似文献   

6.
Distribution of intact and core GDGTs in marine sediments   总被引:1,自引:0,他引:1  
We conducted a survey of archaeal GDGT (glycerol dibiphytanyl glycerol tetraether) distributions in marine sediments deposited in a range of depositional settings. The focus was comparison of two pools presumed to have distinct geobiological significance, i.e. intact polar GDGTs (IP GDGTs) and core GDGTs (C GDGTs). The former pool has been suggested to be related to living communities of benthic archaea in marine sediments, while the latter is commonly interpreted to consist of molecular fossils from past planktonic archaeal communities that inhabited the surface ocean. Understanding the link between these two pools is important for assessment of the validity of current molecular proxies for sedimentary archaeal biomass and past sea surface temperatures. The relative distributions of GDGTs in the two pools in a core at a CH4 rich site in the Black Sea provide evidence for in situ production of glycosidic IP GDGTs and their subsequent degradation to corresponding C GDGTs on timescales that are short in geological terms. In addition, we monitored the relationship between the IP GDGT and C GDGT pools in a sample set from various ocean basins with subseafloor depth from a few cm to 320 m and 0 to 4 Myr in age. Notable differences between the two pools can be summarized as follows: the GDGT with acyclic biphytanes, GDGT-0, and its analogues with two and three cyclopentane moieties (GDGT-2 and -3) are generally more abundant in the pool of IP GDGTs, while crenarchaeol tends to be more abundant in the C GDGT pool. Consequently, the ring index is generally higher for the C GDGTs while TEX86, a molecular proxy ratio not considering the two major GDGTs, tends to be higher in the IP GDGT pool. These differences in the proportion of individual GDGTs in the two pools are probably due to in situ production of IP GDGTs with distributions differing from those of C GDGTs. Despite these differences, we observed significant correlation of these two ratios between the two pools. Specifically, in both pools TEX86 is high in sediments from warm oceanic regimes and low in cold regimes. We discuss these relationships and suggest that recycling of core GDGTs by benthic archaea is an important mechanism linking both molecular pools.  相似文献   

7.
Long-chain alkyl diols contain an alkyl chain with alcohol groups at C1 and at the middle position of carbon chain, which exist widely in seas, rivers and lakes. It has been proven that these compounds are relatively resistant to degradation and have an extended occurrence in the geological record. In addition, they are relatively easy to identify. Therefore, long-chain alkyl diols can be used as potential biomarkers to trace the past change in paleoenvironment and paleoclimate. Although the sources of long-chain alkyl diols are still uncertain, the studies indicate that 1, 13 and 1, 15-diols are mainly produced by eustigmatophytes, while 14-diols are mainly from diatom Proboscia. So far, some proxies based on long-chain alkyl diols have been established to indicate the change in diatom productivity, upwelling intensity, salinity, sea surface temperature, riverine organic matter input and surface seawater nutrient concentration, which are significant for paleoenvironmental reconstruction. Current research and application of long-chain alkyl diols proxies were summarized, which would be helpful for further studying the source of long-chain alkyl diols and the application of relevant proxies in China’s marginal sea.  相似文献   

8.
We measured archaeal lipid distributions from globally distributed samples of freshwater, marine, and hypersaline suspended particulate matter. Cluster analysis of relative lipid distributions identified four distinct groups, including: (1) marine epipelagic (<100 m) waters, (2) marine mesopelagic (200-1500 m) and upwelling waters, (3) freshwater/estuarine waters, and (4) hypersaline waters. A pronounced difference in lipid composition patterns is the near absence of ring-containing glycerol dialkyl glycerol tetraethers (GDGTs) at high salinity. Different archaeal communities populate marine (mesophilic Crenarchaeota and Euryarchaeota), and hypersaline environments (halophilic Euryarchaeota) and community shifts can regulate differences in lipid patterns between marine and hypersaline waters. We propose that community changes within meosphilic marine Archaea also regulate the lipid patterns distinguishing epipelagic and mesopelagic/upwelling zones. Changes in the relative amounts of crenarchaeol and caldarchaeol and low relative abundances of ringed structures in surface waters differentiate lipids from the epipelagic and mesopelagic/upwelling waters. Patterns of lipids in mesopelagic (and upwelling) waters are similar to those expected of the ammonia-oxidizing Group I Crenarchaeota, with predominance of crenarchaeol and abundant cyclic GDGTs; non-metric multidimensional analysis (NMDS) shows this pattern is associated with high nitrate concentrations. In contrast, limited culture evidence indicates marine Group II Euryarchaeota may be capable of producing mainly caldarchaeol and some, but not all, of the ringed GDGTs and we suggest that these organisms, along with the Crenarchaeota, contribute to lipids in epipelagic marine waters. Calculated TEX86 temperatures in mesopelagic samples (reported here and in published data sets) are always much warmer than measured in situ temperatures. We propose lipids used in the temperature proxy derive from both Euryarchaeaota and Crenarchaeota, and observed values of TEX86 are subject to changes in their ecology as influenced by nutrient fluctuations or other perturbations. Applications of published core-top TEX86-SST correlations require that (1) the surface waters are always composed of similar communities with the same temperature response and (2) that deeper water GDGT production is not transported to the sediments. Our lipid distribution patterns demonstrate both surface-water archaeal community differences (which accompany greater nutrient influxes, shoaling of mesopelagic Crenarchaeota during upwelling periods, and possibly due to an influx of terrestrial Archaea), and changes in organic matter transport through the water column can affect the distribution of lipids recorded in sediments. We therefore suggest that reported temperature shifts in ancient applications indicate TEX86 lipids recorded not only temperature changes, but also changes in archaeal ecology, nutrient concentrations, and possibly oceanographic conditions.  相似文献   

9.
Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids (GDGTs) are used in various proxies, such as TEX86 and the BIT index. In living organism, they contain polar head groups (intact polar lipids – IPLs). IPL GDGTs have also been detected in ancient marine sediments and it is unclear whether or not they are fossil entities or are part of living cells. In order to determine the extent of degradation of IPL GDGTs over geological timescales, we analyzed turbidite deposits, which had been partly reoxidized for several kyr after deposition on the Madeira Abyssal Plain. Analysis of core lipid (CL) and IPL-derived GDGTs showed a reduction in concentration by two orders of magnitude upon post-depositional oxidation, while IPL GDGTs with a mono- or dihexose head group decreased by 2–3 orders of magnitude. The BIT index for CL- and IPL-derived GDGTs increased substantially upon oxidation from 0.1 to up to 0.5. Together with changing MBT/CBT values, this indicates preferential preservation of soil-derived branched GDGTs over marine isoprenoid GDGTs, combined with in situ production of branched GDGTs in the sediment. The TEX86 value for IPL-derived GDGTs decreased by 0.07 upon oxidation, while that of CL GDGTs showed no significant change. Isolation of IPLs revealed that the TEX86 value for monohexose GDGTs was 0.55, while the that for dihexose GDGTs was substantially higher, 0.70. Thus, the decrease in TEX86 for IPL-derived GDGTs was in agreement with the dominance of monohexose GDGTs in the oxidized turbidite, probably caused by a combination of in situ production as well as selective preservation of terrestrial isoprenoid GDGTs. Due to the low amount of IPL GDGTs vs. CL GDGTs, the impact of IPL degradation on CL-based TEX86 paleotemperature estimates was negligible.  相似文献   

10.
马舒慧  彭红霞 《地球科学》2018,43(11):4018-4026
"巫山黄土"是指分布于长江三峡地区的黄土状堆积物,是中国黄土的重要组成部分,具有重要的古气候环境意义.微生物四醚膜脂是反演古气候环境的灵敏指标,为了进一步理解巫山黄土中蕴含的古气候意义,通过测定巫山黄土中微生物醚类化合物(glycerol dialkyl glycerol tetraethers,GDGTs)并分析其分布特征,基于支链GDGTs(bGDGTs)的甲基化指数(methylation index of branched tetraethers,MBT)和环化指数(cyclization ration of branched tetraethers,CBT)重建该地44.4~22.8 ka.BP的古温度年平均气温(mean annual air temperature,MAAT),MAAT与频率磁化率曲线和北大西洋沉积物有孔虫曲线对比,其变化趋势具有一致性,反映了其指标的可靠性.巫山黄土的陆源输入指数(BIT值,bGDGTs vs.crenarchaeol)在0.5~1.0之间,大部分值接近于1.0,但有几个极低值,分析为干旱事件.根据MAAT和BIT指标,巫山地区在冰期气候有剧烈的波动,在36.2±3.6 ka.BP、26.0±2.7 ka.BP、23.7±2.3 ka.BP时相对比较干旱,推测可能分别对应着H4、H3和H2事件,表明该区气候变化响应全球气候变化.   相似文献   

11.
Intact polar lipids (IPLs) are frequently used as biomarkers for living microbial cells and can be separated from core lipids (i.e. lipids without polar headgroups), which are mainly derived from fossil (i.e. dead) cell material, using column chromatography. We have compared the effect of various silica column conditions on the separation and recovery of archaeal glycerol dialkyl glycerol tetraether (GDGT) core lipids, glycolipids and phosphoglycolipids using authentic standards and direct analysis with various high performance liquid chromatography-mass spectrometry (HPLC-MS) techniques. The commonly used procedure to separate these compound classes using dichloromethane, acetone and methanol as eluents, respectively, did not separate core GDGTs from glyco- and phosphoglyco-GDGTs. In contrast, a recently described procedure using hexane:ethyl acetate (3:1, v:v), ethyl acetate and methanol achieved both high recovery and successful separation of core GDGTs from the other IPLs. Application of the method to a geothermally heated soil and suspended particulate matter from the North Sea showed that it separates most of the core GDGTs from the other IPLS and that considerable qualitative and quantitative differences can occur between core and IPL-GDGTs. We conclude that the method is therefore appropriate for the separation of intact archaeal IPLs and their fossil analogues.  相似文献   

12.
For the first time a biological source for the long-chain alkyl 1,14-diols and 12-hydroxy methyl alkanoates, lipids widely occurring in the marine water column and sediments, has been identified. Cultures of Proboscia indica and Proboscia alata, rhizosolenoid diatoms belonging to the widespread diatom genus Proboscia, contain C28, C28:1, C30, and C30:1 alkyl 1,14-diols, and C27 and C29 12-hydroxy methyl alkanoates as major neutral lipids. These components form a substantial fraction of lipid fractions from sediment traps or sediments, especially in areas with an elevated primary production such as upwelling regions. Examination of literature data reveals that as much as 20 to 35% of the total lipid flux in the Arabian Sea is derived from Proboscia diatoms during the start of the upwelling season. Their rapid transfer to the water-sediment interface may explain why corresponding 1,14-keto-ols, inferred oxidation products of diols, are hardly formed. These interpretations are supported by compound-specific carbon isotopic analysis of long-chain keto-ols and diols in surface sediments of the Arabian Sea. The data indicate that long-chain alkyl 1,14-diols and 12-hydroxy methyl alkanoates can be applied as indicators for high-nutrient conditions in the photic zone.  相似文献   

13.
Glycerol dialkyl glycerol tetraether (GDGT) lipids are membrane lipids which were long thought to be synthesized mainly by archaea, organisms thought to be limited to extreme environments. Analysis of environmental samples over the last decade has shown, however, that their structural diversity and sources are much wider than anticipated and that they occur ubiquitously in a wide range of environments, such as oceans and lakes, and their (sub)surface sediments, as well as soils. Several GDGTs have been unambiguously identified and can be used as biomarker lipids, since they are preserved in immature sediments <140 Ma. Close examination of the distributions has led to the discovery that GDGTs might be used as proxies for certain environmental parameters, such as the input of soil organic matter to marine environments, soil pH, air temperature and sea and lake water temperature. Here, we review the progress made over the last decade in the analysis, occurrence and recognition of sources of GDGTs, their applications as biomarker lipids, and the development and application of proxies based on their distributions.  相似文献   

14.
Archaea are ubiquitous in mesophilic and extremophilic environments. Variations in lipid composition of their unique tetraether membrane allow them to maintain integrity and permeability in moderate to extreme environmental conditions. The change in the number of cyclic moieties in their membrane lipids is argued to be an adaptation to ambient temperatures, which is used to estimate past water surface temperature via the TEX86 index. A new class of GDGTs with a hydroxylation in one of the alkyl chains has recently been described in marine sediments. Here we report that these hydroxy-GDGTs are widespread and abundant in mesophilic marine and lacustrine environments. Moreover we observe increasing hydroxy-GDGT contributions towards higher latitudes and lower water temperatures. A significant correlation between the relative abundance of hydroxy-GDGTs and temperature is observed in surface sediments. As these compounds are found both in modern and downcore samples we suggest that the hydroxy-GDGTs could be included in the GDGT paleoproxy tool kit.  相似文献   

15.
Absence of seasonal patterns in MBT-CBT indices in mid-latitude soils   总被引:1,自引:0,他引:1  
The degree of methylation and cyclization of bacteria-derived branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in soils depends on temperature and soil pH. Expressed in the methylation index of branched tetraethers (MBT) and cyclization ratio of branched tetraethers (CBT), these relationships are used to reconstruct past annual mean air temperature (MAT) based on the distribution of branched GDGTs in ancient sediments; the MBT-CBT proxy. Although it was shown that the best correlation of this proxy is with annual MAT, it remains unknown whether a seasonal bias in temperature reconstructions could occur, such as towards a seasonal period of ‘optimal growth’ of the, as yet, unidentified soil bacteria which produce branched GDGTs. To investigate this possibility, soils were sampled from eight different plots in the USA (Minnesota and Ohio), The Netherlands (Texel) and the UK (Devon) in time series over 1 year and analyzed for their branched GDGT content. Further analyses of the branched GDGTs present as core lipids (CLs; the presumed fossil pool) and intact polar lipids (IPLs; the presumed extant pool) were undertaken for two of the investigated soil plots. The amount of IPL-derived branched GDGTs is low relative to the branched GDGT CLs, i.e. only 6-9% of the total branched GDGT pool. In all soils, no clear change was apparent in the distribution of branched GDGT lipids (either core or IPL-derived) with seasonal temperature change; the MBT-CBT temperature proxy gave similar temperature estimates year-round, which generally matched the mean annual soil temperature. In addition to a lack of coherent changes in relative distributions, concentrations of the branched GDGTs did not show clear changes over the seasons. For IPL-derived GDGTs these results suggest that their turnover time in soils is in the order of 1 year or more. Thus, our study does not provide evidence for seasonal effects on the distribution of branched GDGTs in soils, at least at mid-latitudes, and therefore, no direct evidence for a bias of MBT-CBT reconstructed temperatures towards a certain season of optimal growth of the source bacteria. If, however, there is a slight seasonal preference of branched GDGT production, which can easily be obscured by natural variability due to the heterogeneity of soils, then a seasonal bias may potentially still develop over time due to the long turnover time of branched GDGTs.  相似文献   

16.
Branched glycerol dialkyl glycerol tetraether lipids (GDGTs) are membrane lipids of soil bacteria that occur ubiquitously in soil, but their occurrence as intact polar lipids (IPLs) has not been well studied. Here, we report the identification and distribution of IPL-branched GDGTs throughout a depth profile of a Swedish peat bog. In addition to two reported glycosidic IPL branched GDGTs, we identified IPL branched GDGTs with a hexose-glycuronic acid, phospho-hexose, or hexose-phosphoglycerol head group, based on mass spectrometry. A selected reaction monitoring (SRM) assay was developed to monitor changes in head group distribution with depth. The abundance of the IPL branched GDGTs increased below the water table, suggesting that they were primarily produced in this part of the peat. This was supported by the concentrations of core lipid and IPL-derived branched GDGTs, which also substantially increased below the water table. However, individual IPL trends differed, which may be due to changes in the microbial community composition with depth or to different degradation rates for the different IPL branched GDGTs. The SRM method was also applied to two different soil types, which showed that similar IPL branched GDGTs as those in peat were present, albeit with different distributions.  相似文献   

17.
Branched glycerol dialkyl glycerol tetraethers (GDGTs) are bacterial membrane lipids, ubiquitously present in soils and peat bogs, as well as in rivers, lakes and lake sediments. Their distribution in soil is controlled mainly by pH and mean annual air temperature, but the controls on their distribution in lake sediments are less well understood. Several studies have found a relationship between the distribution of branched GDGTs in lake sediments and average lake water pH, suggesting an aquatic source for them, besides that for soil transported to the lake via erosion. We sampled the surface water suspended particulate matter (SPM) from 23 lakes in Minnesota and Iowa (USA), that vary widely in pH, alkalinity and trophic state. The SPM was analyzed for the concentration and distributions of core lipid (presumed fossil origin) and intact polar lipid (IPL, presumed to derive from living cells) branched GDGTs. The presence of substantial amounts (18–48%) of IPL-derived branched GDGTs suggests that branched GDGTs are likely of autochthonous origin. Temperature estimates based on their distribution using lake-specific calibrations agree reasonably with water temperature at time of sampling and average air temperature of the season of sampling. Importantly, a strong correlation between the distribution of branched GDGTs and lake water pH was found (r2 0.72), in agreement with a predominant in situ production. An stronger correlation was found with lake water alkalinity (r2 0.83), although the underlying mechanism that controls the relationship is not understood. Our results raise the potential for reconstructing pH/alkalinity of past lake environments, which could provide important knowledge on past developments in lake water chemistry.  相似文献   

18.
Branched glycerol dialkyl glycerol tetraethers (GDGTs) are membrane lipids of unknown bacteria that are ubiquitous in soil and peat. Two indices based on the distribution of these lipids in soils, the Cyclization of Branched Tetraethers (CBT) and the Methylation of Branched Tetraethers (MBT) indices have been shown to correlate with soil pH, and mean annual air temperature (MAT) and soil pH, respectively, and can be used to reconstruct MAT in palaeoenvironments. To verify the extent to which branched GDGTs in marine sediments reflect the distribution pattern on land and whether these proxies are applicable for palaeoclimate reconstruction in high latitude environments with a MAT of <0 °C, we compared the branched GDGT distribution in Svalbard soils and nearby fjord sediments. Although branched GDGT concentrations in the soil are relatively low (0.02–0.95 μg/g dry weight (dw)) because of the cold climate and the short growing season, reconstructed MATs based on the MBT/CBT proxy are ca. ?4 °C, close to the measured MAT (ca. ?6 °C). Concentrations of branched GDGTs (0.01–0.20 μg/g dw) in fjord sediments increased towards the open ocean and the distribution was strikingly different from that in soil, i.e. dominated by GDGTs with one cyclopentane moiety. This resulted in MBT/CBT-reconstructed MAT values of 11–19 °C, well above measured MAT. The results suggest that at least part of the branched GDGTs in marine sediments in settings with a low soil organic matter (OM) input may be produced in situ. In these cases, the application of the MBT/CBT palaeothermometer will generate unrealistic MAT reconstructions. The MBT/CBT proxy should therefore only be used at sites with a substantial input of soil OM relative to the amount of marine OM, i.e. at sites close to the mouth of rivers with a catchment area where sufficient soil formation takes place and the soil thus contains substantial amounts of branched GDGTs.  相似文献   

19.
Glycerol dialkyl glycerol tetraether (GDGT)-based proxies are increasingly used in modern carbon cycling and palaeoenvironmental investigations. It is therefore crucial to examine the robustness (sources, transport and degradation) of all GDGT-based proxies in continental margins, where sedimentation rates and extent of carbon cycling are high. We have analyzed the distributions of GDGTs in surface sediments from the Lower Yangtze River and East China Sea (ECS) shelf. The results revealed multiple sources and complex shelf processes that govern the distributions. The isoprenoid GDGT-inferred sea surface temperatures (SSTs) are robust and reflect the satellite-derived annual mean SSTs on the shallow ECS shelf, confirming an origin from surface water column-dwelling crenarchaeota. The input from methanogen-sourced, isoprenoid GDGTs is significant in the river surface sediments but they are almost absent from the ECS shelf. Branched GDGTs are also abundant in the river sediments, but ca. 95% are degraded in the Yangtze estuary, a much greater extent than observed for other terrigenous organic matter (OM) proxies. There is also evidence for production of branched GDGTs in the oxic ECS shelf water column and the anoxic sediments/waters of the Lower Yangtze River. As a result, branched GDGT-based proxies in the lower river and ECS surface sediments do not reflect the catchment environmental conditions. The effective degradation in the estuary and widespread aquatic contributions of branched GDGTs improves our understanding of how to use branched GDGT-based proxies in marginal seas.  相似文献   

20.
The basin-scale spatial variability in lipid biomarker proxies in lacustrine sediments, which are established tools for studying continental environmental change, has rarely been examined. It is often implicitly assumed that a lake sediment core provides an average integral of catchment sources. Here we evaluated the distribution of lipid biomarkers in a modern ecosystem and compared it with the sedimentary record. We analyzed lipid biomarkers in terrestrial and aquatic organisms and in lake surface sediments from 17 locations within the saline–alkaline Lonar crater lake in central India. Terrestrial vegetation and lake surface sediments were characterized by relatively high average chain length (ACL) index values (29.6–32.8) of leaf wax n-alkanes, consistent with suggestions that plants in drier and warmer climates produce longer chain alkyl lipids than plants in cooler and humid areas. A heterogeneous spatial distribution of ACL values in lake surface sediments was found: at locations away from the shore, the values were highest (31 or more), possibly indicating different sources and/or transport of terrestrial biomarkers. In floating, benthic microbial mats and surface sediment, n-heptadecane, carotenoids, diploptene, phytol and tetrahymanol occurred in large amounts. Interestingly, these biomarkers of a unique bacterial community were found in substantially higher concentrations in nearshore sediment samples. We suggest that human influence and subsequent nutrient supply resulted in increased primary productivity, leading to an unusually high concentration of tetrahymanol in the nearshore sediments.In summary, the data showed that substantial heterogeneity existed within the lake, but leaf wax n-alkanes in a core from the center of the lake represented an integral of catchment conditions. However, lake level fluctuation may potentially affect aquatic lipid biomarker distributions in lacustrine sediments, in addition to source changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号